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STANLEY DEPTH OF POWERS OF THE PATH IDEAL

Alin Ştefan1

The aim of this paper is to give a formula for the Stanley depth of
quotients of powers of the path ideal. As a consequence, we establish that
the behavior of the Stanley depth of the quotients of powers of the path ideal
is the same as a classical result of Brodmann on depth.
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1. Introduction

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over a field
K and M be a finitely generated Zn-graded S-module. Let u ∈M be homoge-
neous element and Z ⊂ X = {x1, . . . , xn}. Then the K[Z]-submodule uK[Z]
of M is called a Stanley space of M if uK[Z] is a free K[Z]-submodule of M
and |Z| is called the dimension of uK[Z], where |Z| is the cardinality of Z.
A Stanley decomposition D of M is a decomposition of M as a direct sum of
Zn-graded K-vector space

D : M =
r⊕
j=1

ujK[Zj],

where each ujK[Zj] is a Stanley space of M.
The number

sdepth (D) = min{|Zi| : i = 1, . . . , r}
is called the Stanley depth of decomposition D and the number

sdepth(M) := max{sdepth(D) : D is a Stanley decomposition of M}
is called Stanley depth of M. In 1982 Stanley conjectured in [19] that

sdepth(M) ≥ depth(M)

for all Zn-graded S-module M. Apel [1], [2] proved the conjecture for a mono-
mial ideal I over S and for the quotient S/I in at most three variables. Anwar
and Popescu [3] and Popescu [14] proved the conjecture for S/I and n = 4, 5;
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also for n = 5 Popescu proved the conjecture for square free monomial ideals.
Herzog, Vlădoiu and Zheng [11] introduced a method to compute the Stanley
depth of a factor of two monomial ideals which was later developed into an
effective algorithm by Rinaldo [18] implemented in CoCoA [8]. Duval, Goeck-
ner, Klivans and Martin proved that the conjecture is false [9]. They construct
a non-partitionable Cohen-Macaulay simplicial complex and using a result of
Herzog, Soleyman Jahan and Yassemi [12] deduce that the Stanley Reisner
ring of this simplicial complex does not satisfy Stanley conjecture. The coun-
terexample given in [9] is a quotient of squarefree monomial ideal. Thus, one
can still ask whether Stanley conjecture holds for non-squarefree monomial
ideals; in particular for high powers of monomial ideals. However, it is difficult
to compute this invariant, even in some very particular cases. For instance
in [5] Biró et al. proved that sdepth(m) =

⌈
n
2

⌉
where m = (x1, . . . , xn) is

the graded maximal ideal of S and where for x ∈ R, dxe denote the smallest
integer ≥ x. For a friendly introduction on Stanley depth we refer the reader
to [16] and, for a nice survey, to [10].

The aim of the paper is to study the Stanley depth of S/I t, where t ≥ 1
and I = I(Pn) is the edge ideal of the path graph of lenght n−1; see Definition
2.1. In general, if I is a squarefree monomial ideal, based on the behavior of
the limit depth of I, Herzog [10, Conjecture 2.7] conjectured that the Stanley
depth of S/Ik is constant for large k. This is clear if m = (x1, . . . , xn) is the
graded maximal ideal of S, since S/mk is an artinian ring and thus we have
sdepth(S/mk) = 0, for every integer k ≥ 1. In 2018 Cimpoeaş [6] proved that
if I is a complete intersection monomial ideal which is minimally generated by
t monomials we have

sdepth(S/Ik) = sdepth(Ik/Ik+1) = dim(S/I) = n− t

for any integer k ≥ 1. Our main result is Theorem 2.2, where we proved
that sdepth(S/I t) = max{

⌈
n−t+1

3

⌉
, 1}. Moreover, sdepth(S/I t) stabilizes for

t >> 0. So, we obtain a similar result to [4] Brodmann’ theorem on the Stanley
depth.

2. The Stanley depth of the path ideal

Let G = (V,E) be a simple graph on the vertex set V = {x1, . . . , xn} and
the edge set E. The edge ideal I = I(G) of the graph G is the ideal generated
by all monomials of the form xixj such that {xi, xj} is an edge of G.

Definition 2.1. Suppose n ≥ 2. A path Pn of lenght n− 1 is the graph on the
vertex set V = {x1, . . . , xn} and with n − 1 edges ei = {xi, xi+1} for 1 ≤ i ≤
n− 1. The edge ideal of Pn is I = I(Pn) = (x1x2, x2x3, . . . , xn−1xn) ⊂ S.

For I = I(Pn), Morey [13] proved that depth(S/I) =
⌈
n
3

⌉
and for the

powers of I gave a lower bound, depth(S/I t) ≥ max{
⌈
n−t+1

3

⌉
, 1}. The proof

makes repeated use of applying the Depth Lemma:
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Lemma 2.1. ([20], Lemma 1.3.9) If

0 −→ U −→M −→ N −→ 0

is a short exact sequence of modules over a local ring R, then
a) If depth M < depth N, then depth U = depth M.
b) If depth M > depth N, then depth U = depth N + 1.

Rauf [17] showed that most of the statments of the Depth Lemma are
wrong if we replace depth by sdepth and prove the analog of Lemma 2.1.(a)
for sdepth:

Lemma 2.2. Let

0 −→ U −→M −→ N −→ 0

be an exact sequence of finitely generated Zn-graded S-modules. Then

sdepthM ≥ min{sdepthU, sdepthN}.

In [15], for I = I(Pn), the authors, based on the proof from [13] of the fact
that depth(S/I) ≥

⌈
n
3

⌉
, showed that sdepth(S/I) ≥

⌈
n
3

⌉
and for the powers

of I gave a lower bound, sdepth(S/I t) ≥ max{
⌈
n−t+1

3

⌉
, 1}. See also [7] which

generalizes this result beyond edge ideals.
Now, we present an algorithm, introduced in [11], in order to compute

the Stanley depth of a module of the form I/J where J ⊂ I ⊂ S are monomials
ideals.

We define a natural partial order on Nn as follows: a ≤ b if and only
if a(i) ≤ b(i) for i = 1, . . . , n and we will say that b cover a. Note that
xa|xb if and only if a ≤ b. Here, for any c ∈ Nn we denote as usual by xc the

monomial x
c(1)
1 x

c(2)
2 · · ·xc(n)n . Observe that Nn with the partial order introduced

is a distributive lattice with meet a ∧ b and join a ∨ b defined as follows:
(a ∧ b)(i) = min{a(i), b(i)} and (a ∨ b)(i) = max{a(i), b(i)}.

Suppose I is generated by the monomials xa1 , . . . , xar and J by the mono-
mials xb1 , . . . , xbs . We choose g ∈ Nn such that ai ≤ g and bj ≤ g for all i
and j. Let P g

I/J be the set of all c ∈ Nn with c ≤ g and such that ai ≤ c for

some i and c 6≥ bj for all j. The set P g
I/J viewed as a subposet of Nn is a finite

poset and we call it the characteristic poset of I/J with respect to g. There is
a natural choice of g, namely the join of all the ai and bj. For this g, the poset
P g
I/J has the least number of elements, and we denote it simply by PI/J .

Given any poset P and a, b ∈ P we set [a, b] = {c ∈ P : a ≤ c ≤ b} and
call [a, b] an interval. Of course, [a, b] 6= ∅ if and only if a ≤ b. Suppose P is a
finite poset. A partition of P is a disjoint union

P : P =
r⋃
i=1

[ai, bi]

of intervals.
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In order to describe the Stanley decomposition of I/J coming from a
partition of P g

I/J we shall need the following notation: for each b ∈ P g
I/J , we

set Zb = {xi : b(i) = g(i)}; we also introduce the function

ρ : P g
I/J −→ Z≥0, c 7→ ρ(c),

where ρ(c) = |{xi : c(i) = g(i)}|(= |Zc|). We then have

Theorem 2.1. ([11, Theorem 2.1.]) (a) Let P : P g
I/J =

⋃r
i=1[ci, di] be a parti-

tion of P g
I/J . Then

D(P) : I/J =
r⊕
i=1

(
⊕
c

xcK[Zdi ])

is a Stanley decomposition of I/J , where the inner direct sum is taken over all
c ∈ [ci, di] for which c(j) = ci(j) for all j with xj ∈ Zdi. Moreover,

sdepth(D(P)) = min{ρ(di) : i = 1, . . . , r}.
(b) One has

sdepth(I/J) = max{sdepth(D(P)) : P is a partition of P g
I/J}.

In particular, there exists a partition P : P g
I/J =

⋃r
i=1[ci, di] of P g

I/J such that

sdepth(I/J) = min{ρ(di) : i = 1, . . . , r}.

Lemma 2.3. If I = I(Pn), then sdepth(S/I) =
⌈
n
3

⌉
.

Proof. The inequality sdepth(S/I) ≥
⌈
n
3

⌉
is known, see ([15, Proposition 2.1.])

Now we prove the other inequality, sdepth(S/I) ≤
⌈
n
3

⌉
.

We denote by ej the jth canonical unit vector in Zn.
We identify S/I with the Zn-graded K-subvector space Ic of S which is gen-
erated by all monomials u ∈ S \ I.
The characteristic poset (see [11]) of S/I is

P = {a ∈ Nn : xa ∈ Ic and xa|x1x2 · · ·xn},

where xa = x
a(1)
1 x

a(2)
2 · · ·xa(n)n and a = (a(1), . . . , a(n)) ∈ Nn. Also, we intro-

duce the function

ρ : P −→ Z≥0, c 7→ ρ(c),

where ρ(c) = |{i : c(i) = 1}|.
For d ∈ N and α ∈ Nn let

Pd := {a ∈ P : |a| = d} and Pd,α := {a ∈ Pd : xα|xa},
where for a = (a(1), . . . , a(n)) ∈ Nn, |a| :=

∑n
i=1 a(i).

Firstly, we note that if α ∈ P such that Pd,α = ∅ then sdepth(S/I) < d.
Indeed, let P : P =

⋃r
i=1[ci, di] be a partition of P with

sdepth(S/I) = min{ρ(di) : i = 1, . . . , r}.
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Since α ∈ P it follows that α ∈ [ci, di] for some i. If ρ(di) ≥ d then it
follows that Pd,α 6= ∅, since there is a ∈ [ci, di] with ρ(a) = d and xα|xa, a
contradiction. Thus, ρ(di) < d and therefore sdepth(S/I) < d.
We have three cases to study.

(1) If n = 3k ≥ 3 and α =
∑k

i=1 e3i−1 ∈ Pk, then Pk+1,α = ∅. Indeed, if u =
x2x5 · · ·x3k−1, one can easily see that xju ∈ I for all j /∈ {2, 5, . . . , 3k−1}.
Therefore, by previous remark, sdepth(S/I) ≤ k =

⌈
n
3

⌉
, as required.

(2) If n = 3k + 1 ≥ 7 and α = e1 +
∑k

i=1 e3i ∈ Pk+1, then Pk+2,α = ∅. As
above, it follows that sdepth(S/I) ≤ k + 1 =

⌈
n
3

⌉
.

(3) If n = 3k + 2 ≥ 5 and α =
∑k+1

i=1 e3i−2 ∈ Pk+1, then Pk+2,α = ∅ and
therefore sdepth(S/I) ≤ k + 1 =

⌈
n
3

⌉
.

�

Theorem 2.2. Let I = I(Pn) be the path ideal. For n ≥ 3 and t ≥ 1 we have
that sdepth(S/I t) = max{

⌈
n−t+1

3

⌉
, 1}.

Proof. The inequality sdepth(S/I t) ≥ max{
⌈
n−t+1

3

⌉
, 1} is known (see [15,

Proposition 2.5.]).
Now we prove the other inequality, sdepth(S/I t) ≤ max{

⌈
n−t+1

3

⌉
, 1} for any

t ≥ 1. By Lemma 2.3. the result holds for t = 1.
Let t ≥ 2 fixed. We identify S/I t with the Zn-graded K-subvector space (I t)c

of S which is generated by all monomials u ∈ S \ I t.
The characteristic poset (see [11]) of S/I t is

P = {a ∈ Nn : xa ∈ (I t)c and xa|(x1x2 · · ·xn)t},

where xa = x
a(1)
1 x

a(2)
2 · · ·xa(n)n and a = (a(1), . . . , a(n)) ∈ Nn.

Let us first show why sdepth(S/I t) ≤ 1 for any t ≥ n − 2. Assume
sdepth(S/I t) ≥ 2 for any t ≥ n − 2. According to Theorem 2.1.(see [11])
there exists a partition of P =

⋃r
i=1[Fi, Gi] such that minri=1ρ(Gi) = 2, where

ρ(Gi) = |{j : t = Gi(j)}| is the cardinality of {j : t = Gi(j)}.
For t ≥ n− 2 fixed, let the sets:

[(t, t− 1, t, 0, . . .)] := {(t, α2, t, α4, β) ∈ P | 0 ≤
2∑
i=1

α2i ≤ t− 1, β ∈ Nn−4

with |β| = (t− 1)(
⌈n

2

⌉
− 2)−

2∑
i=1

α2i},

[(t−1, t−1, t, 0, . . .)] := {(t−1, α2, t, α4, β) ∈ P | 0 ≤
2∑
i=1

α2i ≤ t−1, β ∈ Nn−4

with |β| = (t− 1)(
⌈n

2

⌉
− 2)−

2∑
i=1

α2i},
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[(t, t−1, t−1, 0, . . .)] := {(t, α2, t−1, α4, β) ∈ P | 0 ≤
2∑
i=1

α2i ≤ t−1, β ∈ Nn−4

with |β| = (t− 1)(
⌈n

2

⌉
− 2)−

2∑
i=1

α2i}.

The elements of [(t, t − 1, t, 0, . . .)] can only cover the elements of [(t −
1, t − 1, t, 0, . . .)] ∪ [(t, t − 1, t − 1, 0, . . .)] since for any γ ∈ [(t, t − 1, t, 0, . . .)],
δ ∈ [(t − 1, t − 1, t, 0, . . .)] and η ∈ [(t, t − 1, t − 1, 0, . . .)] we have |γ| − 1 =
|δ| = |η|, ρ(γ) = 2, ρ(δ) = ρ(η) = 1. As long as there is an one to one
corespondence between the sets [(t, t − 1, t, 0, . . .)] and [(t − 1, t − 1, t, 0, . . .)],
( respectively the sets [(t, t− 1, t, 0, . . .)] and [(t, t− 1, t− 1, 0, . . .)]) and [(t−
1, t− 1, t, 0, . . .)] ∩ [(t, t− 1, t− 1, 0, . . .)] = ∅, then there exists elements from
[(t − 1, t − 1, t, 0, . . .)] ∪ [(t, t − 1, t − 1, 0, . . .)] which can not be covered by
elements of [(t, t − 1, t, 0, . . .)]. Therefore sdepth(S/I t) ≤ 1 for any t ≥ n − 2
and so sdepth(S/I t) = 1 for any t ≥ n− 2.

Using the same technique as above we show why sdepth(S/I t) ≤
⌈
n−t+1

3

⌉
for any 2 ≤ t ≤ n− 3. Let 2 ≤ t ≤ n− 3 fixed and we denote by a :=

⌈
n−t+1

3

⌉
.

Assume sdepth(S/I t) ≥ a + 1. According to Theorem 2.1.([11]) there exists a
partition of P =

⋃r
i=1[Fi, Gi] such that minri=1ρ(Gi) = a+ 1.

We consider the sets:

[(t, t−1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] := {(t, α2, t, α4 . . . , t, α2a+2, β) ∈ P |0 ≤
a+1∑
i=1

α2i ≤ t−1,

β ∈ Nn−2a−2 with |β| = (t− 1)(
⌈n

2

⌉
− a)−

a+1∑
i=1

α2i},

[(t−1, t−1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] := {(t−1, α2, t, α4, . . . , t, α2a+2, β) ∈ P | 0 ≤
a+1∑
i=1

α2i

a+1∑
i=1

α2i ≤ t− 1, β ∈ Nn−2a−2 with |β| = (t− 1)(
⌈n

2

⌉
− a)−

a+1∑
i=1

α2i},

[(t, t− 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−1−times

, . . .)]{(t, α2, t, α4, . . . , t, α2a, β) ∈ P | 0 ≤
a∑
i=1

α2i ≤ t− 1,

β ∈ Nn−2a with |β| = (t− 1)(
⌈n

2

⌉
− a+ 1)−

a∑
i=1

α2i}.

The elements of [(t, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] can only cover the elements of

[(t − 1, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] ∪ [(t, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−1−times

, . . .)] since for any γ ∈
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[(t, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)], δ ∈ [(t − 1, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] and η ∈ [(t, t −

1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−1−times

, . . .)] we have |γ| − 1 = |δ| = |η|, ρ(γ) = a+ 1, ρ(δ) = ρ(η) = a.

As long as there is an one to one corespondence between the sets [(t, t −
1 t, 0, . . . , t, 0︸ ︷︷ ︸

a−times

, . . .)] and [(t − 1, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)], (respectively the sets

[(t, t− 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] and [(t, t− 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−1−times

, . . .)]) and

[(t − 1, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] ∩ [(t, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−1−times

, . . .)] = ∅ then there ex-

ist elements from [(t − 1, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)] ∪ [(t, t − 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−1−times

, . . .)]

which can not be covered by elements of [(t, t− 1 t, 0, . . . , t, 0︸ ︷︷ ︸
a−times

, . . .)]. Therefore

sdepth(S/I t) ≤
⌈
n−t+1

3

⌉
and so we have the equality sdepth(S/I t) =

⌈
n−t+1

3

⌉
for any 2 ≤ t ≤ n− 3.
Thus, we have sdepth(S/I t) = max{

⌈
n−t+1

3

⌉
, 1} for any t ≥ 1. �

By a theorem of Brodmann ([4]), depth(S/I t) is constant for t >> 0. As
a consequence of the previous theorem we obtain a similar result to Brodmann’
theorem on the Stanley depth.

Corollary 2.1. Stanley depth of factors of powers of path ideal stabilizes, i.e.
sdepth(S/(I(Pn))t) = 1 for any t ≥ n− 2.

3. Conclusions

In this paper we computed the Stanley depth of S/I(Pn)t where t ≥ 1
and I(Pn) is the edge ideal of the path graph of lenght n − 1. In particular,
Herzog conjecture [10, Conjecture 2.7] holds for I(Pn).

Future directions of research include the study of Stanley depth for pow-
ers of edge ideals, or, more generally, of m-path ideals associated to several
classes of graphs.
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