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A GENERALIZATION OF A FIXED POINT THEOREM FOR CM

ELLIPTIC CURVES

Bogdan Cânepă1, Radu Gaba2

This paper deals with the classification of the complex elliptic curves E for
which there exist subgroups (not necessarily cyclic) C ≤ (E,+) of order n such that the
elliptic curves E/C and E are isomorphic, extending in this way the results of [1]. We

implement in Magma the algorithms developed for this classification and provide several
examples.
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1. Introduction

Let us denote by H the upper half plane, H := {z ∈ C, Im(z) > 0}. Let E be a
complex elliptic curve and C a subgroup (not necessarily cyclic) of order n < ∞ of (E,+).
This means that C is a subgroup of order n of the n-torsion subgroup of E, E[n] := {P ∈
E : [n]P = O}. It is known that since C acts effectively and properly discontinuous on E,
the group E/C has a structure of Riemann variety, compatible with the natural projection
π : E → E/C and that the isogeny π is unramified of degree n: degπ = |π−1(O)| = |C| = n
(see [5], Theorem 3.4). It is also known that E/C is a complex elliptic curve. Moreover, if
C is cyclic, one has E[n]/C ∼= Z/nZ (see [7], Proposition 5.4, Chapter VI or [2], Theorem
4.16).

In this work we study the complex elliptic curves E for which there exist subgroups
(not necessarily cyclic) C ≤ (E,+) of order n such that the elliptic curves E and E/C are
isomorphic, where n is a positive integer. We extend in this way the results of [1] where the
classification was made for the case C cyclic. More explicitly, the authors proved in [1] the
following:

Theorem 1.1. i) ∃C ≤ (E,+) finite cyclic subgroup such that E
C ≃ E ⇔ ∃u, v ∈ Q such

that τ2 = uτ + v with ∆ = u2 + 4v < 0 (i.e. E admits complex multiplication);
ii) If τ satisfies the conditions of i) and u = u1

u2
, v = v1

v2
, u2 ̸= 0, v2 ̸= 0, u1, u2, v1, v2 ∈

Z,Gcd(u1, u2) = Gcd(v1, v2) = 1, d2 = Gcd(u2, v2), then:
∃C ≤ (E,+) cyclic subgroup of order n which satisfies E

C ≃ E ⇐⇒ ∃(a, b′) ∈ Z2 with
Gcd(a, b′) = 1 such that n = detM , where M is the matrix

M =

(
a A
b B

)
and (a,A, b,B) =

(
a, u2v1

d2
b′, u2v2

d2
b′, a+ u1v2

d2
b′
)
;
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iii) The subgroup C from ii) is C=⟨u11+u21τ
n ⟩, where u11, u21 are obtained in the

following way: since detM = n and Gcd(a,A, b, B) = 1 (one deduces easily this), the matrix
M is arithmetically equivalent with the matrix:

M ∼
(

1 0
0 n

)
,

hence

∃U, V ∈ GL2(Z) such that M = U ·
(

1 0
0 n

)
· V.

The elements u11, u21 are the first column of the matrix

U =

(
u11 u12
u21 u22

)
.

We point out that in [1], after characterizing the above mentioned class of Heegner
points via Theorem 1.1, upon imposing certain conditions (see Theorem 2.3 of [1]), we
further answered the following question: ”given a complex elliptic curve when can one find
a cyclic subgroup of order n of E such that (E,C) ≃ (E/C,E[n]/C) and classified in this
manner the fixed points of the action of the Fricke involution

wn :=

(
0 −1
n 0

)
∈ GL2(Q+)

on the open modular curves Y0(n). We recall that one defines Y0(n) as the quotient space
Γ0(n)/H where H is the upper half plane i.e. {z ∈ C| Im(z) > 0}, in other words Y0(n) is
the set of orbits {Γ0(n)τ : τ ∈ H}, where Γ0(n) is the ”Nebentypus” congruence subgroup
of level n of SL2(Z), acting on H from the left:

Γ0(n) = {
(
a b
c d

)
∈ SL2(Z)| c ≡ 0(modn)}.

Moreover, slightly modified versions of the algorithms developed in this paper, also imple-
mented by ourselves, work correctly in establishing the fixed points of the action of the Fricke
involution on the open modular curves Y0(n), points which are known but weren’t studied
in the above specified manner. This number of fixed points was computed by Ogg (see [6],
Proposition 3) and Kenku (see [4], Theorem 2) and, for n > 3, it is ν(n) = h(−n) + h(−4n)
if n ≡ 3(mod4) and ν(n) = h(−4n) otherwise, where h(−n) is the class number of primitive
quadratic forms of discriminant −n and ν(2) = ν(3) = 2.

2. Main Result

In Theorem 1.1 of [1] we only studied the cyclic subgroups C ≤ (E,+) of order n
satisfying E ≃ E

C . It is natural to study this problem in general and answer the question
of for which complex elliptic curves E and for which subgroups C ≤ (E,+) of order n the
elliptic curves E and E/C are isomorphic. We observe that if C is a subgroup of order n
of Z/nZ× Z/nZ then C is of the form Z/D1Z× Z/D2Z with D1, D2 positive integers such
that D1 ·D2 = n and D1|D2. Moreover, we are not interested in the case D1 = D2 := D as
C would be a torsion subgroup, in which case E/E[D] ∼= E. We prove now the following:

Theorem 2.1. Let E be a complex elliptic curve:
Then there exists a finite subgroup C of (E,+) such that C ∼= Z/D1Z × Z/D2Z, D1|D2,
D1 ̸= D2 and with the property that E

C ≃ E, if and only if τ satisfies the equation τ2 =

uτ +v, u, v ∈ Q,∆ = u2+4v < 0 and there exist (a, b′) ∈ Z2 with Gcd(a, b′) = D1 such that,

if we denote by a,A, b,B the numbers (a,A, b,B) =
(
a, u2v1

d2
b′, u2v2

d2
b′, a+ u1v2

d2
b′
)
and by M

the matrix

M =

(
a A
b B

)
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we have the relation det(M) = D1 · D2. We denoted by u = u1

u2
, v = v1

v2
, u2 ̸= 0, v2 ̸=

0, u1, u2, v1, v2 ∈ Z, Gcd(u1, u2) = Gcd(v1, v2) = 1, d2 = Gcd(u2, v2). Moreover, the isomor-
phism E

C ≃ E comes from a morphism of varieties: ϕa,b′ : E −→ E which has the following
properties: deg(ϕa,b′) = D1 ·D2, it is a group homomorphism, Ker(ϕ) = C and ϕ(z) = λz,
where λ = a+ bτ .

Proof. By composing the isomorphism E
C ≃ E with the natural projection E → E/C one

obtains a morphism ψ : E → E
C ≃ E. By further composing a translation Ta : E −→ E

with it, we obtain a morphism ϕ : E −→ E, ϕ(z) = λ · z with Ker(ϕ) = C (the reason for
doing this is that a morphism of complex elliptic curves is the composition of a translation
with an homothety). More explicitly, we have the following commutative diagram:

E
π //

ψ

!!
ϕ

��

E/C

∼=
��
E

Ta

��
E

In fact, there exists a one-to-one correspondence between the set of isomorphisms
{EC ≃ E} and the set of morphisms {ϕ : E −→ E : ϕ is morphism of complex varieties
and of groups, Ker(ϕ) = C}. Therefore it is enough to study the kernel of ϕ : E −→ E,

ϕ(z) = λ · z. We have that Ker(ϕ) = {ẑ ∈ E/λz ∈ L} = {ẑ ∈ E/z ∈ 1
λL} =

1
λL

L ≤ C
L = E.

Consequently Ker(ϕ) =
1
λL

L ≃ L
λL , where λL ⊆ L.

We would like to find the group with which L
λL is isomorphic. A Z - basis for λL is {λ, λ ·τ}.

The inclusion λL ⊆ L is equivalent to the existence of the numbers a,A, b,B ∈ Z such that(
λ
λτ

)
=

(
a b
A B

)
·
(

1
τ

)
As in Theorem 1.1, a,A, b, B have certain properties. From the above matrix equality

we have that (a + bτ)τ = A + Bτ ⇐⇒ bτ2 = (B − a)τ + A, i.e. τ is algebraic over Q
provided b ̸= 0. If b = 0 then one would obtain D1 = D2 = a. If b ̸= 0, let µτ =
X2−uX−v ∈ Q[X] be the minimal polynomial of τ , u = u1

u2
∈ Q, v = v1

v2
∈ Q, u1, u2, v1, v2 ∈

Z,Gcd(u1, u2) = Gcd(v1, v2) = 1, d2 = Gcd(u2, v2). Upon identifying the coefficients of µτ
and bτ2 = (B − a)τ +A, we obtain:{

A
b = v = v1

v2
B−a
b = u = u1

u2

hence

{
v2A = v1b

u2(B − a) = u1b.

Since v2A = v1b and Gcd(v1, v2) = 1 it follows that v2|b and v1|A. Since u2(B− a) =
u1b and Gcd(u1, u2) = 1 it follows that Lcm[u2, v2]|b. Consequently there exists b′ ∈ Z such
that b = Lcm[u2, v2]b

′ = u2v2
d2

b′, v2A = v1b and u2(B−a) = u1b where d2 = Gcd(u2, v2) and

τ2 = uτ + v. We’ve obtained that (a,A, b,B) =
(
a, u2v1

d2
b′, u2v2

d2
b′, a+ u1v2

d2
b′
)
.

On the other hand, M is arithmetically equivalent with:

M =

(
a A
b B

)
∼

(
D1 0
0 D2

)
, D1|D2 i.e. there exist U, V ∈ SL2(Z) with(

a A
b B

)
= U ·

(
D1 0
0 D2

)
· V.
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We show now that D1 = Gcd(a, b′).

Indeed, D1 = Gcd(a,A, b,B) = Gcd
(
a, u2v1

d2
b′, u2v2

d2
b′, a + u1v2

d2
b′
)
. Since Gcd(v1, v2) = 1 it

follows that Gcd(A, b) = Gcd(u2v1
d2

b′, u2v2
d2

b′) = b′ u2

d2
. Consequently D1|b′ u2

d2
. Since D1|a and

D1|B = a+ u1v2
d2

b′, we obtain that D1|b′u1 v2d2 . From:
D1|b′ u2

d2

D1|b′u1 v2d2
Gcd

(
u2

d2
, v2d2

)
= 1

(1)

it follows that D1|b′u1. Similarly, we have that
D1|b′u1
D1|b′ u2

d2

Gcd(u1, u2) = 1

hence D1|b′. (2)

We’ve obtained that D1 = Gcd(a, b′).
Finally, it is easy to see that Ker(ϕ) ≃ Z/D1Z× Z/D2Z. Indeed, from(

a A
b B

)
= U ·

(
D1 0
0 D2

)
· V, we get

(
a b
A B

)
= V t ·

(
D1 0
0 D2

)
· U t.

By denoting(
f1
f2

)
= U t ·

(
1
τ

)
,we obtain

(
λ
λτ

)
= V t ·

(
D1 0
0 D2

)
·
(
f1
f2

)
.

On the other hand L = Z⟨f1, f2⟩, and consequently λL = Z⟨D1f1, D2f2⟩. It follows that

ker(ϕ) = L
λL ≃ Zf1⊕Zf2

ZD1f1⊕ZD2f2
≃ Z/D1Z× Z/D2Z, q.e.d. �

3. Examples.

In this section we classify (up to an isomorphism) the elliptic curves E which admit
a subgroup C ≤ (E,+) of order 12, C ∼= Z/2Z × Z/6Z such that E

C ≃ E. Recall first

that complex elliptic curves are of the form C
L for some L = Z + Zτ ⊂ C where τ ∈ G ={

z = x + iy ∈ C : − 1
2 ≤ x < 1

2 and either |z| ≥ 1 if x ≤ 0 or |z| > 1 if x > 0
}

(see [2], Theorem 4.15B). Let E be an elliptic curve satisfying the condition i) of Theorem
1.1. E is isomorphic to an elliptic curve E′ = C

L , where L = Z+Zτ and τ ∈ G. Since
an isomorphism u : E −→ E′ is of the type u(z) = σ · z, σ ∈ SL2(Z) (see [3], Theorem 1.4,
Chapter 11) one easily obtains that E′ satisfies the condition i) of Theorem 1.1. Hence we
can assume (up to an isomorphism) that E is of the form C

L with L = Z + Zτ ⊂ C and

τ ∈ G. Moreover, we observe that if τ = x+ iy ∈ G, |x| ≤ 1
2 and |z| = x2 + y2 ≥ 1 lead to

y2 ≥ 3
4 .

Let τ2 − uτ − v = 0, u, v ∈ Q,∆ = u2 + 4v < 0 and τ ∈ G. Then τ =
u± i

√
|∆|

2 and, since

τ ∈ G, we obtain that −1 ≤ u < 1 and |∆| ≥ 3. Since ∆ = u2 + 4v < 0 we have that
v < 0. Without loss of generality, we can assume that v2 > 0, v1 < 0 and u2 > 0. By using
Theorem 2.1 and these restrictions imposed to τ we obtain the following results:

Proposition 3.1. There are precisely 4 elliptic curves E (up to an isomorphism) which
admit at least one subgroup C ≤ (E,+) of order 12, C ∼= Z/2Z×Z/6Z such that E

C ≃ E. If
we put L = Z+ Zτ , they are:
a) E = C

L , τ
2 = −2;

b) E = C
L , τ

2 = −3;
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c) E = C
L , τ

2 = −τ − 1;

d) E = C
L , τ

2 = −τ − 3.

Remark 3.1. For n = 12, (D1, D2) ∈ {(1, 12), (2, 6)} and we analyze the case C non-cyclic
i.e. (D1, D2) = (2, 6).

Proof. By using Theorem 2.1 we have that:

12 = aB − bA =
(
a+

u1v2
2d

b′
)2

− u22v
2
2∆

4d2
b′2 (3)

where from now on d := d2 = Gcd(u2, v2) in order to simplify the notations. Since

|∆| ≥ 3 we obtain that 12 ≥ 3u2
2v

2
2

4d2 b′2 ≥ 3
4b

′2. Consequently b′2 ≤ 16 so b′2 ∈ {0, 1, 4, 16}.
The cases b′2 = 0 and b′2 = 1 are easily eliminated: b′2 = 0 leads to 12 = a2 which

has no integer solutions and b′2 = 1 is not possible since Gcd(a, b′) = 2. Consequently, there
are 2 cases left:

I) If b′2 = 16, both sides of the previous inequality are equal since 12 = 3
4b

′2, hence
∆ = −3 and u2v2

d = 1. Since u2 > 0 and v2 > 0 we get that u2 = v2 = d = 1. Consequently

τ satisfies the equation τ2 − u1τ − v1 = 0, u1, v1 ∈ Z,∆ = u21 + 4v1 < 0. From τ ∈ G

and τ =
u1± i

√
|∆|

2 we obtain that −1 ≤ u1 < 1. Since u1 ∈ Z we get that u1 ∈ {−1, 0}.
By using the equation ∆ = −3 we obtain that u21 + 4v1 = −3, consequently u1 is odd. It
follows that u1 = −1 and v1 = −1, consequently τ satisfies τ2 + τ + 1 = 0. Moreover,
(a, b′) ∈ {(2, 4), (−2,−4)}.

II) If b′2 = 4, by using the equation (3) we get that 12 ≥ 3
4 ·

(
u2v2
d

)2

· 4. We denote

by u2v2
d = ξ ∈ Z. Since u2 > 0 and v2 > 0 we have that ξ > 0. From the above inequality

we obtain that ξ ∈ {1, 2}.
a) If ξ = 1 we have that u2 = v2 = d = 1. Consequently τ satisfies the equation

τ2 −u1τ − v1 = 0, u1, v1 ∈ Z,∆ = u21 +4v1 < 0. Since τ ∈ G and τ =
u1± i

√
|∆|

2 we get that
−1 ≤ u1 < 1. Since u1 ∈ Z it follows that u1 ∈ {−1, 0}. We distinguish two cases:

a1) If u1 = 0 the equation (3) becomes 12 = a2 − ∆ = a2 − 4v1. On the other
hand v1 < 0 and v1 ∈ Z, consequently either a2 = 0, v1 = −3 or a2 = 4, v1 = −2. If
a2 = 0, v1 = −3 we have that u1 = 0 and v1 = −3. It follows that τ satisfies the equation
τ2 = −3; in this case (a, b′) ∈ {(0,±2)}.
If a2 = 4, v1 = −2 we have that u1 = 0 and v1 = −2. It follows that τ satisfies the equation
τ2 = −2; in this case (a, b′) ∈ {(±2, 2)}.

a2) If u1 = −1 the equation (3) becomes 12 =
(
a − b′

2

)2

− 1
4∆ =

(
a − b′

2

)2

− 1
4 ·

(1+ 4v1) and, since b
′ = ±2 we get 13 = (a± 1)2 − 4 · v1. Since v1 ≤ −1 and v1 ∈ Z the last

equality leads to ((a± 1)2, v1) ∈ {(1,−3), (9,−1)}. If ((a± 1)2, v1) = (1,−3) then τ satisfies
the equation τ2 + τ +3 = 0 and (a, b′) ∈ {(0,±2), (±2,±2)}. If ((a± 1)2, v1) = (9,−1) then
τ satisfies the equation τ2 + τ + 1 = 0 and (a, b′) ∈ {(−2, 2), (2,−2), (±4,±2)}.

b) If ξ = 2 we have that u2v2
d = 2 hence u2 · v2d = v2 · u2

d = 2. Since u2 > 0 and v2 > 0
we get that (u2, v2) ∈ {(2, 1), (1, 2), (2, 2)}. We distinguish 3 cases:

b1) If (u2, v2) = (2, 1) the equation (3) becomes 12 =
(
a + u1b

′

2

)2

− 4∆. Since

∆ ≤ −3 we get that a+ u1b
′

2 = 0 and ∆ = −3. We have that τ2 − u1

2 τ − v1 = 0, τ ∈ G and
−1 ≤ u1

2 < 1. Consequently −2 ≤ u1 < 2 hence u1 ∈ {−2,−1, 0}.
If u1 = −2, since u2 = 2 we get Gcd(u1, u2) = 2 ̸= 1 and consequently this case is

not possible.

If u1 = −1, from ∆ = −3 we get that
u2
1

4 +4v1 = −3 i.e. 1
4 +4v1 = −3, contradiction

with v1 ∈ Z.
If u1 = 0, from ∆ = −3 we get that

u2
1

4 + 4v1 = −3 hence v1 = − 3
4 , contradiction.
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b2) If (u2, v2) = (1, 2) the equation (3) becomes 12 = (a+ u1b
′)2 − 4∆.

We have that τ2 − u1τ − v1
2 = 0, τ ∈ G and −1 ≤ u1 < 1 hence u1 ∈ {−1, 0}.

If u1 = −1, (3) leads to 16 = (a−b′)2−8v1 and since v1 ≤ −1 we get that (a−b′)2 ≤ 8.
Since v1 ∈ Z one obtains (a − b′, v1) = (0,−2). Consequently τ satisfies the equation
τ2 + τ + 1 = 0 and (a, b′) ∈ {(±2,±2)}.

If u1 = 0 we get that ∆ = 2v1 and (3) becomes 12 = a2 − 4∆. Since ∆ ≤ −3 one
obtains a = 0 and ∆ = −3 the later being equivalent to 2v1 = −3 which is impossible in Z.

b3) If (u2, v2) = (2, 2) the equation (3) becomes 12 =
(
a + u1b

′

2

)2

− 4∆. Since

∆ ≤ −3 we obtain a+ u1b
′

2 = 0 and ∆ = −3. From τ ∈ G and τ2 − u1

2 τ −
v1
2 = 0 we obtain

that −2 ≤ u1 < 2 hence u1 ∈ {−2,−1, 0}.
If u1 = −2, from ∆ = −3 it follows that

u2
1

4 +2v1 = −3 hence v1 = −2. In conclusion,

τ satisfies the equation τ2 + τ + 1 = 0; in this case (a, b′) ∈ {(±2,±2)}.
If u1 = −1, from ∆ = −3 we obtain that

u2
1

4 +2v1 = −3 hence v1 = − 13
8 , contradiction

with v1 ∈ Z.
If u1 = 0, since u2 = 2 we get that Gcd(u1, u2) = 2 ̸= 1 hence this case is not

possible. �

Remark 3.2. In order to include the cyclic case (D1 = 1, D2 = 12) and get the list of
classes of elliptic curves E which admit subgroups C ≤ (E,+) of order 12 such that the
elliptic curves E and E/C are isomorphic, the reader may set the condition Gcd(a, b′) = 1
and proceed as in Proposition 3.1 or use the Algorithm 2 provided in the next section. The
complete list of the above mentioned classes of CM elliptic curves for n = 12 is summarized
in Table 2.

4. The Algorithms

In this section, in a similar manner to the one used by us in [1], we implement in
Magma the algorithm developed for the classification of the complex elliptic curves E which
admit non-cyclic subgroups C ≤ (E,+) of order n such E and E/C are isomorphic. We
mainly follow our Algorithm 1 of [1] by setting up the conditions D1 := Gcd(a,b′) > 1,
Gcd(a, b′)|n, Gcd(a, b′) < n/Gcd(a, b′) =: D2 and D1|D2. Afterwards we modify the code
by including the cyclic case. Finally, by mean of these codes, some interesting examples
including the one analyzed in Proposition 3.1 are provided.
Recall first that complex elliptic curves are of the form C

L for some L = Z+ Zτ ⊂ C where

τ ∈ G =
{
z = x+ iy ∈ C : − 1

2 ≤ x < 1
2 and either |z| ≥ 1 if x ≤ 0 or |z| > 1 if x > 0

}
.

Let E be an elliptic curve satisfying the condition i) of Theorem 1.1. Recall that we can
assume (up to an isomorphism) that E is of the form C

L with L = Z + Zτ ⊂ C and τ ∈ G

(see the beginning of the previous section for details). Recall also that if τ2 − uτ − v =

0, u, v ∈ Q,∆ = u2 + 4v < 0 and τ ∈ G, then one obtains τ =
u± i

√
|∆|

2 , −1 ≤ u < 1 and

|∆| ≥ 3. Furthermore, since ∆ = u2 + 4v < 0 we have that v < 0. We can assume that
u2 > 0 and v2 > 0, v1 < 0.

Let us describe now the main algorithm: by using Theorem 1.1, ii), we have that:

n = aB − bA =
(
a+

u1v2
2d

b′
)2

− u22v
2
2∆

4d2
b′2 (4)

Recall that d = Gcd(u2, v2), ∆ =
u2
1

u2
2
+ 4 v1v2 and let u′2 := u2/d and v′2 := v2/d. Let also

v1 := −v1 and note that u2, v2, v1 > 0 and that ∆ ≤ −3. We multiply (4) by 4 and obtain:

4n = (2a+ u1v
′
2b

′)2 + v′2b
′2(4v1du

′2
2 − v′2u

2
1) (5)
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n corresponding classes of CM elliptic curves: the non-cyclic case
12 [-1,-3],[-1,-1],[0,-3],[0,-2]
16 [ -1, -4 ], [ -1/2, -1 ], [ -1, -2 ], [ 0, -4 ], [ 0, -3 ]
24 [ 0, -3/2 ], [ -1/2, -1 ], [ 0, -5 ], [ -1, -4 ], [ -1/2, -3/2 ], [ -1, -6 ],

[ 1/2, -3/2 ], [ 0, -2 ], [ 0, -6 ], [ -1, -3/2 ]
245 [-1,-3],[0,-5],[-1,-3/2],[0,-4],[0,-1],[-1,-5]

Table 1. classes of CM elliptic curves for various n

n corresponding classes of CM elliptic curves: the general case
12 [ -1, -3 ], [ -1, -4/3 ], [ -2/3, -4/3 ], [ 1/2, -3/2 ], [ -1, -1 ], [ 1/2, -3 ],

[ -1/2, -5/2 ], [ -2/3, -1 ], [ 2/3, -4/3 ], [ -1/2, -3 ], [ -1/2, -3/2 ],
[ 0, -12 ], [ 0, -11 ], [ -1, -12 ], [ 0, -8 ], [ -1/3, -4/3 ], [ -1, -10 ],
[ 1/3, -4/3 ], [ 0, -4/3 ], [ -1, -6 ], [ 0, -3 ], [ 0, -2 ], [ 1/2, -5/2 ]

16 [ -1/2, -5/2 ], [ -1/2, -7/2 ], [ 0, -4/3 ], [ 0, -3 ], [ 0, -5/3 ],
[ 0, -4 ], [ -1/4, -1 ], [ -1, -10 ], [ 0, -7 ], [ -3/4, -1 ],

[ -1, -14 ], [ -1, -16 ], [ 1/2, -4 ], [ 1/2, -5/2 ], [ -1, -2 ],
[ 1/2, -7/2 ], [ -1, -4 ], [ -1, -4/3 ], [ -1/2, -1 ], [ 0, -12 ],

[ -1, -5/4 ], [ 0, -15 ], [ -1/2, -4 ], [ 0, -16 ]
Table 2. classes of CM elliptic curves for various n

Consequently, we get 4n ≥ v′2b
′2 · 4v1du′22 hence n ≥ v′2b

′2 · v1du′22 . As in [1], denote now

by ξ := 4v1du
′2
2 − v′2u

2
1 and remark that ∆ ≤ −3 is equivalent to

u2
1

d2u′2
2

− 4 v1
dv′2

≤ −3

and furthermore to −ξ ≤ −3d2u′22 v
′
2, i.e. ξ ≥ 3d2u′22 v

′
2. Using (5) we obtain that 4n ≥

v′2b
′2 · 3d2u′22 v′2 hence 4n/3 ≥ v′22 b

′2 · d2u′22 . Put k :=
√
4n/3. We obtain that u′2 runs from

1 to the integer part of k, [k], v′2 from 1 to [k/u′2], b
′ from 1 to [k/u′2/v

′
2] and d from 1 to

[k/u′2/v
′
2/b

′]. Moreover, −1/2 ≤ Re(τ) < 1/2 is equivalent to −1/2 ≤ u1/(2u2) < 1/2 that
is −u2 ≤ u1 < u2. Consequently u1 runs from −du′2 to du′2 − 1.

Denote bym := (2a+u1v
′
2b

′)2. From (5) we get that 4n+v′22 b
′2u21 = m+4v′2b

′2v1du
′2
2 ≥

4v′2b
′2v1du

′2
2 hence v1 ≤ 4n+v′22 b

′2u2
1

4v′2b
′2du′2

2
. Consequently, v1 will run from 1 to [

4n+v′22 b
′2u2

1

4v′2b
′2du′2

2
].

Recall thatD1 = Gcd(a, b′) andD2 = n/Gcd(a, b′). We set the conditions Gcd(a,b′) >
1, Gcd(a, b′)|n, Gcd(a, b′) < n/Gcd(a, b′) and Gcd(a, b′) divides n/Gcd(a, b′). Moreover,
Gcd(u1, u2) = 1 and Gcd(v1, v2) = 1.

Finally, condition τ ∈ G is entirely fulfilled by setting: (u1 > 0 or v1 ≥ v2) and
(u1 ≤ 0 or v1 > v2).

In our codes, we made the substitutions b := b′, u2 := u2/d and v2 := v2/d, where
d = Gcd(u2, v2) and b

′, u2, v2 are defined in Theorem 2.1.

Remark 4.1. We further modify the first code by including the cyclic case. In other words,
by using the notations of Theorem 2.1 we allow the case D1 = 1 where D1 = Gcd(a, b′), (see
Algorithm 2, line 16).

The corresponding results for the same cases analyzed in Table 1 are summarized in
Table 2. We point out that for the cases n = 24 and n = 245 the number of classes are 51
and 328 respectively and due to their size, they are not included in Table 2. The reader may
run the Algorithm 2 in order to see the detailed list.

Finally, for large n, several examples of the numbers of classes of CM elliptic curves
E which admit subgroups C of order n such that E ∼= E/C are provided in Table 3. The
computations were done using Magma 2.19-9 on a Lenovo i30-3110M laptop at 2.40 GHz
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Algorithm 4.1 Input: any random integer; Output: u1/u2, v1/v2.

1: noncyclic := function(n);
2: E:={}; k:=Sqrt(4*n/3);
3: for u2:=1 to Floor(k) do
4: for v2:=1 to Floor(k/u2) do
5: if Gcd(u2,v2) eq 1 then
6: for b:=1 to Floor(k/u2/v2) do
7: for d:=1 to Floor(k/u2/v2/b) do
8: for u1:=-d*u2 to d*u2-1 do
9: for v1:=1 to Floor((4*n+v2ˆ 2*u1ˆ 2*bˆ 2)/(4*v2*bˆ 2*d*u2ˆ 2)) do

10: if u1ˆ 2/dˆ 2/u2ˆ 2-4*v1/d/v2 le -3 then
11: m:=4*n-v2*bˆ 2*(4*v1*d*u2ˆ 2-v2*u1ˆ 2);
12: x,y:=IsSquare(m);
13: if x then
14: if IsEven(y-u1*v2*b) then
15: a:=Floor((y-u1*v2*b)/2);
16: if (n mod Gcd(a,b) eq 0) and ( Gcd(a,b) ne 1) and ( Gcd(a,b) lt

Floor(n/Gcd(a,b))) and (Gcd(u1,d*u2) eq 1) and (Gcd (v1,d*v2)
eq 1) then

17: if (Floor(n/Gcd(a,b)) mod Gcd(a,b) eq 0) then
18: if (u1 gt 0 or v1 ge d*v2) and (u1 le 0 or v1 gt d*v2) then
19: E join:=[u1/d/u2,-v1/d/v2];
20: end if ;
21: end if ;
22: end if ;
23: end if ;
24: end if ;
25: end if ;
26: end for;
27: end for;
28: end for;
29: end for;
30: end if ;
31: end for;
32: end for;
33: return E;
34: end function;

n the non-cyclic case CPU time the general case CPU time
297 43 0.156s 440 0.172s
2012 524 3.104s 3563 3.323s
2017 0 2.948s 2023 3.276s
4536 3733 10.982s 13585 11.840s
12825 2884 54.382s 23581 58.734s

Table 3. number of classes of CM elliptic curves for various n

and 4 GB RAM. For each n we have also recorded the CPU time it took to complete these
calculations.
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Algorithm 4.2 Input: any random integer; Output: u1/u2, v1/v2.

1: generaliz := function(n);
2: E:={}; k:=Sqrt(4*n/3);
3: for u2:=1 to Floor(k) do
4: for v2:=1 to Floor(k/u2) do
5: if Gcd(u2,v2) eq 1 then
6: for b:=1 to Floor(k/u2/v2) do
7: for d:=1 to Floor(k/u2/v2/b) do
8: for u1:=-d*u2 to d*u2-1 do
9: for v1:=1 to Floor((4*n+v2ˆ 2*u1ˆ 2*bˆ 2)/(4*v2*bˆ 2*d*u2ˆ 2)) do

10: if u1ˆ 2/dˆ 2/u2ˆ 2-4*v1/d/v2 le -3 then
11: m:=4*n-v2*bˆ 2*(4*v1*d*u2ˆ 2-v2*u1ˆ 2);
12: x,y:=IsSquare(m);
13: if x then
14: if IsEven(y-u1*v2*b) then
15: a:=Floor((y-u1*v2*b)/2);
16: if (n mod Gcd(a,b) eq 0) and ( Gcd(a,b) lt Floor(n/Gcd(a,b)))

and (Gcd(u1,d*u2) eq 1) and (Gcd (v1,d*v2) eq 1) then
17: if (Floor(n/Gcd(a,b)) mod Gcd(a,b) eq 0) then
18: if (u1 gt 0 or v1 ge d*v2) and (u1 le 0 or v1 gt d*v2) then
19: E join:=[u1/d/u2,-v1/d/v2];
20: end if ;
21: end if ;
22: end if ;
23: end if ;
24: end if ;
25: end if ;
26: end for;
27: end for;
28: end for;
29: end for;
30: end if ;
31: end for;
32: end for;
33: return E;
34: end function;
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