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PERFORMANCE ANALYSIS OF MEDICAL IMAGING

WORKFLOWS

Cosmin-Gabriel Samoilă1, Maria Predescu2, Emil-Ioan Sluşanschi3

Magnetic resonance imaging (MRI) is a non-invasive imaging tech-
nology that produces three-dimensional detailed anatomical images. Analyzing a
detailed image of the brain must be done in order to discover disorders associ-
ated with structural changes of the brain. Typically, this type of analysis was
done manually by a well-trained anatomist or technician, and consuming valu-
able time. Technology improvements also impacted this particular domain, with
medical image analysis being significantly enhanced by the detailed whole brain
segmentation technique, which employs deep learning algorithms. This paper fo-
cuses on the SLANT Brain Segmentation application - which uses deep neural
networks in order to segment whole brain images. The goal of this paper is to
analyse and improve the performance of SLANT in different scenarios, in order
to discover the most suitable setup to maximize application efficiency on modern
CPU and GPU architectures.
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1. Introduction

Detailed whole brain segmentation is an essential technique in medical image
analysis, providing an easy way of measuring brain regions from a magnetic reso-
nance image (MRI). For a long time, the manual analysis of the brain structure,
which is a resource and time intensive operation, has been regarded as the standard.
Nowadays, automated machine learning algorithms are available to reduce the man-
ual effort [4]. Recently, deep convolution neural network (CNN) has been a method
used for whole brain segmentation. The Spatially Localized Atlas Network Tiles
(SLANT) method is the approach proposed by SLANTbrainSeg that brings into
the spotlight the advantages of distributing multiple independent 3D fully convolu-
tional networks (FCN) for high-resolution whole brain segmentation [9].

SLANTbrainSeg – Deep Whole Brain High Resolution Segmentation – is a
whole brain segmentation pipeline applied on structural magnetic resonance images
which is essential for understanding neuroanatomical-functional relationships [10].
The pipeline consists of three parts: pre-, deep-, and post-processing, as exhibited
in Figure 1. All three components are contained in a Docker image that can be
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executed independently. The containerized solution has two versions, a Docker image
for running the application exclusively on CPU, and a Docker image for running the
application on a single GPU instance.
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Fig. 1. Spatially Localized Atlas Network Tile (SLANT) Framework

SLANT is available in two versions, one that only uses the CPU, and one that
can be run using one GPU. Our main objective is to find out the best way to run
this application in order to increase its throughput, beginning with the comparison
between the existing versions of the program, and exposing the required changes
necessary so that it can be executed on multiple GPUs within the same computa-
tional node. Subsequently, the application is planned to be deployed in a highly
distributed environment.

The distribution of the load was carefully monitored using suitable profiling
tools to decide if the resources of the GPU are efficiently utilized when processing
the MRIs on multiple GPUs. After the results indicated that processing a single
image doesn’t utilize all the compute and memory-bandwidth capacity available on
the GPU, we tried a different approach to improve the throughput of the application,
executing multiple images in parallel on the same GPU

The structure of this paper is as follows: in Section 2 we give an outline of the
related work with respect to GPU processing of image segmentation applications as
well as execution frameworks on GPU architectures; Section 3 offers an analysis of
CPU vs. GPU performance of the SLANT Framework; Section 4 shows the way in
which the scheduling of image fragments is deployed on a GPUs using the CUDA
programming framework; and in Section 5 we conclude with a discussion of the
results as well as a way forward for the current study.

2. Related work

The graphical processing unit (GPU) has become an important tool when
it comes to reducing the processing time of complex tasks requiring processing of
significant amounts of data. Many applications from the medical field can benefit
from its advantages. With the vast increase of medical imaging and treatment
machines, a huge amount of data is generated in medical physics. The 3D MRIs
are more and more accurate due to their increased resolution. Increased resolution
means increased processing time, which creates the need for more sophisticated and
optimized processing tools.
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Image reconstruction and image processing are two computationally challeng-
ing tasks suitable for GPU acceleration. Hence, algorithms that could be optimally
performed on GPUs are deployed in order to be able to efficiently parallelize the
desired workload. For example, the algebraic reconstruction technique (ART) was
not convenient for GPUs as each iteration only processes one projection line. To
adapt to the GPU capabilities, simultaneous ART (SART) can be used, as the image
is updated after the back-projection of an entire projection view [5].

SLANTbrainSeg is executed over large datasets of pre-processed MRIs of small
sizes and it relies on deep learning frameworks, such as TensorFlow [7] to optimize
their execution on a single GPU.

As we will see in the case of SLANTbrainSeg, many real-world applications
have a low GPU utilization. Most of the time, a single process uses the context of one
GPU and blocks the compute resources of the GPU, using them on its own. Sharing
these resources among multiple kernels could improve the GPU utilization and would
result into an improved performance of the application and also into an increased
throughput. To share the context of one GPU, recent NVIDIA GPU architectures
implement two features: Hyper-Q and MPS (Multi-Process Service). Hyper-Q al-
lows CUDA kernels to be processed concurrently on the same GPU, while MPS is
a feature that enables the overlapping of kernel and memcopy operations from dif-
ferent processes on the same GPU [1]. Knowing about these two features supported
by NVIDIA-GPU, we can talk about Slate [3], a workload-aware GPU multiprocess-
ing framework which represents a solution that takes advantage of GPU resource
sharing while also managing the contention that may be harmful for the application
performance. Slate is a cost-effective software solution for enabling GPU resources
sharing and also implements workload-awareness to minimize resource contention.

Another framework that facilitates GPU resources sharing is Mystic, a sched-
uler that enables co-execution of applications on GPU-based clusters and cloud
servers [8]. A particularity of Mystic is that it detects interference between applica-
tions using learning-based analytical models.

In the current research we propose an approach that uses CUDA MPS to
schedule multiple image fragments over the same GPU, thus leading to an increased
throughput of the GPU architecture, unlike the approaches offered in the Hyper-Q
and Mystic frameworks described in this section.

3. Performance Analysis of SLANT

As mentioned in the previous section, SLANTbrainSeg application can run
both on CPU and single GPU. In this section, we will begin by comparing the results
for the two existing versions of the app, continuing by describing the optimization
approaches we analysed during the research process. Among the options we con-
sidered and tested we can mention running the deep learning module on multiple
GPUs, analysing the impact of limiting the CPU power on the GPU version, testing
on various input images, and running multiple images in parallel on the same GPU
using CUDA Multi-Process Service.

In this section, we will analyse each version of the SLANTbrainSeg application.
For the CPU version, the program was started using a different number of threads
to determine the most efficient alternative. On the other hand, for the GPU version,
the application was modified so that it could run on multiple GPUs, and the impact



44 Cosmin-Gabriel Samoilă, Maria Predescu, Emil-Ioan Sluşanschi

of this change will also be described. Because the input image resolutions may vary,
we will also discuss the impact of the image size on the total execution time.

3.1. Impact of Input Size

Regarding the input that SLANT works with, it receives MRI volumes of the
brain that are firstly pre-processed using MatLab. Next in the pipe comes the deep
learning component that we are trying to optimize, and finally, the result is post-
processed, also using MatLab, to obtain the final image of the segmented brain.
This kind of image can be found in the OASIS (The Open Access Series of Imaging
Studies) database [6]. For the tests described up to this point in the paper, a 37MB
MRI was utilized as input. As stated before, for this input size, the load was not
big enough to see an improvement in the application performance when running on
multiple GPUs.

Using a Python script, the size of the images was increased, and we managed
to run the pre-processing component on the scaled image. After the pre-processing,
the output had the same size as the original image after the pre-processing step.
This is due to the normalization process performed as part of the first component.
The step was introduced because MRI is a non-scaled imaging technique, meaning
the intensities of acquired scans vary across different scanners, and even different
scans from the same scanner. Therefore, a regression-based intensity normalization
was added to the application [9].

3.2. CPU Version

For the CPU version, the user is able to set the number of threads. Figure 2
illustrates how increasing the number of threads improves the execution time. It has
to be mentioned that all the data below refer only to the training time, excluding
the pre- and post-processing parts.
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Fig. 2. Processing time for one image - CPU version with threads

The number of threads was increased until we noticed that no improvement
was brought to the performance of SLANT. The execution was performed on the
NCIT (National Center for Information Technology) cluster of the NUST Politehnica
Bucharest on machines which provided 40 threads using hyper-threading (20 physical
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cores) and 64GB of RAM. The best execution time was obtained for the execution
with 16 threads, signaling the best trade-off between CPU-load and the size of the
data to be processed. A higher number of threads only introduced a parallel overhead
without any further performance increase.

3.3. GPU Version

The deep learning module is implemented using the PyTorch framework, an
open-source machine learning library based on the Torch library. PyTorch has two
ways of splitting models and data across multiple GPUs:

• nn.DataParallel splits the model and data between different GPUs and co-
ordinates the training. It uses one process to compute the model and then
distributes it to each GPU during each batch. It is easier to use - just wrap the
model and run the training script - but it also requires that all the GPUs are
on the same node.

• nn.parallel.DistributedDataParallel [11] parallelizes the processing of the
given module by splitting the input across the specified devices by chunking in
the batch dimension and allows the GPUs to be on the same node or spread
across multiple nodes. It duplicates the model across multiple GPUs, each of
them being controlled by one process.
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Fig. 3. Processing time for one image - single node, multiple GPUs

The data in Figure 3 is collected after the deep learning module was exe-
cuted on the hp-sl.q queue on a Tesla K40 GPU with a memory of 11GB, and
the numbers refer to the computation time for one input image. The changes in
performance when increasing the number of GPUs are not visible in this case due
to the overhead of data distribution. For more accurate results the program must
receive more images as input to be processed in parallel, not just a single fragment.
For a better analysis of the results, and especially to discover why the performance
of the application is not improved when running on multiple GPUs, we decided to
go into detail and analyse the load distribution using a profiling tool.

The breakdown was done for the version using two GPUs, working with the
NVIDIA Visual Profiler. By performing this analysis we discovered that for a 37MB
input image, the load was executed entirely on one GPU, the second one not being
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used at all. For this input, the load on the used GPU was most of the time below
50%. This result may indicate that the size of the input is not big enough to be
divided on both GPUs and the scheduling algorithm used by the nn.DataParallel
method does not distribute it on the second GPU, using just the first one. We will
analyse later on the input options we have and how we could push the limits of the
load.

Following these results, two approaches may be taken into consideration: to
execute the processing on larger images or to process multiple images in parallel,
on the same GPU because processing a single image doesn’t utilize all the compute
and memory-bandwidth capacity available on the GPU.

Even if the processing time of a single image increases by an approximate
10% when we use a configuration with more than one GPU, having the workload
distributed across multiple GPUs is desired. This observation is important if we take
into account the workload setup, where batches of multiple images are processed,
hence the throughput is increased close-to-linear with the number of GPUs.

3.4. Analysis of CPU impact on GPU execution

To better understand the impact of the CPU when the GPU version is running,
the CPU power was limited in two ways:

• Using different numbers of CPU threads during the GPU execution.
• Limiting the application to run just on a certain number of CPUs.

For the first option, to change the number of threads, a method from torch
library was used, setting the number of threads in test.py using set num threads

option provided by PyTorch. Modifying the number of threads did not seem to have
a big impact on the execution time for the GPU version, as it can be observed in
Figure 4a, the times for the 8, 16, and 32 threads versions are very similar.

The second option was to limit the CPUs for the application. This was
achieved by restricting the available CPUs for the application using the taskset

command, where just three out of the 40 available CPUs were used to run the GPU
version of the SLANT application. Setting the affinity of the process for certain
CPUs doesn’t affect the performance, the obtained time was better for this method,
showing that, even without limiting the number of CPUs, the program was using
the same CPU power.

4. Towards High-Throughput Computing

Most of the time, when thinking about improving the performance of an ap-
plication executed on GPUs, we think about the most efficient way to distribute
the workload on multiple GPUs. But there are cases when a single application
process doesn’t utilize the full compute capacity of even one GPU node. SLANT
Brain Segmentation is one of those applications, which for processing a single im-
age, utilizes below 50% of the compute and memory-bandwidth capacity of a GPU
with 11GB memory. To be able to use all the available resources and to maximize
the throughput of SLANTbrainSeg, a couple of scenarios were analysed, including
CUDA Multi-Process Service and scheduled processing of segments. We propose
an approached meant to improve both the speedup as well as the memory usage of
GPUs for the SLANT application.
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Fig. 4. CPU impact on the GPU execution

4.1. CUDA Multi-Process Service

The CUDA Multi-Process Service (MPS) is an alternative implementation of
the CUDA Application Programming Interface (API) that allows multiple CUDA
processes to share the context of a single GPU [2].
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Fig. 5. Multi-Process Service (MPS)

As mentioned in the previous sections, the SLANT pipeline is divided into
three parts: the pre-processing, the deep-learning, and the post-processing phases.
The deep learning component receives as input a pre-processed image. After the
images go through the first module, they have the same size as a result of the nor-
malization process performed as part of this component. The step was introduced
because magnetic resonance imaging is a non-scaled imaging technique, meaning
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the intensities of the brain scan may vary a lot. Therefore, a regression-based in-
tensity normalization was added to the application. Knowing that the input size is
constant for the deep learning module and that processing a single image doesn’t
utilize enough of the computing capacity of one GPU, we decided to explore the
available options to maximize the throughput for SLANTbrainSeg by maximizing
the resources utilization of one GPU. Using the CUDA Multi-Process Service, the
GPU can run multiple independent kernels concurrently as long as there are enough
resources available (e.g. registers, shared memory, thread blocks slots, etc.) while a
single kernel is running.

4.2. Scheduled Processing of Fragments

To get better flexibility in scheduling the processing of the MRIs, a different
method to process the images was taken into consideration. Each 3D MRI is divided
into 27 pieces or fragments, as shown in Figure 6, which can be processed separately
without affecting the integrity and correctness of the final results. This is a partic-
ularity of the SLANT-27 whole brain segmentation method where the segmentation
is done using 27 network tiles. Because multiple 3D fully convolutional networks
(FCN) are used, each one of them is specialized on one part of the brain with smaller
spacial variations. As part of the last step of the SLANT pipeline using the label
fusion technique, the final segmentation of the brain is obtained [9].

Fig. 6. SLANT-27 Network Tiles

In the approaches described up to this moment, to process one image, we used
a script provided in the Docker image of SLANTbrainSeg, that executed sequentially
the deep learning module for each piece. To obtain more control over when a certain
piece of one image is processed, a custom scheduling algorithm for processing the
MRIs so that the throughput is maximized has to be implemented.

5. Conclusion and further work

The findings described in this paper represent a good starting point in the GPU
optimization of the applications that perform processing of magnetic resonance im-
ages as they have a similar structure. The fact that GPU computing capabilities are
not yet efficiently utilized in most data centers, typically incur significant financial
costs, that can be reduced with better resource utilization policies. When a single
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process utilizes a small number of resources of a GPU, a lot of computing power
can be wasted as those resources could be used to run other processes as well. The
CUDA Multi-Process Service is an alternative implementation of the CUDA API
that solves this problem by allowing operations from different processes to overlap
on the same GPU.
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Fig. 7. Speedup for processing 6 images compared to serial execution

As show in Figure 7, comparing the results of the CPU and GPU executions
for six images, the multi-threaded execution is 2.7 times faster than the serial one
(one thread and no GPUs). If we offload the execution to all three available GPUs
of a single machine, the execution time decreases approximately 60 times compared
to the serial run. As a reference, the serial processing of a batch of six MRI images,
on the machine that we have previously described, takes 4 hours and 20 minutes and
the fastest configuration that uses three threads and three GPUs takes 4.5 minutes.
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Fig. 8. Memory usage while running two images on a single GPU

As can be seen in Figure 8, at the peak point in the processing of one fragment
of the image, more than 80% of the memory of the GPU is utilized. As a consequence
of the memory being the bottleneck of our workload, the average GPU utilization is
still rather low, hence the processing of multiple images in parallel will have a poor
resource utilization or the execution will be halted because of memory-overflow. To
solve this issue, we are planning to implement a custom scheduling algorithm for
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image fragments. The heuristic will have to take into account the instant load and
memory utilization for each GPU when the processing of a new fragment will be
scheduled. One might notice that processing independent MRI images is embar-
rassingly parallel so, having a resource-aware scheduling algorithm, will allow us to
efficiently deploy the current workload in modern HPC environments.
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