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KINEMATICS MODELING OF THE ABB7600 ROBOT

Sandra-Elena NICHIFOR', Ion STROE?

The purpose of this paper is to provide a kinematics model of an ABB
IRB7600 robotic arm. Regarding the direct kinematic problem, this is solved using
Denavit-Hartenberg parameters. Moreover, the inverse kinematics problem is based
on the known iterative methods, respectively the general problem of inverse
kinematics and the geometric approach of the position to determine the joints.

The developed kinematics model plays an essential role in enabling the
trajectory planning for the ABB 7600 robot. By employing a fourth-order
interpolation method, the motion planning process is enhanced, allowing the robot
to execute precise and efficient movements along its trajectory.

Keywords: Denavit-Hartenberg parameters, direct kinematics, inverse
kinematics, trajectory planning, ABB7600 joints.

1. Introduction

Modeling and simulation are two processes used to develop and test the
behavior of a robot in its workspace, which is characterized by the total volume
generated by the end effector as the manipulator performs all possible movements.
The problem in position control is to control the manipulator end effector (i.e. the
joint variables) to the desired position regardless of the initial position [1]. In this
sense, the solution will be done in several steps: route planning, trajectory
generation and control design.
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Fig. 1 The relationship between direct kinematics and inverse kinematics
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The problem of direct kinematics represents the set of all relationships that
allow defining the position of the end effector according to the variables of the
joints. In this sense, several possibilities for determining the position of the end
effector using Cartesian coordinates, cylindrical coordinates, spherical coordinates
and articulated coordinates were formulated. Instead, the inverse kinematics
problem ensures the determination of the coordinates of the joints that lead the
end effector to the desired position and orientation [2].

The main objectives of this paper include developing a kinematics model
of an ABB7600 robotic arm using Denavit-Hartenberg parameters to solve the
direct kinematics problem. Moreover, solving the inverse kinematics problem by
employing iterative methods, such as the general problem of inverse kinematics
and a geometric approach is considered.

The originality of this paper aims to contribute to the understanding and
control of the ABB7600 robotic arm by providing a comprehensive self-
developed model that encompasses kinematics and trajectory planning aspects.

2. Direct kinematics

The direct kinematics problem considers determining the position and
orientation of the end effector using the values of the manipulator joints [3],[4].
The transformation matrix for a link 7 is
cosd, —sinb cosa, sinfsina; a,cos0,
sind,  cos@.cosa; —cos@sina, a,sing,

[7]= (1)

0 sing, cosq, d,
0 0 0 1

where d; is the distance between the x, and x,,, axes along the z,, axis
(represents the extension or retraction of the joint axes), 6, is the angle between

the x, and x,, axes, measured about the z,, axis (represents the rotation about

i+1

the joint axis), a, 1s the distance between the z, and z,, axes along the x, axis

i+1
(represents the distance between the joint axes) and ¢; is the angle between the z,
and z,, axes, measured about the x, axis (represents the relative twist between
consecutive links) [5].

Regarding the calculation of homogeneous transformation matrices, the
following table with Denavit-Hartenberg parameters is used [6]
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Table 1
Denavit — Hartenberg parameters of the mechanism
Lin A | Oldee] | aln] | elde
1 0.78 2 0.41 -90
2 0 0, 1.075 0
3 0 0, 0.165 90
4 1.056 0, 0 90
5 0 0, 0 -90
6 0.25 0, 0 0
Given that
1 (P[] [P ) e e < R B 2
[ ]6_[ ]1[ ]z[ ]3[ ]4[ ]5[ ]6_ 0 1 )
the orientation and position of the final effector of the robot will be obtained
h hy hs
0
[R]6 = Ty Iy (3)
By Iy I

where

N = C1Cp3C4C5Cq F C5818,Cq — €18385C¢ + 8,C4Sg — C1C)38,5¢

Ha = 81€4C6 = €1C384C6 — C1Cy3CCs85 — Cs81S486 + €1553555

T3 = C853Cs = Cy3C4C1Ss — 815455

Fy1 = 81C53C4CsCq — C5sC1S,Cq — 81859385C — C1C4 S5 = 81C535456

Ty = —C1C4Cq = 81Cp38,C6 — 81Cp3C4CsSg + C5C18, 8¢ + 815)3858¢

T3 = 81853Cs = Cp3Cy 8185 + C18,Ss

7,

317 T853C4C5C6 T Cp3S5Cs T 5238,5

T3 = 85384Cq F C4Cs8538¢ + Cp3858¢

T35 = Cy3Cs +Cy8538s
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(@) +a,C, +ay¢yy —d, 55y — dCsSy; = d€1C485) = S8,
B =] 5,( +ay¢, + 30y = d,S5y = d €8,y = dCrncy5) +de;s,54 “4)
dy =8, = 438, = d,Cyy = dCsCyy +d553C,5;
in which the following notations were made
s, =sin o,
¢, =cosb,
5, =sin(6,+0,)"

¢, =cos(6,+0))

j=16 (3)

3. Inverse kinematics

In robotics, determining the joint angles of a serial manipulator to locate
the position and orientation of the end effector is known as inverse kinematics.
Also, solving this inverse kinematics problem is essential for all pick-and-place
operations. Although this whole process can be complex, the most efficient way to
determine the configurations of all the joints is to define a closed-form expression
of the manipulator. In this sense, there are types of manipulators whose closed-
form expressions cannot exist, so that numerical methods must be implemented to
obtain an inverse kinematic solution, these iterative processes with progressive
approximation requiring high computational efforts [7-9].

The forward kinematics model of the ABB7600 robot can be easily
derived using the Denavit-Hartenberg model and it can be represented as follows

(71, =[] (7L [T [T L[], =[] (6)
with
hll hlZ hl3 })x
[H] — th h22 h23 I)y (7)
h31 h32 h33 ])z
0O 0 o0 1

where A, (i=j :m denotes the components of the rotation matrix of the final

effector (are similar to the components of the rotation matrix in relation (3) ) and
P, P, P, represent the final effector position components on the three axes.

Using the (6) and (7) relations is obtained a system of 12 nonlinear
equations with 6 unknowns and to determine all the joints, successive
multiplication with the inverse matrix of a certain transformation in both sides of
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the robot's kinematic equation is considered. Using this method four joints are
obtained, respectively

b, —dsh,,
0, =arctg| —— )
Px - d6h13
0, = arctg [ s = sy j 9)
(I3, + Iy, )Cy5 = By,

6, = arctg ( (3¢, + hoys, )epsey — By, + (B8, — hyyc))s, ] (10)
(36, + Py38)) 853 + sy

0 — arctg( —(Iy,¢ + 1y8,)C058, + Py 8558, + (s, — hy¢)ey j (11)
6
—(hy,¢y + hyy$))CpSy + IayS558, + (s, — e e,

Considering the complex mathematical calculation regarding the
determination of the angles 6, and 6,, the geometrical problem for the
calculation of the two angles will be addressed next. A simple method to solve the
inverse kinematics is by removing the last links and keeping the first three joints
of the robotic arm to determine the values of the angles 6, and 6, .

Fig. 2 Simplified side view of the robotic arm
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As seen in Fig.2, certain lengths can be determined using trigonometric
relations and the Pythagorean theorem in the highlighted right triangles,
considering that z represents the position of the end effector on the z axis,

respectively P, and
I =\a;+d; (12)

a, = arctg [ﬂ} (13)
a,
P =P -F (14)

Relation (14) P, represents the position of joint four relative to the base
of the robotic arm, P’ represents the position of joint one relative to the base of

the robotic arm, and P, represents the position of joint four relative to the first

joint.
: The position of the first joint relative to the base of the robot is
a, cos 6,
{R"} =4 a,sin0, (15)
dl
From the above figure it is also observed that
B=P+F (16)
Given that
Px hl3
{Bto}: Py —dg\h; (17)
[)z 33

is obtained
B —dh, a, cos 6
[P} =P, —djhy {— asin6, (18)
P - d6h33 dl

B, denotes the length of the vector El

B, = \/(Rc ~dghy—a,cos)’ +(B, —dshy; —a sin6,)” + (P, ~dghy, —d,)’

(19)
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From Fig. 2 applying the cosine theorem yields

2 2 2
o, = arccos ath —hy (20)
2a,l,
Noting on the drawing that 7 =6, + ¢, +,, the value of the angle of the
third joint is obtained
2,72 p2
0, = —arctg 4o |_ arccos ath —h (21)
a, 2a,l,

Regarding the determination of the angle of the second joint, the geometric
elements in the Fig. 3 will be identified

z

d,

Fig. 3 Lateral view robotic arm

B, =arctg (ij (22)
a
%]
By=n—p,=n—arctg| — (23)
a

The lengths corresponding to the positions of joints two and four relative
to the position of the first joint of the robotic arm are

R, = \/(al cos8,)’ +(a,sin6)’ +d; (24)
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Py = (P, = Ay, + (P, —dhy ) +(P. = dghy)’ (25)
B+ B — R,
+ f, = arccos| ————— 26

ﬂZ ﬁ} ( 2[6134 ( )

Given that the angle f, was defined using the relation (22), it is obtained

2 2 2
B, = arccos fathi—hy — T +arctg 4 (27)
20, F, a,
Applying the cosine theorem
2, p2_p2
B, = arccos [Mj (28)
2a,h,

The expression of the angle of the second joint is finally obtained,
knowing that 6, =—(f5, + f3,)

Ny s P>+ P:-P; d
6, = & —arccos HrhaTh —arccos| L—1_—% |_grerg| L (29)
2a,F, 2FF a,

01714
4. Trajectory planning of a serial manipulator

The trajectory planning represents a crucial aspect of controlling serial
manipulators in robotics. It involves generating smooth, collision-free and
efficient paths for the robot’s end-effector to accomplish various tasks.

Regarding trajectory planning for a serial manipulator, two main types are
defined, the first is planned in the space of each joint, and the second in the
Cartesian system, as observed in the specialized papers [10], [11], [12]. In this
study, a joint space trajectory is used, the planned motion being carried out by the
quartic polynomial interpolation method and defined on a simple case of start-
move-stop. This trajectory is defined by point-to-point motion, as presented in the
referenced paper [13]. Using quartic polynomial interpolation for joint space
trajectory planning is a valid and widely used method, and it can be effectively
applied to generate smooth and precise motions for 6-DoF serial manipulators.

In this context, the joint angles, joint angular velocities and joint angular
accelerations have the following forms

Ot)=at' +at’ +a,t’ +at+a, (30)
0
O(t) =4a,t’ +3a,t’ +2a,t +a, (31)
.
O(t)=12a,t* + 6a,t +2a, (32)

The initial conditions are the following
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0(t,) =6,
H(tf) = l9f (33)

0(1,) = C;:0(1,) = C30(t,) = 0(2,) =0

Considering the above, it is obtained

a, =6,
a, =C,
C
a, = 72 (34)

_40,-6,) 3C, 2C,
37 T2
f b4
_360,-6) 26 ¢,
{ PR
s roY
where C,and C, represent values that are chosen based on the data of the

a,

problem.
5. Results

This case study considered the mathematical modeling and kinematic
analysis of an ABB IRB7600 robotic arm. It was mathematically modeled using
the Denavit-Hartenberg parameters, the forward and inverse kinematics solutions
being generated and implemented using Matlab software. In this developed
software the motion kinematics were tested and the relevant motion was
determined.

Inverse kinematics of a robotic arm is used to determine the joint variables
that control the motion of each joint in a robotic arm. This makes it possible to
command the end effector of the robot to achieve the desired position and
orientation in space.

For the imposed data of robotic arm angles, respectively
6,=45",0,=30",60,=30",0,=-45",0,=30",6, =0°, the position of the final
effector is determined by using direct kinematics, following the steps from
subchapter 2.1, obtaining

—0.5227 0.7500 -0.4053 0.2586

[T]O— 0.3433  -0.2500 -0.9053 0.1336
© | -0.7803 —0.6124 —0.1268 —0.4601
0 0 0 1

(35)
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Position of the end effector

0.2586
{P'}=10.1336 (36)
—0.4601
The orientation of the end effector is given by the rotation matrix
—0.5227 0.7500 —0.4053
[R]: =/ 0.3433 -0.2500 -0.9053 (37)
—0.7803 -0.6124 -0.1268

This case study considers the verification of the obtained data in terms of
both forward and inverse kinematics.

For verifying angular relationships through inverse kinematics,
considering the position and orientation of the end effector, the relationships
obtained in Chapter 2.2 are taken into account. Thus, the position and orientation
of the end effector from equations (36) and (37) are used, and the values of the
angles for each joint are determined using the inverse kinematics model from
equations (8)-(11), (21), (29), obtaining

Table 2
Joint angles obtained by applying the inverse kinematics model

0, =45°

| 0,=29.9977" | 6,=29.9993 | 6, =-44.9962" | 6, =30.0036" | ¢, =—0.0052°

As observed, the obtained values of each joint angle through the inverse
kinematics model are the same as the initial data from the forward kinematics
model, leading to the validation of the presented model.

For the case where the polynomial trajectory described previously is used,
the initial and final joint angles values are as follows

Table 3
Joint angles values
Joint angles [deg] 6, 0, o, 0, o, 6,
Start (Initial) 20 10 10 10 20 10
Stop (Final) 50 90 120 80 60 100

When considering the trajectory determination, based on the kinematic
model of the ABB7600 robot, two simulation scenarios are taken into account.
The first scenario assumes both initial and final velocities and accelerations to be
zero, while the second scenario considers a non-zero initial velocity. The
simulations for the two cases described above were conducted using the Matlab
simulation environment.
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The parametric relations for the end-effector trajectory in the first and
second cases are as follows
x(¢) =¢,(0.41+1.075¢, +0.165¢,, —1.056s,, —0.25¢,s,, —0.25¢,,c,s5) — 0.25s,5,55[m]
y(t) =5,(0.41+1.075¢, +0.165¢,, —=1.056s,, —0.25¢,s,, —0.25¢,,¢,85) +0.25¢,5,55[m]
z(t)=0.78-1.075s, —0.165s,, —1.056¢,, —0.25¢,c,, + 0.255,,c,5,[m]

(38)

in which the following notations were
made s, =sin g,(?);c; = cos6,(2);s,; =sin(6,(1) +6,(2));c; = cos(6,(1) +6,(?)) ,

i

i=j=16.

For each angular displacement, it was determined based on the first
equation in system (39) for the first simulation case and the first equation in
system (40) for the second simulation case.

The end-effector trajectory of the ABB7600 robot in the first simulation

case (C,=0deg/s; C, =0deg/s”) is shown in Fig.4.
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Fig. 4 End-effector trajectory in the first case

The results of the joint angles, joint angular velocities and joint angular
accelerations in the first case of simulation are as shown on figures 5 to 7. The
relationships of angular joints, angular velocities and angular accelerations in the
first simulation case are as follows
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40,-6,) . 360,-6) ,

ei(t)zeo,» + 3 4
S tf
0 12(6, -6, 12(6, -6
01’ (t) — ( fi3 0; ) t2 _ ( /,'4 0; ) t3 (39)
tf tf
m 24(0, -6 36(0, -6
91_ (t) — ( fi3 0; ) t— ( /i4 0; ) 12
tf tf

where i=1,6, 6, represents the initial joint angle, €, represents the final joint
angle, both presented in Table 3, 7, represents the final time (in this case is 50s)

and ¢ represents the time for the entire simulation.
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Fig. 5 Joint angles in the first case Fig. 6 Joint angular velocities in the first case
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Fig. 7 Joint angular accelerations in the first case

Regarding the second simulation case (C, =1.5deg/s; C, =0deg/s”), the
end-effector trajectory is shown in Fig.8.
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Fig. 8 End-effector trajectory in the second case

The results of the joint angles, joint angular velocities and joint angular
accelerations in the second case of simulation are as shown on figures 9 to 11. The
parametric equations in the first simulation case are as follows

40, -0, 36, -6
0(1)=0, + (f"3 ) (f'4 ) 441 50
’ Iy
0 12(6, -6 12(6, -6
0.(t) = (ff3 °f)z2— (-’?‘4 Of)t3+1.5 (40)
Ly Iy
m 24(6, -6 36(0, —6
6= (f,.3 o,.)t_ (ﬁ4 o,.)t2
£ t)

where i=1,6, 6, represents the initial joint angle, 6, represents the final joint
angle, both presented in Table 3, 7, represents the final time (in this case is 50s)

and ¢ represents the time for the entire simulation.
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Fig. 9 Joint angles in the second case ~ Fig. 10 Joint angular velocities in the second case
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Fig. 11 Joint angular accelerations in the second case

As observed in Fig. 4 and Fig. 8, there are significant differences between
the obtained end-effector trajectories are significant due to the modification of the
initial velocity value. It is important to note that the simulation time was fixed at
50s for both cases. Due to the variations in velocity and acceleration between the
two trajectories, energy consumption and the demand on the robot's motors may
vary, as the aim is to reach the final position. A trajectory with zero initial and
final acceleration will impose lower demands on the motors, whereas a trajectory
with an imposed initial velocity may push the motors to their maximum capacity.

Analyzing Fig. 9, the effect of changing the velocity resulted in obtaining
maximum angular displacements of approximately 5.5 degrees after 20 sec, while
in the first simulation case, Fig. 5, the angular displacements remain unchanged
during the motion. Regarding the angular velocities, in the first simulation case
(Fig. 6), after approximately 34 sec, all joints reached their respective maximum
values. On the other hand, in the second case (Fig. 10), after 30 sec, the first 4
joints reached their respective maximum values, while joints 5 and 6 showed a
descending variation. The obtained results of angular acceleration depend largely
on the results obtained for angular velocities. In the first simulation case (Fig. 7),
when the angular velocity reaches its maximum value for all six joints, the angular
acceleration becomes equal to zero. As observed in Fig. 11, the dependence of
angular acceleration follows the same pattern as in Fig. 10, such that when the
angular velocity reaches its maximum or minimum values, the acceleration
becomes zero.

Since the aim is to achieve a smooth and shock-free motion, choosing the
quartic interpolation method leads to minimizing the variation in acceleration.
This study lays the theoretical groundwork for an experimental simulation to
verify the validity of the results obtained and ensure they stay within acceptable
limits, taking into account the algorithms presented in the specialized papers [14],
[15], [16]. The experimental analysis, which will serve as the analysis for landing



Kinematics modeling of the ABB7600 ROBOT 31

at a fixed point on a mobile platform, will be carried out in the SpaceSysLab
Maneciu Laboratory of the National Institute for Aerospace Research “Elie
Carafoli”.

L T, & }
Fig. 12 INCAS ABB 7600 robotic arm

4. Conclusions

This article introduces the development of a kinematic model for a six-
degree-of-freedom serial manipulator, and its simulations were conducted using
Matlab simulation environments. The direct kinematics of the robot where studied
by employing Denavit-Hartenberg parameters, while the inverse kinematics were
achieved through an iterative calculation procedure. The main objective was to
derive a mathematical model for the inverse kinematics of a six-degree-of-
freedom serial manipulator, taking into account all relevant constraints on the
variables.

Future advancements focus on enhancing the control of the serial
manipulator's end effector, particularly when working with flexible elements,
relying on the kinematic model presented in this research. Additionally, a
trajectory of the end effector was established, and the variations in the six joint
angles were carefully observed.

REFERENCES

[1]. John J. Craig, Introduction to Robotics. Mechanics and Control. Third edition, Pearson
Prentice, United States of America, 2005.

[2]. Zehranur Yilmaz, Orkun Yilmaz, Zafer Bingiil, Design, Analysis and Simulation of a 6-DOF
Serial Manipulator, Kocaeli Journal of Science and Engineering, May 2020.



32 Sandra-Elena Nichifor, Ion Stroe

[3]. Muhammad Bilal, Muhammad Osama Khan, Awais Mughal, Noman Ali, Design and Control
of 6 DOF Robotic Manipulator, Thesis for the degree of B.Sc. Mechatronics & Control
Engineering, University of Engineering and Technology Lahore Faisalabad Campus, May
2018.

[4]. Semaal Asif, Philip Webb, Kinematics Analysis of 6-Dof Articulated Robot with Spherical
Wrist, Mathematical Problems in Engineering, Hindawi, Vol 2021.

[5]. Anastasia Tegopoulou, Evangelos Papadopoulos, Determination of Rigid-Body Pose from
Imprecise Point Position Measurements, IEEE/RSJ International Conference on Intelligent
Robots and Systems, September 25-30, 2011, San Francisco, USA.

[6]. ABB, Operating manual RobotStudio, Sweden, 2008-2010.

[7]. I A. Vasilyev, A.M. Lyashin, Analytical Solution to Inverse Kinematics Problem for 6-DOF
Robot-Manipulator, Automation and Remote Control, p. 2195-2199, 2010.

[8]. Serdar Kiiciik, Zafer Bingiil, The Inverse Kinematics Solutions of Industrial Robot
Manipulators, Kocaeli University, July 2014.

[9]. Mustafa Jabbar Hayawi, The Closed Form Solution of the Inverse Kinematics of a 6-DOF
Robot, Computer Science Department, Education College, Thi-Qar University, 2013.

[10]. Marc Toussaint, Robot Trajectory Optimization using Approximate Inference, 26th
International Conference on Machine Learning , Montreal, Canada, 2009.

[11]. A. Seddaoui, C.M. Saaj, Optimised Collision-Free Trajectory and Controller Design for
Robotic Manipulators, University of Surrey, February 2019.

[12]. Prafull Kumar Tembhare, Ashish Kumar Khandelwal, Trajectory Planning of 6 DOF
Articulated Robotic Arm for Loading and Unloading Operations, Journal of Harmonized
Research in Engineering, 2015.

[13]. Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Robot Dynamics and Control, Second
Edition, January 2004.

[14]. Jian Zhang, Al based Algorithms of Path Planning, Navigation and Control for Mobile
Ground Robots and UAVs, October 2021.

[15]. P.E. Teleweck, B. Chandrasekaran, Path Planning Algorithms and Their Use in Robotic
Navigation Systems, Journal of Physics Conference Series, April 2019.

[16]. Francisco Rubio, Francisco Valero and Carlos Llopis-Albert, A review of mobile robots:
Concepts, methods, theoretical framework, and applications, International Journal of
Advanced Robotic Systems, March-April 2019.



