

STANLEY DEPTH OF POWERS OF THE PATH IDEAL

Alin Ştefan¹

The aim of this paper is to give a formula for the Stanley depth of quotients of powers of the path ideal. As a consequence, we establish that the behavior of the Stanley depth of the quotients of powers of the path ideal is the same as a classical result of Brodmann on depth.

Keywords: Characteristic poset, Monomial Ideal, Stanley depth, Stanley decomposition.

MSC2020: 05C70, 06A11, 13C15, 13F55, 13H99.

1. Introduction

Let $S = K[x_1, \dots, x_n]$ be the polynomial ring in n variables over a field K and M be a finitely generated \mathbb{Z}^n -graded S -module. Let $u \in M$ be homogeneous element and $Z \subset X = \{x_1, \dots, x_n\}$. Then the $K[Z]$ -submodule $uK[Z]$ of M is called a *Stanley space* of M if $uK[Z]$ is a free $K[Z]$ -submodule of M and $|Z|$ is called the *dimension* of $uK[Z]$, where $|Z|$ is the cardinality of Z . A *Stanley decomposition* \mathcal{D} of M is a decomposition of M as a direct sum of \mathbb{Z}^n -graded K -vector space

$$\mathcal{D} : M = \bigoplus_{j=1}^r u_j K[Z_j],$$

where each $u_j K[Z_j]$ is a Stanley space of M .

The number

$$\text{sdepth}(\mathcal{D}) = \min\{|Z_i| : i = 1, \dots, r\}$$

is called the *Stanley depth of decomposition* \mathcal{D} and the number

$$\text{depth}(M) := \max\{\text{sdepth}(\mathcal{D}) : \mathcal{D} \text{ is a Stanley decomposition of } M\}$$

is called *Stanley depth* of M . In 1982 Stanley conjectured in [19] that

$$\text{sdepth}(M) \geq \text{depth}(M)$$

for all \mathbb{Z}^n -graded S -module M . Apel [1], [2] proved the conjecture for a monomial ideal I over S and for the quotient S/I in at most three variables. Anwar and Popescu [3] and Popescu [14] proved the conjecture for S/I and $n = 4, 5$;

¹Lecturer, Department of Computer Science, Information Technology, Mathematics and Physics, Petroleum and Gas University of Ploieşti, B-dul. Bucureşti, No. 39, Ploieşti 100680, Romania, nastefan@upg-ploiesti.ro, alin11.alg@yahoo.com

also for $n = 5$ Popescu proved the conjecture for square free monomial ideals. Herzog, Vlădui and Zheng [11] introduced a method to compute the Stanley depth of a factor of two monomial ideals which was later developed into an effective algorithm by Rinaldo [18] implemented in *CoCoA* [8]. Duval, Goeckner, Klivans and Martin proved that the conjecture is false [9]. They construct a non-partitionable Cohen-Macaulay simplicial complex and using a result of Herzog, Soleyman Jahan and Yassemi [12] deduce that the Stanley Reisner ring of this simplicial complex does not satisfy Stanley conjecture. The counterexample given in [9] is a quotient of squarefree monomial ideal. Thus, one can still ask whether Stanley conjecture holds for non-squarefree monomial ideals; in particular for high powers of monomial ideals. However, it is difficult to compute this invariant, even in some very particular cases. For instance in [5] Biró et al. proved that $\text{sdepth}(\mathbf{m}) = \lceil \frac{n}{2} \rceil$ where $\mathbf{m} = (x_1, \dots, x_n)$ is the graded maximal ideal of S and where for $x \in \mathbb{R}$, $\lceil x \rceil$ denote the smallest integer $\geq x$. For a friendly introduction on Stanley depth we refer the reader to [16] and, for a nice survey, to [10].

The aim of the paper is to study the Stanley depth of S/I^t , where $t \geq 1$ and $I = I(P_n)$ is the edge ideal of the path graph of lenght $n - 1$; see Definition 2.1. In general, if I is a squarefree monomial ideal, based on the behavior of the *limit depth* of I , Herzog [10, Conjecture 2.7] conjectured that the Stanley depth of S/I^k is constant for large k . This is clear if $\mathbf{m} = (x_1, \dots, x_n)$ is the graded maximal ideal of S , since S/\mathbf{m}^k is an artinian ring and thus we have $\text{sdepth}(S/\mathbf{m}^k) = 0$, for every integer $k \geq 1$. In 2018 Cimpoeaş [6] proved that if I is a complete intersection monomial ideal which is minimally generated by t monomials we have

$$\text{sdepth}(S/I^k) = \text{sdepth}(I^k/I^{k+1}) = \dim(S/I) = n - t$$

for any integer $k \geq 1$. Our main result is Theorem 2.2, where we proved that $\text{sdepth}(S/I^t) = \max\{\lceil \frac{n-t+1}{3} \rceil, 1\}$. Moreover, $\text{sdepth}(S/I^t)$ stabilizes for $t \gg 0$. So, we obtain a similar result to [4] Brodmann' theorem on the Stanley depth.

2. The Stanley depth of the path ideal

Let $G = (V, E)$ be a simple graph on the vertex set $V = \{x_1, \dots, x_n\}$ and the edge set E . The *edge ideal* $I = I(G)$ of the graph G is the ideal generated by all monomials of the form $x_i x_j$ such that $\{x_i, x_j\}$ is an edge of G .

Definition 2.1. Suppose $n \geq 2$. A path P_n of lenght $n - 1$ is the graph on the vertex set $V = \{x_1, \dots, x_n\}$ and with $n - 1$ edges $e_i = \{x_i, x_{i+1}\}$ for $1 \leq i \leq n - 1$. The edge ideal of P_n is $I = I(P_n) = (x_1 x_2, x_2 x_3, \dots, x_{n-1} x_n) \subset S$.

For $I = I(P_n)$, Morey [13] proved that $\text{depth}(S/I) = \lceil \frac{n}{3} \rceil$ and for the powers of I gave a lower bound, $\text{depth}(S/I^t) \geq \max\{\lceil \frac{n-t+1}{3} \rceil, 1\}$. The proof makes repeated use of applying the *Depth Lemma*:

Lemma 2.1. ([20], Lemma 1.3.9) *If*

$$0 \longrightarrow U \longrightarrow M \longrightarrow N \longrightarrow 0$$

is a short exact sequence of modules over a local ring R , then

- a) *If $\text{depth } M < \text{depth } N$, then $\text{depth } U = \text{depth } M$.*
- b) *If $\text{depth } M > \text{depth } N$, then $\text{depth } U = \text{depth } N + 1$.*

Rauf [17] showed that most of the statements of the *Depth Lemma* are wrong if we replace depth by sdepth and prove the analog of Lemma 2.1.(a) for sdepth:

Lemma 2.2. *Let*

$$0 \longrightarrow U \longrightarrow M \longrightarrow N \longrightarrow 0$$

be an exact sequence of finitely generated \mathbb{Z}^n -graded S -modules. Then

$$\text{sdepth } M \geq \min\{\text{sdepth } U, \text{sdepth } N\}.$$

In [15], for $I = I(P_n)$, the authors, based on the proof from [13] of the fact that $\text{depth}(S/I) \geq \lceil \frac{n}{3} \rceil$, showed that $\text{sdepth}(S/I) \geq \lceil \frac{n}{3} \rceil$ and for the powers of I gave a lower bound, $\text{sdepth}(S/I^t) \geq \max\{\lceil \frac{n-t+1}{3} \rceil, 1\}$. See also [7] which generalizes this result beyond edge ideals.

Now, we present an algorithm, introduced in [11], in order to compute the Stanley depth of a module of the form I/J where $J \subset I \subset S$ are monomials ideals.

We define a natural partial order on \mathbb{N}^n as follows: $a \leq b$ if and only if $a(i) \leq b(i)$ for $i = 1, \dots, n$ and we will say that b *cover* a . Note that $x^a | x^b$ if and only if $a \leq b$. Here, for any $c \in \mathbb{N}^n$ we denote as usual by x^c the monomial $x_1^{c(1)} x_2^{c(2)} \cdots x_n^{c(n)}$. Observe that \mathbb{N}^n with the partial order introduced is a distributive lattice with meet $a \wedge b$ and join $a \vee b$ defined as follows: $(a \wedge b)(i) = \min\{a(i), b(i)\}$ and $(a \vee b)(i) = \max\{a(i), b(i)\}$.

Suppose I is generated by the monomials x^{a_1}, \dots, x^{a_r} and J by the monomials x^{b_1}, \dots, x^{b_s} . We choose $g \in \mathbb{N}^n$ such that $a_i \leq g$ and $b_j \leq g$ for all i and j . Let $P_{I/J}^g$ be the set of all $c \in \mathbb{N}^n$ with $c \leq g$ and such that $a_i \leq c$ for some i and $c \not\leq b_j$ for all j . The set $P_{I/J}^g$ viewed as a subposet of \mathbb{N}^n is a finite poset and we call it the *characteristic poset* of I/J with respect to g . There is a natural choice of g , namely the join of all the a_i and b_j . For this g , the poset $P_{I/J}^g$ has the least number of elements, and we denote it simply by $P_{I/J}$.

Given any poset P and $a, b \in P$ we set $[a, b] = \{c \in P : a \leq c \leq b\}$ and call $[a, b]$ an *interval*. Of course, $[a, b] \neq \emptyset$ if and only if $a \leq b$. Suppose P is a finite poset. A *partition* of P is a disjoint union

$$\mathcal{P} : P = \bigcup_{i=1}^r [a_i, b_i]$$

of intervals.

In order to describe the Stanley decomposition of I/J coming from a partition of $P_{I/J}^g$ we shall need the following notation: for each $b \in P_{I/J}^g$, we set $Z_b = \{x_i : b(i) = g(i)\}$; we also introduce the function

$$\rho : P_{I/J}^g \longrightarrow \mathbb{Z}_{\geq 0}, \quad c \mapsto \rho(c),$$

where $\rho(c) = |\{x_i : c(i) = g(i)\}| (= |Z_c|)$. We then have

Theorem 2.1. ([11, Theorem 2.1.]) (a) Let $\mathcal{P} : P_{I/J}^g = \bigcup_{i=1}^r [c_i, d_i]$ be a partition of $P_{I/J}^g$. Then

$$\mathcal{D}(\mathcal{P}) : I/J = \bigoplus_{i=1}^r \left(\bigoplus_c x^c K[Z_{d_i}] \right)$$

is a Stanley decomposition of I/J , where the inner direct sum is taken over all $c \in [c_i, d_i]$ for which $c(j) = c_i(j)$ for all j with $x_j \in Z_{d_i}$. Moreover,

$$\text{sdepth}(\mathcal{D}(\mathcal{P})) = \min\{\rho(d_i) : i = 1, \dots, r\}.$$

(b) One has

$$\text{sdepth}(I/J) = \max\{\text{sdepth}(\mathcal{D}(\mathcal{P})) : \mathcal{P} \text{ is a partition of } P_{I/J}^g\}.$$

In particular, there exists a partition $\mathcal{P} : P_{I/J}^g = \bigcup_{i=1}^r [c_i, d_i]$ of $P_{I/J}^g$ such that

$$\text{sdepth}(I/J) = \min\{\rho(d_i) : i = 1, \dots, r\}.$$

Lemma 2.3. If $I = I(P_n)$, then $\text{sdepth}(S/I) = \lceil \frac{n}{3} \rceil$.

Proof. The inequality $\text{sdepth}(S/I) \geq \lceil \frac{n}{3} \rceil$ is known, see ([15, Proposition 2.1.])

Now we prove the other inequality, $\text{sdepth}(S/I) \leq \lceil \frac{n}{3} \rceil$.

We denote by e_j the j^{th} canonical unit vector in \mathbb{Z}^n .

We identify S/I with the \mathbb{Z}^n -graded K -subvector space I^c of S which is generated by all monomials $u \in S \setminus I$.

The *characteristic poset* (see [11]) of S/I is

$$P = \{a \in \mathbb{N}^n : x^a \in I^c \text{ and } x^a | x_1 x_2 \cdots x_n\},$$

where $x^a = x_1^{a(1)} x_2^{a(2)} \cdots x_n^{a(n)}$ and $a = (a(1), \dots, a(n)) \in \mathbb{N}^n$. Also, we introduce the function

$$\rho : P \longrightarrow \mathbb{Z}_{\geq 0}, \quad c \mapsto \rho(c),$$

where $\rho(c) = |\{i : c(i) = 1\}|$.

For $d \in \mathbb{N}$ and $\alpha \in \mathbb{N}^n$ let

$$P_d := \{a \in P : |a| = d\} \text{ and } P_{d,\alpha} := \{a \in P_d : x^\alpha | x^a\},$$

where for $a = (a(1), \dots, a(n)) \in \mathbb{N}^n$, $|a| := \sum_{i=1}^n a(i)$.

Firstly, we note that if $\alpha \in P$ such that $P_{d,\alpha} = \emptyset$ then $\text{sdepth}(S/I) < d$. Indeed, let $\mathcal{P} : P = \bigcup_{i=1}^r [c_i, d_i]$ be a partition of P with

$$\text{sdepth}(S/I) = \min\{\rho(d_i) : i = 1, \dots, r\}.$$

Since $\alpha \in P$ it follows that $\alpha \in [c_i, d_i]$ for some i . If $\rho(d_i) \geq d$ then it follows that $P_{d,\alpha} \neq \emptyset$, since there is $a \in [c_i, d_i]$ with $\rho(a) = d$ and $x^\alpha|x^a$, a contradiction. Thus, $\rho(d_i) < d$ and therefore $\text{sdepth}(S/I) < d$.

We have three cases to study.

- (1) If $n = 3k \geq 3$ and $\alpha = \sum_{i=1}^k e_{3i-1} \in P_k$, then $P_{k+1,\alpha} = \emptyset$. Indeed, if $u = x_2x_5 \cdots x_{3k-1}$, one can easily see that $x_j u \in I$ for all $j \notin \{2, 5, \dots, 3k-1\}$. Therefore, by previous remark, $\text{sdepth}(S/I) \leq k = \lceil \frac{n}{3} \rceil$, as required.
- (2) If $n = 3k + 1 \geq 7$ and $\alpha = e_1 + \sum_{i=1}^k e_{3i} \in P_{k+1}$, then $P_{k+2,\alpha} = \emptyset$. As above, it follows that $\text{sdepth}(S/I) \leq k + 1 = \lceil \frac{n}{3} \rceil$.
- (3) If $n = 3k + 2 \geq 5$ and $\alpha = \sum_{i=1}^{k+1} e_{3i-2} \in P_{k+1}$, then $P_{k+2,\alpha} = \emptyset$ and therefore $\text{sdepth}(S/I) \leq k + 1 = \lceil \frac{n}{3} \rceil$.

□

Theorem 2.2. *Let $I = I(P_n)$ be the path ideal. For $n \geq 3$ and $t \geq 1$ we have that $\text{sdepth}(S/I^t) = \max\{\lceil \frac{n-t+1}{3} \rceil, 1\}$.*

Proof. The inequality $\text{sdepth}(S/I^t) \geq \max\{\lceil \frac{n-t+1}{3} \rceil, 1\}$ is known (see [15, Proposition 2.5.]).

Now we prove the other inequality, $\text{sdepth}(S/I^t) \leq \max\{\lceil \frac{n-t+1}{3} \rceil, 1\}$ for any $t \geq 1$. By Lemma 2.3. the result holds for $t = 1$.

Let $t \geq 2$ fixed. We identify S/I^t with the \mathbb{Z}^n -graded K -subvector space $(I^t)^c$ of S which is generated by all monomials $u \in S \setminus I^t$.

The *characteristic poset* (see [11]) of S/I^t is

$$\mathcal{P} = \{a \in \mathbb{N}^n : x^a \in (I^t)^c \text{ and } x^a|(x_1x_2 \cdots x_n)^t\},$$

where $x^a = x_1^{a(1)}x_2^{a(2)} \cdots x_n^{a(n)}$ and $a = (a(1), \dots, a(n)) \in \mathbb{N}^n$.

Let us first show why $\text{sdepth}(S/I^t) \leq 1$ for any $t \geq n - 2$. Assume $\text{sdepth}(S/I^t) \geq 2$ for any $t \geq n - 2$. According to Theorem 2.1.(see [11]) there exists a partition of $\mathcal{P} = \bigcup_{i=1}^r [F_i, G_i]$ such that $\min_{i=1}^r \rho(G_i) = 2$, where $\rho(G_i) = |\{j : t = G_i(j)\}|$ is the cardinality of $\{j : t = G_i(j)\}$.

For $t \geq n - 2$ fixed, let the sets:

$$\begin{aligned} [(t, t-1, t, 0, \dots)] &:= \{(t, \alpha_2, t, \alpha_4, \beta) \in \mathcal{P} \mid 0 \leq \sum_{i=1}^2 \alpha_{2i} \leq t-1, \beta \in \mathbb{N}^{n-4} \\ &\quad \text{with } |\beta| = (t-1)(\lceil \frac{n}{2} \rceil - 2) - \sum_{i=1}^2 \alpha_{2i}\}, \\ [(t-1, t-1, t, 0, \dots)] &:= \{(t-1, \alpha_2, t, \alpha_4, \beta) \in \mathcal{P} \mid 0 \leq \sum_{i=1}^2 \alpha_{2i} \leq t-1, \beta \in \mathbb{N}^{n-4} \\ &\quad \text{with } |\beta| = (t-1)(\lceil \frac{n}{2} \rceil - 2) - \sum_{i=1}^2 \alpha_{2i}\}, \end{aligned}$$

$$[(t, t-1, t-1, 0, \dots)] := \{(t, \alpha_2, t-1, \alpha_4, \beta) \in \mathcal{P} \mid 0 \leq \sum_{i=1}^2 \alpha_{2i} \leq t-1, \beta \in \mathbb{N}^{n-4}$$

$$\text{with } |\beta| = (t-1)(\lceil \frac{n}{2} \rceil - 2) - \sum_{i=1}^2 \alpha_{2i}\}.$$

The elements of $[(t, t-1, t, 0, \dots)]$ can only cover the elements of $[(t-1, t-1, t, 0, \dots)] \cup [(t, t-1, t-1, 0, \dots)]$ since for any $\gamma \in [(t, t-1, t, 0, \dots)]$, $\delta \in [(t-1, t-1, t, 0, \dots)]$ and $\eta \in [(t, t-1, t-1, 0, \dots)]$ we have $|\gamma| - 1 = |\delta| = |\eta|$, $\rho(\gamma) = 2$, $\rho(\delta) = \rho(\eta) = 1$. As long as there is an one to one correspondence between the sets $[(t, t-1, t, 0, \dots)]$ and $[(t-1, t-1, t, 0, \dots)]$, (respectively the sets $[(t, t-1, t, 0, \dots)]$ and $[(t, t-1, t-1, 0, \dots)]$) and $[(t-1, t-1, t, 0, \dots)] \cap [(t, t-1, t-1, 0, \dots)] = \emptyset$, then there exists elements from $[(t-1, t-1, t, 0, \dots)] \cup [(t, t-1, t-1, 0, \dots)]$ which can not be covered by elements of $[(t, t-1, t, 0, \dots)]$. Therefore $\text{sdepth}(S/I^t) \leq 1$ for any $t \geq n-2$ and so $\text{sdepth}(S/I^t) = 1$ for any $t \geq n-2$.

Using the same technique as above we show why $\text{sdepth}(S/I^t) \leq \lceil \frac{n-t+1}{3} \rceil$ for any $2 \leq t \leq n-3$. Let $2 \leq t \leq n-3$ fixed and we denote by $a := \lceil \frac{n-t+1}{3} \rceil$. Assume $\text{sdepth}(S/I^t) \geq a+1$. According to Theorem 2.1.([11]) there exists a partition of $\mathcal{P} = \bigcup_{i=1}^r [F_i, G_i]$ such that $\min_{i=1}^r \rho(G_i) = a+1$.

We consider the sets:

$$[(t, t-1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-times})] := \{(t, \alpha_2, t, \alpha_4, \dots, t, \alpha_{2a+2}, \beta) \in \mathcal{P} \mid 0 \leq \sum_{i=1}^{a+1} \alpha_{2i} \leq t-1,$$

$$\beta \in \mathbb{N}^{n-2a-2} \text{ with } |\beta| = (t-1)(\lceil \frac{n}{2} \rceil - a) - \sum_{i=1}^{a+1} \alpha_{2i}\},$$

$$[(t-1, t-1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-times})] := \{(t-1, \alpha_2, t, \alpha_4, \dots, t, \alpha_{2a+2}, \beta) \in \mathcal{P} \mid 0 \leq \sum_{i=1}^{a+1} \alpha_{2i}$$

$$\sum_{i=1}^{a+1} \alpha_{2i} \leq t-1, \beta \in \mathbb{N}^{n-2a-2} \text{ with } |\beta| = (t-1)(\lceil \frac{n}{2} \rceil - a) - \sum_{i=1}^{a+1} \alpha_{2i}\},$$

$$[(t, t-1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-1-times})] \{(t, \alpha_2, t, \alpha_4, \dots, t, \alpha_{2a}, \beta) \in \mathcal{P} \mid 0 \leq \sum_{i=1}^a \alpha_{2i} \leq t-1,$$

$$\beta \in \mathbb{N}^{n-2a} \text{ with } |\beta| = (t-1)(\lceil \frac{n}{2} \rceil - a+1) - \sum_{i=1}^a \alpha_{2i}\}.$$

The elements of $[(t, t-1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-times})]$ can only cover the elements of $[(t-1, t-1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-times})] \cup [(t, t-1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-1-times})]$ since for any $\gamma \in$

$[(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})], \delta \in [(t - 1, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})]$ and $\eta \in [(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-1\text{-times}})]$ we have $|\gamma| - 1 = |\delta| = |\eta|$, $\rho(\gamma) = a + 1$, $\rho(\delta) = \rho(\eta) = a$.

As long as there is an one to one correspondence between the sets $[(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})]$ and $[(t - 1, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})]$, (respectively the sets $[(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})]$ and $[(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-1\text{-times}})]$) and

$[(t - 1, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})] \cap [(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-1\text{-times}})] = \emptyset$ then there exist elements from $[(t - 1, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})] \cup [(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a-1\text{-times}})]$

which can not be covered by elements of $[(t, t - 1 \underbrace{t, 0, \dots, t, 0, \dots}_{a\text{-times}})]$. Therefore

$\text{sdepth}(S/I^t) \leq \lceil \frac{n-t+1}{3} \rceil$ and so we have the equality $\text{sdepth}(S/I^t) = \lceil \frac{n-t+1}{3} \rceil$ for any $2 \leq t \leq n - 3$.

Thus, we have $\text{sdepth}(S/I^t) = \max\{\lceil \frac{n-t+1}{3} \rceil, 1\}$ for any $t \geq 1$. \square

By a theorem of Brodmann ([4]), $\text{depth}(S/I^t)$ is constant for $t \gg 0$. As a consequence of the previous theorem we obtain a similar result to Brodmann' theorem on the Stanley depth.

Corollary 2.1. *Stanley depth of factors of powers of path ideal stabilizes, i.e. $\text{sdepth}(S/(I(P_n))^t) = 1$ for any $t \geq n - 2$.*

3. Conclusions

In this paper we computed the Stanley depth of $S/I(P_n)^t$ where $t \geq 1$ and $I(P_n)$ is the edge ideal of the path graph of lenght $n - 1$. In particular, Herzog conjecture [10, Conjecture 2.7] holds for $I(P_n)$.

Future directions of research include the study of Stanley depth for powers of edge ideals, or, more generally, of m -path ideals associated to several classes of graphs.

Acknowledgement

The author would like to thank the referee for a careful reading of the paper and for valuable comments.

We gratefully aknowledge the use of the computer algebra system *CoCoA* [8] for our experiments.

REFERENCES

[1] J. Apel, *On a conjecture of R.P. Stanley I. Monomial Ideals*, Journal of Algebraic Combinatorics, **17**(1) (2003), 36-56.

[2] J. Apel, *On a conjecture of R.P. Stanley II. Quotients modulo monomial ideals*, Journal of Algebraic Combinatorics, **17**(1) (2003), 57-74.

[3] I. Anwar, D. Popescu, *Stanley conjecture in small embedding dimension*, J. Algebra, **318**(2007), 1027-1031.

[4] M. Brodmann, *The asymptotic nature of the analytic spread*, Math. Proc. Cambridge Philos. Soc. **86** (1979), 35-39.

[5] C. Biró, D.M. Howard, M.T. Keller, W.T. Trotter, S.J. Young, *Interval partitions and Stanley depth*, Journal of Combinatorial Theory, Series A, **117** (2010), 475-482.

[6] M. Cimpoeaş, *On the Stanley depth of powers of some classes of monomial ideals*, Bull. Iran. Math. Soc. **44** (2018), 739-747.

[7] D. Campos, R. Gunderson, S. Morey, C. Paulsen, T. Polstra, *Depths and Stanley depth of Path Ideals of Spines*, Involve-a journal of mathematics **9**, no.1, (2016), 155-170.

[8] CoCoATeam, *CoCoA: a system for doing Computations in Commutative Algebra*. Available at <http://cocoa.dima.unige.it>

[9] A.M.Duval, B. Goeckner, C. J. Klivans, J.L. Martine, *A non-partitionable Cohen-Macaulay simplicial complex*, Advances in Mathematics **299** (2016), 381-395.

[10] J. Herzog, *A survey on Stanley Depth*. In "Monomial Ideals, Computations and Applications", A. Bigatti, P. Giménez, E. Sáenz-de-Cabezoán (Eds.), Proceedings of MONICA 2011. Lecture Notes in Mathematics **2083**, Springer 2013.

[11] J. Herzog, M. Vlădoiu, X. Zheng, *How to compute the Stanley depth of a monomial ideal*, J. Algebra, **322**(2009) 3151-3169.

[12] J. Herzog, A. Soleyman Jahan, S. Yassemi, *Stanley decompositions and partitionable simplicial complexes*, J. Algebraic Combin. **27**, (2008), 113-125.

[13] S. Morey, *Depths of powers of the edge ideal of a tree*, Comm. Algebra **38**(11) (2010) 4042-4055.

[14] D. Popescu, *Stanley depth of multigraded modules*, J. Algebra, **321** (2009) 2782-2797.

[15] M. R. Pournaki, S. A. Seyed Fakhari, S. Yassemi, *Stanley depth of powers of the edge ideal of forest* Proc. Amer. Math. Soc. **141** (2013), no. 10, 3327-3336.

[16] M. R. Pournaki, S. A. Seyed Fakhari, M. Tousi, S. Yassemi, *What is ... Stanley depth?* Notices Amer. Math. Soc. **56**(2009), no. 9, 1106-1108.

[17] A. Rauf, *Depth and Stanley depth of multigraded modules*, Comm. Algebra **38**(2) (2010) 773-784.

[18] G. Rinaldo, *An algorithm to compute the Stanley depth of monomials ideals*. Le Matematiche Vol **LXIII** (2008), Fasc. II, 243-256.

[19] R. Stanley, *Linear Diophantine equations and local cohomology*, Invent. Math. **68**(1982) 175-193.

[20] R. H. Villareal, *Monomial Algebras*, New York: Marcel Dekker Inc, 2001.