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A GENERALIZATION OF A FIXED POINT THEOREM FOR CM
ELLIPTIC CURVES

Bogdan Cénepi!, Radu Gaba?

This paper deals with the classification of the complex elliptic curves E for
which there exist subgroups (not necessarily cyclic) C < (E,+) of order n such that the
elliptic curves E/C and E are isomorphic, extending in this way the results of [1]. We
implement in Magma the algorithms developed for this classification and provide several
examples.
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1. Introduction

Let us denote by H the upper half plane, H := {z € C,Im(z) > 0}. Let F be a
complex elliptic curve and C' a subgroup (not necessarily cyclic) of order n < co of (E,+).
This means that C is a subgroup of order n of the n-torsion subgroup of E, E[n] := {P €
E : [n]P = O}. Tt is known that since C acts effectively and properly discontinuous on E,
the group E/C has a structure of Riemann variety, compatible with the natural projection
7: E — E/C and that the isogeny 7 is unramified of degree n: degm = |[7~1(0)| = |C] =n
(see [5], Theorem 3.4). It is also known that E/C is a complex elliptic curve. Moreover, if
C' is cyclic, one has E[n]/C = Z/nZ (see [7], Proposition 5.4, Chapter VI or [2], Theorem
4.16).

In this work we study the complex elliptic curves E for which there exist subgroups
(not necessarily cyclic) C < (E,+) of order n such that the elliptic curves E and E/C are
isomorphic, where n is a positive integer. We extend in this way the results of [1] where the
classification was made for the case C' cyclic. More explicitly, the authors proved in [1] the
following:

Theorem 1.1. i) 3C < (E,+) finite cyclic subgroup such that £ ~ E < Ju,v € Q such
that 72 = ur +v with A = u? +4v < 0 (i.e. E admits complex multiplication);

it) If T satisfies the conditions of i) and u = v =thus # 0,02 # 0,ur, ug, 01,02 €
Z,Ged(uy, uz) = Ged(vy,v2) = 1,dy = Ged(ug, v2), then:

3C < (E, +) cyclic subgroup of order n which satisfies & ~ E <= 3(a,V') € Z* with
Ged(a, V') =1 such that n = detM, where M is the matriz

w3 )

and (a, A, b, B) = (a, ugoLyy w2y g “d—b)
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iii) The subgroup C from ii) is C=(*1EU2T) where uyy,upy are obtained in the

following way: since det M = n and Ged(a, A,b, B) =1 (one deduces easily this), the matrix
M s arithmetically equivalent with the matriz:

10
=)

U,V € GL2(Z) such that M—U~<1 2>V

hence

The elements u11,u21 are the first column of the matriz
U— ( Uil U2 ) .
U1 U22
We point out that in [1], after characterizing the above mentioned class of Heegner
points via Theorem 1.1, upon imposing certain conditions (see Theorem 2.3 of [1]), we
further answered the following question: ”given a complex elliptic curve when can one find

a cyclic subgroup of order n of E such that (E,C) ~ (E/C, E[n]/C) and classified in this
manner the fixed points of the action of the Fricke involution

N o

on the open modular curves Yy(n). We recall that one defines Yp(n) as the quotient space
To(n)/H where I is the upper half plane i.e. {z € C|Im(z) > 0}, in other words Yy(n) is
the set of orbits {T'g(n)7 : 7 € H}, where I'y(n) is the ”Nebentypus” congruence subgroup
of level n of SLs(Z), acting on H from the left:

To(n) = {( ‘CL Z ) € SLy(Z)| ¢ = 0(modn)}.

Moreover, slightly modified versions of the algorithms developed in this paper, also imple-
mented by ourselves, work correctly in establishing the fixed points of the action of the Fricke
involution on the open modular curves Yy(n), points which are known but weren’t studied
in the above specified manner. This number of fixed points was computed by Ogg (see [6],
Proposition 3) and Kenku (see [4], Theorem 2) and, for n > 3, it is ¥(n) = h(—n) + h(—4n)
if n = 3(mod4) and v(n) = h(—4n) otherwise, where h(—n) is the class number of primitive
quadratic forms of discriminant —n and v(2) = v(3) = 2.

2. Main Result

In Theorem 1.1 of [1] we only studied the cyclic subgroups C' < (E,+) of order n
satisfying F ~ % It is natural to study this problem in general and answer the question
of for which complex elliptic curves E and for which subgroups C' < (E,+) of order n the
elliptic curves F and F/C are isomorphic. We observe that if C' is a subgroup of order n
of Z/nZ x Z/nZ then C' is of the form Z/D17Z x Z/DsZ with Dy, Dy positive integers such
that D; - Do = n and Dq|Dy. Moreover, we are not interested in the case D; = Dy := D as
C would be a torsion subgroup, in which case F/FE[D] = E. We prove now the following:

Theorem 2.1. Let E be a complex elliptic curve:

Then there exists a finite subgroup C of (E,+) such that C = Z/D1Z x Z/DsZ, D1|D,,
Dy # Dy and with the property that % ~ E, if and only if T satisfies the equation 72 =
ut +v,u,v € Q,A = u?+4v < 0 and there exist (a,b') € Z* with Ged(a,b') = Dy such that,
if we denote by a, A,b, B the numbers (a, A,b, B) = (a, ey, w22 a+ %b/> and by M

the matriz
a A
u=(53)
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we have the relation det(M) = D; - Dy. We denoted by u = Z—;,v = %7 us # 0,vp #
0,u1,u2,111,v2 € Z, Ged(uy, uz) = Ged(vy,v2) = 1,dy = Ged(ug, v2). Moreover, the isomor-
phism £ & = B comes from a morphism of varieties: ¢q 1 : & — E which has the following
properties: deg(¢pa ) = D1 - Da, it is a group homomorphism, Ker(¢p) = C' and ¢(z) = Az,
where A = a + br.

Proof. By composing the isomorphism % ~ F with the natural projection E — E/C one
obtains a morphism ¢ : £ — % ~ F. By further composing a translation 7, : £ — E
with it, we obtain a morphism ¢ : E — E, ¢(z) = X\ - z with Ker(¢) = C (the reason for
doing this is that a morphism of complex elliptic curves is the composition of a translation

with an homothety). More explicitly, we have the following commutative diagram:

E;’& E/C

In fact, there exists a one-to-one correspondence between the set of isomorphisms

5 ~ E} and the set of morphisms {¢ : E — FE : ¢ is morphism of complex varieties

and of groups, Ker(¢) = C'}. Therefore it is enough to study the kernel of ¢ : B — E,
1

o(z) =Xz WehavethatKer( )={2€E/Axel}={2€cE/z¢€ %L}:*TL <f=E

Consequently Ker(¢) = % o~ AL, where )\L C L.
We would like to find the group with which <& +7 is isomorphic. A Z - basis for AL is {\, A-7}.

The inclusion AL C L is equivalent to the existence of the numbers a, A, b, B € Z such that

A [ a b 1
(o)-(45)(7)

As in Theorem 1.1, a, A, b, B have certain properties. From the above matrix equality
we have that (a + br)7 = A+ BT <= br?> = (B —a)T + 4, i.e. 7 is algebraic over Q
provided b # 0. If b = 0 then one would obtain Dy = Dy = a. If b # 0, let u, =
X?—uX —v € Q[X] be the minimal polynomial of 7, u = meQu=71€Qur,uz, v, €
Z,Ged(uy, uz) = Ged(vy,v2) = 1,da = Ged(uz,v2). Upon identifying the coefficients of p.,
and b72 = (B — a)T + A, we obtain:

v

% =0 = UQA = Ulb
Bea . hence
T =u= us(B — a) = uyb.

=

u

ISl

Since v9 A = v1b and Ged(vy,v2) = 1 it follows that vs|b and vi|A. Since us(B —a) =
urb and Ged(uq, ug) = 1 it follows that Lem[usg, va]|b. Consequently there exists b € Z such
that b = Lem[ug, vo]b = “;—:2()’, v9A = v1b and us (B — a) = u1b where dy = Ged(ug, v2) and

72 = ur +v. We've obtained that (a, A, b, B) = ( a, “3“1 v, v V,a+ 2 b’)
On the other hand, M is arithmetically equivalent with:

[ a A D; 0 ) . .
M = ( b B ) ~ ( 0 D, > ,D1|Dy i.e. there exist U,V € SLy(Z) with

a A _ D1 0
(35 )= (% )
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We show now that D; = Ged(a,b').
Indeed, D; = Ged(a, A, b, B) = Ged (a, ugiyyy w2y gy “;l—gzb/). Since Ged(vr, vo) = 1 it
follows that Ged(A,b) = Ged(*3240', “222') = b' 2. Consequently D1 [/ 2. Since Dila and
Dy|B=a+ “{;—Zf’zb’, we obtain that D1|b’u12—2. From:

Dy b2
Dllblul%z (1)

Ged(22,22) =1

it follows that D;|b'u;. Similarly, we have that

D1|b’u1
Db hence Dq|b'. (2)
Ged(ug,ug) =1

We’ve obtained that Dy = Ged(a, V).
Finally, it is easy to see that Ker(¢) ~ Z/D1Z x 7/ D-Z. Indeed, from

a A o D1 0 a b st D1 0 t
(b B)_U'< 0 D2>'V’W€get<A B)‘V'( 0 D2>'U'

By denoting

o\ e (1 . A\ o (D1 0 f
(Jé)—U-(T),Weobtaln()\T>—V-( 01 D2><f;>

On the other hand L = Z(f1, f2), and consequently AL = Z{D; f1, Do f2). It follows that
ker(¢) = & ~ % ~ Z/D\Z x 7] D37, q.e.d. 0

3. Examples.

In this section we classify (up to an isomorphism) the elliptic curves E which admit
a subgroup C < (E,+) of order 12, C' = 7Z/27 x 7/6Z such that £ ~ E. Recall first

that complex elliptic curves are of the form % for some L = Z + Z1r C C where 7 € G =
z=x+iy e C: -3 <az <1 and either [2| >1 if 2 <0 or [2[>1 if x>0}
(see [2], Theorem 4.15B). Let E be an elliptic curve satisfying the condition i) of Theorem
1.1. E is isomorphic to an elliptic curve E' = %, where L = Z + Z7 and T € G. Since
an isomorphism u : E — E’ is of the type u(z) = 0 - z,0 € SLa(Z) (see [3], Theorem 1.4,
Chapter 11) one easily obtains that E’ satisfies the condition i) of Theorem 1.1. Hence we
can assume (up to an isomorphism) that E is of the form & with L = Z + Zr C C and
T € G. Moreover, we observe that if 7 =z + iy € G, |z| < 3 and |2| = 22 + y? > 1 lead to
y' > g
Let 72 —ur —v=0,u,v € QA =u?>+4v < 0and 7 € G. Then 7 = ui% VAl and, since
7 € G, we obtain that —1 < v < 1 and |A| > 3. Since A = u? + 4v < 0 we have that
v < 0. Without loss of generality, we can assume that v, > 0,v; < 0 and us > 0. By using
Theorem 2.1 and these restrictions imposed to 7 we obtain the following results:

Proposition 3.1. There are precisely 4 elliptic curves E (up to an isomorphism) which
admit at least one subgroup C < (E,+) of order 12, C 2 Z,/2Z x Z./6Z such that £ ~ E. If
we put L =7 + Zt, they are:

a) E=S,72=-2;

b) E=E%,72=-3;
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C)E:%,T2:—T—1;
d)EZ%,TZZ—T—?).

Remark 3.1. Forn =12, (D1, D2) € {(1,12),(2,6)} and we analyze the case C' non-cyclic
i.e. (Dl,Dg) = (2,6)

Proof. By using Theorem 2.1 we have that:

b/2 (3)

U1 V2 b,>2 B usvs A
2d 4d?

where from now on d := ds = Ged(usg, v2) in order to simplify the notations. Since
|A| > 3 we obtain that 12 > %b’z > 3p/2. Consequently b < 16 so b'? € {0,1,4, 16}.

The cases b2 = 0 and b2 = 1 are easily eliminated: 2 = 0 leads to 12 = a? which
has no integer solutions and "2 = 1 is not possible since Ged(a, b’) = 2. Consequently, there
are 2 cases left:

I) If b = 16, both sides of the previous inequality are equal since 12 = 25", hence
A = -3 and “32 = 1. Since uz > 0 and vo > 0 we get that uy = vo = d = 1. Consequently
7 satisfies the equation 72 — u;7 — vy = 0,u;,v; € Z,A = u} +4v; < 0. From 7 € G

and 7 = % V1A we obtain that —1 < u; < 1. Since u; € Z we get that u; € {—1,0}.
By using the equation A = —3 we obtain that u} + 4v; = —3, consequently u; is odd. It

follows that u; = —1 and v; = —1, consequently 7 satisfies 72 + 7 + 1 = 0. Moreover,
(CL, b/) € {(23 4)7 (723 74)}
2
I) If b2 = 4, by using the equation (3) we get that 12 > % . (“27;’2) -4. We denote
by “22 = ¢ € Z. Since uz > 0 and vz > 0 we have that £ > 0. From the above inequality
we obtain that £ € {1,2}.
a) If £ = 1 we have that us = vo9 = d = 1. Consequently 7 satisfies the equation
72 —uyT —v; = 0,u1,v; € Z,A = u?+4v; <0. Since 7 € G and 7 = % V1Al we get that
—1 <wuy < 1. Since uy € Z it follows that u; € {—1,0}. We distinguish two cases:
al) If u; = 0 the equation (3) becomes 12 = a?> — A = a® — 4v;. On the other

12:aB—bA:(a+

hand v; < 0 and v; € Z, consequently either a®> = 0,v; = —3 or a? = 4,v; = —2. If
a? = 0,v; = —3 we have that u; = 0 and v; = —3. It follows that 7 satisfies the equation
72 = —3; in this case (a,b’) € {(0,£2)}.

If a® = 4,v; = —2 we have that u; = 0 and v; = —2. It follows that 7 satisfies the equation

72 = —2; in this case (a,b') € {(£2,2)}.

A 2 N 2
a2) If uy = —1 the equation (3) becomes 12 = (a - %) — 1A= <a - %) -1

(1+4v1) and, since b’ = £2 we get 13 = (a4 1)? —4-v;. Since v; < —1 and v; € Z the last
equality leads to ((a+1)% v1) € {(1,-3),(9,—1)}. If ((a£1)?,v1) = (1, —3) then T satisfies
the equation 72 +7+3 = 0 and (a,b’) € {(0,£2), (£2,£2)}. If ((a£1)%,v1) = (9, —1) then
7 satisfies the equation 72 + 7+ 1 =0 and (a,b) € {(—2,2), (2, —2), (4, £2)}.

b) If £ = 2 we have that 272 =2 hence uy - %2 = vg - 7 = 2. Since ug > 0 and vz > 0
we get that (ugz,v2) € {(2,1),(1,2),(2,2)}. We distinguish 3 cases:

N 2
bl) If (ug,v2) = (2,1) the equation (3) becomes 12 = (a + “12b) — 4A. Since

A < —3 we get that a+“1Tb,:0andA:f3. We have that 72 — %7 —v; =0, 7 € G and
—1 <% < 1. Consequently —2 < wu; < 2 hence u; € {—2,—1,0}.

If uy = —2, since us = 2 we get Ged(ug,ug) = 2 # 1 and consequently this case is
not possible.

If u; = —1, from A = —3 we get that UT% +4v; = -3 ie. i+4v1 = —3, contradiction
with v € Z. ,

If u; =0, from A = —3 we get that “* + 4v; = —3 hence v =

f%, contradiction.
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b2) If (ug,v2) = (1,2) the equation (3) becomes 12 = (a + u1b')? — 4A.
v1

We have that 72 —u;7 — % =0, 7 € G and —1 < uy < 1 hence u; € {—1,0}.
If u; = —1, (3) leads to 16 = (a—b’)?—8v; and since v; < —1 we get that (a—b')? < 8.
Since v1 € Z one obtains (a — V',v1) = (0,—2). Consequently 7 satisfies the equation

2 +7+1=0and (a,0) € {(£2,£2)}.
If uy = 0 we get that A = 2v; and (3) becomes 12 = a? — 4A. Since A < —3 one
obtains a = 0 and A = —3 the later being equivalent to 2v; = —3 which is impossible in Z.
A 2
b3) If (ug,v2) = (2,2) the equation (3) becomes 12 = (a + %) — 4A. Since

A< —3weobtaina+"17b/ =0and A = —3. From 7 € G and 72—%7—% = (0 we obtain
that —2 <y < 2 hence u; € {-2, -1, 0}.

If u; = —2, from A = —3 it follows that "4—§ +2v; = —3 hence v; = —2. In conclusion,
7 satisfies the equation 72 + 7 4+ 1 = 0; in this case (a, ') € {(£2, £2)}.

If uy = —1, from A = —3 we obtain that %§+2v1 = —3 hence v; = —%7 contradiction
with v € Z.

If uy = 0, since us = 2 we get that Ged(uy,uz) = 2 # 1 hence this case is not
possible. O

Remark 3.2. In order to include the cyclic case (D1 = 1,Ds = 12) and get the list of
classes of elliptic curves E which admit subgroups C < (E,+) of order 12 such that the
elliptic curves E and E/C are isomorphic, the reader may set the condition Ged(a,b’) =1
and proceed as in Proposition 3.1 or use the Algorithm 2 provided in the next section. The

complete list of the above mentioned classes of CM elliptic curves for n = 12 is summarized
in Table 2.

4. The Algorithms

In this section, in a similar manner to the one used by us in [1], we implement in
Magma the algorithm developed for the classification of the complex elliptic curves £ which
admit non-cyclic subgroups C' < (E, +) of order n such E and E/C are isomorphic. We
mainly follow our Algorithm 1 of [1] by setting up the conditions D; := Ged(a,b’) > 1,
Ged(a,V')|n, Ged(a,b') < n/Ged(a,b’) =: Dy and Dq|Ds. Afterwards we modify the code
by including the cyclic case. Finally, by mean of these codes, some interesting examples
including the one analyzed in Proposition 3.1 are provided.

Recall first that complex elliptic curves are of the form % for some L = Z + Z7 C C where

TEG:{z=x+iy€(C:—%§x<% and either |z]>1 if <0 or |z] > 1 if x>0}.
Let E be an elliptic curve satisfying the condition i) of Theorem 1.1. Recall that we can

assume (up to an isomorphism) that E is of the form % with L=Z+ZrCcCand 7€ G
(see the beginning of the previous section for details). Recall also that if 72 — ur — v =

0,u,v € QA =u?+4v < 0 and 7 € G, then one obtains 7 = ui% ”lAl, —1<wu<1and
|A| > 3. Furthermore, since A = u? + 4v < 0 we have that v < 0. We can assume that
ug > 0 and v, > 0,v1 < 0.

Let us describe now the main algorithm: by using Theorem 1.1, ii), we have that:

b/2 (4)

B o UV ,)2 B usv3 A
n =aB bA—(a—i— de i
Recall that d = Ged(ug,v2), A = Z% + 471 and let u) := uz/d and vj := va2/d. Let also

v1 := —v1 and note that ug, va,v1 > 0 and that A < —3. We multiply (4) by 4 and obtain:
4n = (2a + urvhb')? + vhb? (4vydu — vhu?) (5)
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n | corresponding classes of CM elliptic curves: the non-cyclic case
12 [-1,-3],]-1,-1],[0,-3],[0,-2]
16 ['17'4]7['1/2"1]7['1a'2}’[03'4]’[07'3]
24 [ 0, '3/2 ]7 ['1/27 -1 ], [ 0,-5 ]7 ['17 -4 ]7 [ '1/27 '3/2 ]7 ['17 -6 ]7
[ 1/2’ '3/2]7 [07 '2]7 [O’ '6]a ['17'3/2]
245 [-1,-3],[0,-5],[-1,-3/2],[0,-4],[0,-1],]-1,-5]

TABLE 1. classes of CM elliptic curves for various n

n corresponding classes of CM elliptic curves: the general case

12 [-1,-31],[-1,-4/31],[-2/3,-4/3],[1/2,-3/2 ], [-1,-1],[1/2,-3],
[_1/27 _5/2 ]7 [_2/33 -1 }7 [ 2/37 _4/3 ]7 [_]‘/2ﬂ -3 }7 [_1/2, '3/2 ];

[ 0,-12 ]v [ 0,-11 ]v ['17 -12 ]v [ 0, -8 ]7 [‘1/37 '4/3 ]7 ['17 -10 ]v
[1/3,-4/3],[0,-4/3],[-1,-6],[0,-3],[0,-2],[1/2,-5/2]

16 [_I/Qa _5/2]7 [_1/27 _7/2]7 [Oa _4/3]7 [07 _3]7 [Oa _5/3]a
[Oa -4 }7 [_1/47 -1 ]7 [_1’ -10 ]a [07 -7 ]a ['3/47 -1 ]a
[ '17 -14 ]v ['1» -16 L [ 1/2, -4 ]7 [ 1/27 '5/2 L [_17 -2 ]7
[1/2,-7/2],[-1,-4],[-1,-4/3],[-1/2,-1], [0, -12],
['L '5/4 ]7 [ 07 -15 ]a [_1/27 -4 ]? [Oa '16]
TABLE 2. classes of CM elliptic curves for various n

Consequently, we get 4n > vhb'? - dviduf? hence n > vhb'? - viduf. As ir21 [1], denote now

by € = 4vidu? — vhu? and remark that A < —3 is equivalent to d%/} - 4d“v1é < -3
and furthermore to —¢ < —3d?ufvh, ie. & > 3d*uv). Using (5) we obtain that 4n >
vhb'? - 3d?uPvh hence 4n/3 > vi2b? - d?u?. Put k := \/4n/3. We obtain that u), runs from
1 to the integer part of k, [k], v5 from 1 to [k/ub], b’ from 1 to [k/uf/vh] and d from 1 to
[k/ub/v5/b']. Moreover, —1/2 < Re(7) < 1/2 is equivalent to —1/2 < u;3/(2ug) < 1/2 that
is —ug < uy < ug. Consequently w; runs from —dub to dub — 1.

Denote by m := (2a+ujvht’)?. From (5) we get that dn+v52b?u? = m+4vhb?vidu’? >
4vhb?v1du? hence v; < %. Consequently, v; will run from 1 to [%}

Recall that Dy = Ged(a, V') and Dy = n/Ged(a,b’). We set the conditions Ged(a, b’) >
1, Ged(a,v')|n, Ged(a,b') < n/Ged(a,b’) and Ged(a,b’) divides n/Ged(a,b’). Moreover,
Ged(ug,uz) =1 and Ged(vy,v2) = 1.

Finally, condition 7 € G is entirely fulfilled by setting: (uq > 0 or vy > v2) and
(u1 <0 or vy > vy).

In our codes, we made the substitutions b := b, us := us/d and ve := vy/d, where
d = Ged(ug, vo) and b, us, vo are defined in Theorem 2.1.

Remark 4.1. We further modify the first code by including the cyclic case. In other words,
by using the notations of Theorem 2.1 we allow the case D1 = 1 where D1 = Ged(a, V'), (see
Algorithm 2, line 16).

The corresponding results for the same cases analyzed in Table 1 are summarized in
Table 2. We point out that for the cases n = 24 and n = 245 the number of classes are 51
and 328 respectively and due to their size, they are not included in Table 2. The reader may
run the Algorithm 2 in order to see the detailed list.

Finally, for large n, several examples of the numbers of classes of CM elliptic curves
E which admit subgroups C' of order n such that £ = E/C are provided in Table 3. The
computations were done using Magma 2.19-9 on a Lenovo i30-3110M laptop at 2.40 GHz
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Algorithm 4.1 Input: any random integer; Output: wj/us,v1/ve.

1: noncyclic := function(n);

2: E:={}; k:=Sqrt(4*n/3);

3: for u2:=1 to Floor(k) do

4:  for v2:=1 to Floor(k/u2) do

5 if Ged(u2,v2) eq 1 then

6: for b:=1 to Floor(k/u2/v2) do

7: for d:=1 to Floor(k/u2/v2/b) do

8 for ul:=-d*u2 to d*u2-1 do

9: for v1:=1 to Floor((4*n+v2" 2*ul” 2*b" 2)/(4*v2*b" 2*d*u2" 2)) do
10: if ul® 2/d" 2/u2” 2-4*v1/d/v2 le -3 then

11: m:=4*n-v2*¥b" 2*(4*v1*d*u2" 2-v2*ul” 2);

12: x,y:=IsSquare(m);

13: if x then

14: if IsEven(y-ul*v2*b) then

15: a:=Floor((y-ul*v2*b)/2);

16: if (n mod Ged(a,b) eq 0) and ( Ged(a,b) ne 1) and ( Ged(a,b) 1t
Floor(n/Ged(a,b))) and (Ged(ul,d*u2) eq 1) and (Ged (v1,d*v2)
eq 1) then

17: if (Floor(n/Ged(a,b)) mod Ged(a,b) eq 0) then

18: if (ul gt 0 or vl ge d*v2) and (ul le 0 or v1 gt d*v2) then

19: E join:=[ul/d/u2,-v1/d/v2];

20: end if;

21: end if;

22: end if;

23: end if;

24: end if;

25: end if;

26: end for;

27: end for;

28: end for;

29: end for;

30: end if;

31: end for;

32: end for;

33: return E;
34: end function;

n the non-cyclic case | CPU time | the general case | CPU time
297 43 0.156s 440 0.172s
2012 524 3.104s 3563 3.323s
2017 0 2.948s 2023 3.276s
4536 3733 10.982s 13585 11.840s

12825 2884 54.382s 23581 58.734s

TABLE 3. number of classes of CM elliptic curves for various n

and 4 GB RAM. For each n we have also recorded the CPU time it took to complete these
calculations.
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Algorithm 4.2 Input: any random integer; Output: wj/us,v1/ve.

1: generaliz := function(n);

2: E:={}; k:=Sqrt(4*n/3);

3: for u2:=1 to Floor(k) do

4:  for v2:=1 to Floor(k/u2) do

5 if Ged(u2,v2) eq 1 then

6 for b:=1 to Floor(k/u2/v2) do

7: for d:=1 to Floor(k/u2/v2/b) do

8 for ul:=-d*u2 to d*u2-1 do

9: for v1:=1 to Floor((4*n+v2" 2*ul” 2*b" 2)/(4*v2*b" 2*d*u2" 2)) do

10: if ul® 2/d” 2/u2” 2-4*v1/d/v2 le -3 then

11: m:=4*n-v2*¥b" 2*(4*v1*d*u2" 2-v2*ul” 2);

12: x,y:=IsSquare(m);

13: if x then

14: if IsEven(y-ul*v2*b) then

15: a:=Floor((y-ul*v2*b)/2);

16: if (n mod Ged(a,b) eq 0) and ( Ged(a,b) 1t Floor(n/Ged(a,b)))

and (Ged(ul,d*u2) eq 1) and (Ged (v1,d*v2) eq 1) then

17: if (Floor(n/Gced(a,b)) mod Ged(a,b) eq 0) then

18: if (ul gt 0 or v1 ge d*v2) and (ul le 0 or v1 gt d*v2) then

19: E join:=[ul/d/u2,-v1/d/v2];

20: end if;

21: end if;

22: end if;

23: end if;

24: end if;

25: end if;

26: end for;

27: end for;

28: end for;

29: end for;

30: end if;

31:  end for;

32: end for;

33: return E;

34: end function;
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