
U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 2, 2014 ISSN 1223-7027

A NEW VARIABLE-COEFFICIENT BERNOULLI

EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING

NONLINEAR DIFFERENTIAL EQUATIONS

Bin Zheng1

In this paper, a new variable-coefficient Bernoulli equation-based sub-
equation method is proposed to establish exact solutions for nonlinear differential
equations. For illustrating the validity of this method, we apply it to the (2+1)-
dimensional breaking soliton equation and the (2+1)-dimensional dispersive long
wave equations. As a result, some new exact solutions for them are successfully
obtained.
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1. Introduction

Nonlinear differential equations (NLDEs) can be used to describe many nonlin-
ear phenomena such as fluid mechanics, plasma physics, optical fibers, biology, solid
state physics, chemical kinematics, chemical physics, and so on. In the research
of the theory of NLDEs, searching for more explicit exact solutions to NLDEs is
one of the most fundamental and significant study in recent years. With the help of
computerized symbolic computation, much work has been focused on the various ex-
tensions and applications of the known algebraic methods to construct the solutions
to NLDEs. There have been a variety of powerful methods. For example, these
methods include the known homogeneous balance method [1,2], the tanh-method
[3-5], the inverse scattering transform [6], the Backlund transform [7,8], the Hiro-
tas bilinear method [9,10], the generalized Riccati sub-equation method[11,12], the
Jacobi elliptic function expansion [13,14], the F-expansion method [15], the exp-
function expansion method [16,17], the (G’/G)-expansion method [18,19] and so on.
However, we notice that most of the existing methods are companied with constant
coefficients, while very few methods are concerned of variable-coefficients.

In this paper, by introducing a new ansatz, we develop a new variable-coefficient
Bernoulli equation-based sub-equation method for solving NLDEs. First we give the
description of the variable-coefficient Bernoulli equation-based sub-equation method.
Then we apply the method to solve the (2+1)-dimensional breaking soliton equa-
tion and the (2+1)-dimensional dispersive long wave equations. Some conclusions
are presented at the end of the paper.
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2. Description of the variable-coefficient Bernoulli equation-based
sub-equation method

We consider the following Bernoulli equation:

G′ + λG = G2, (1)

where λ ̸= 0 is a complex number, G = G(ξ). The solutions of Eq. (1) is denoted by

G(ξ) =
λ

1 + λdeλξ
, (2)

where d is an arbitrary constant. Especially, when λ is a real number and d = 1
λ
,

we obtain

G(ξ) =
λ

2
(1− tanh(

λξ

2
)). (3)

When d = 1
λ
, λ = iλ̃, where λ̃ is a real number, i is the unit of imaginary number,

we obtain

G(ξ) =
λ

2
− λi

2
tan(

λ̃ξ

2
). (4)

Suppose that a nonlinear equation, say in two or three independent variables
x, y, t, is given by

P (u, ut, ux, uy, utt, uxt, uxx, uxy...) = 0, (5)

where u = u(x, y, t) is an unknown function, P is a polynomial in u = u(x, y, t) and
its various partial derivatives, in which the highest order derivatives and nonlinear
terms are involved.

Step 1. Suppose that

u(x, y, t) = u(ξ), ξ = ξ(x, y, t), (6)

and then Eq. (5) can be turned into the following form P̃ (u, u′, u′′, ...) = 0.
Step 2. Suppose that the solution of (7) can be expressed by a polynomial in

G as follows:

u(ξ) = am(x, y, t)Gm + am−1(x, y, t)G
m−1 + ...+ a0(x, y, t), (7)

where G = G(ξ) satisfies Eq. (1), and am(x, y, t), am−1(x, y, t), ..., a0(x, y, t) are all
unknown functions to be determined later with am(x, y, t) ̸= 0. The positive integer
m can be determined by considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in (7).

Step 3. Substituting (8) into (7) and using (1), collecting all terms with the
same order of G together, the left-hand side of (7) is converted to another polynomial
in G. Equating each coefficient of this polynomial to zero, yields a set of partial
differential equations for am(x, y, t), am−1(x, y, t)..., a0(x, y, t),
ξ(x, y, t), λ.

Step 4. Solving the equations system in Step 3, and using the solutions of Eq.
(1), we can construct exact coefficient function solutions of Eq. (7).

Remark 2.1. As the partial differential equations in Step 3 are usually over-determined,
we may choose some special forms of am, am−1, ..., a0 as will be done in the fol-
lowing.
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3. Applications of the proposed method

In this section, we will present some applications of the method described
in Section 2.

3.1. (2+1)-dimensional breaking soliton equation

We consider the (2+1)-dimensional breaking soliton equation [20-22]:

uxxxy − 2uy − 4uxuxy + uxt = 0. (8)

Eq. (9) is used to describe the (2+1)-dimensional interaction of Riemann wave
propagated along the y-axis with long wave propagated along the x-axis [23]. Some
types of exact solutions for Eq. (9) have been obtained by the Riccati sub-equation
method [20, 21] and the symbolic computation method [22].

To apply the method described above, we assume that u(x, y, t) = U(ξ), where
ξ = ξ(x, y, t). Then Eq. (9) can be turned into

ξ3xξyU
′′′′ + (3ξ2xξxy + 3ξxξyξxx)U

′′′ + (3ξxyξxx + 3ξxξxxy + ξxxxξy + ξxξt)U
′′

+(ξxxxy − 2ξy + ξxt)U
′ − 4ξxξxyU

′2 − 4ξ2xξyU
′U ′′ = 0. (9)

We will proceed to solve Eq. (10) in two cases.
Case 1: Assume that U(ξ) =

∑m
i=0 ai(y, t)G

i. By balancing the order of U ′′′′

and U ′U ′′ in Eq. (10), we can obtain m = 1. So

U(ξ) = a1(y, t)G+ a0(y, t). (10)

Substituting (12) into (10) and collecting all the terms with the same power of G
together, equating each coefficient to zero yields a set of under-determined partial
differential equations for a0(y, t), a1(y, t) and ξ(x, y, t). Solving these equations
with the aid of Maple software yields

Family 1:

ξ(x, y, t) = C1x+ f(t), a1(y, t) =
3C1

4
, a0(y, t) =

2f ′(t)y

C1
+ g(t),

where C1 is an arbitrary constant, and f(t), g(t) are two arbitrary functions.
Combining with Eq. (2) we can obtain the following exact solutions for (2+1)-
dimensional breaking soliton equation:

u1(x, y, t) =
3C1

4
[

λ

1 + λdeλ(C1x+f(t))
] +

2f ′(t)y

C1
+ g(t). (11)

In the special case of Eq. (3) we obtain the following solitary wave solu-
tions:

u2(x, y, t) =
3C1

4
[
λ

2
(1− tanh(

λ(C1x+ f(t))

2
))] +

2f ′(t)y

C1
+ g(t). (12)

Using Eq. (4) we obtain the following trigonometric function solutions:

u3(x, y, t) =
3C1

4
[
λ

2
− λi

2
tan(

λ̃(C1x+ f(t))

2
))] +

2f ′(t)y

C1
+ g(t). (13)
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Family 2:

ξ(x, y, t) =
C1C2

2
(C3e

−x+C4
C1 − e

x+C4
C1 ), a1(y, t) = C5, a0(y, t) = f(t),

where Ci, i = 1, 2, 3, 4, 5 are an arbitrary constant, and f(t) is an arbitrary function.
Combining with Eq. (2) we can obtain the following exact solutions:

u4(x, y, t) =
C5λ

1 + λde
λ[
C1C2
2

(C3e
−x+C4

C1 −e
x+C4
C1 )]

+ f(t). (14)

Case 2: Assume that

U(ξ) =

m∑
i=0

ai(x)G
i. (15)

Similarly, by balancing the order of U ′′′′ and U ′U ′′ in Eq. (10), we can obtain m = 1.
So

U(ξ) = a1(x)G+ a0(x). (16)

Substituting (18) into (10) and collecting all the terms with the same power of G
together, equating each coefficient to zero yields a set of under-determined partial
differential equations for a0(x), a1(x) and ξ(x, y, t). Solving these equations
yields

Family 3:

ξ(x, y, t) = F1(y) + F2(x), a1(x) = 2F ′
2(x),

a0(x) =

∫
2F ′

2(x)F
′′′
2 (x)− 4λF ′2

2 (x)F ′′
2 (x)− F ′′2

2 (x) + λ2F ′4
2 (x)

4F ′2
2 (x)

+ C1,

where C1 is an arbitrary constant, and F1(y), F2(x) are two arbitrary functions with
respect to the variable y and x respectively. Then we have

u5(x, y, t) =
2F ′

2(x)λ

1 + λdeλ(F1(y)+F2(x))

+

∫
2F ′

2(x)F
′′′
2 (x)− 4λF ′2

2 (x)F ′′
2 (x)− F ′′2

2 (x) + λ2F ′4
2 (x)

4F ′2
2 (x)

+ C1. (17)

Family 4:

ξ(x, y, t) = F1(y), a1(x) = −1

2
(3C1x+ 3C2)

1
3 ± i

√
3

2
(3C1x+ 3C2)

1
3 ,

a0(x) =
3C3(C1x+ C2)

1
3

C1
+

5C1

36(C1x+ C2)
+ C4,

where Ci, i = 1, 2, 3, 4 are arbitrary constants, and F1(y) is an arbitrary function.
Then we have

u6(x, y, t) =
λ[−1

2
(3C1x+ 3C2)

1
3 ± i

√
3

2
(3C1x+ 3C2)

1
3 ]

1 + λdeλF1(y)

+
3C3(C1x+ C2)

1
3

C1
+

5C1

36(C1x+ C2)
+ C4. (18)
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Family 5:

ξ(x, y, t) = F1(y), a1(x) = (3C1x+ 3C2)
1
3 ,

a0(x) =
3C3(C1x+ C2)

1
3

C1
+

5C1

36(C1x+ C2)
+ C4,

where Ci, i = 1, 2, 3, 4 are arbitrary constants, and F1(y) is an arbitrary function.
Then we have

u7(x, y, t) =
λ(3C1x+ 3C2)

1
3

1 + λdeλF1(y)
+

3C3(C1x+ C2)
1
3

C1
+

5C1

36(C1x+ C2)
+ C4. (19)

Family 6:

ξ(x, y, t) = C1t+ F1(y), a1(x) = C2, a0(x) = C3x+ C4,

where Ci, i = 1, 2, 3, 4 are arbitrary constants, and F1(y) is an arbitrary function.
Then we have

u8(x, y, t) =
λC2

1 + λdeλ(C1t+F1(y))
+ C3x+ C4. (20)

Family 7:

ξ(x, y, t) = C1t+ C2 + C3y, a1(x) = −1

2
(3C4x+ 3C5)

1
3 ± i

√
3

2
(3C4x+ 3C5)

1
3 ,

a0(x) =

∫
(36C3C

2
4C6x

2 + 72C3C4C5C6x+ 36C3C
2
5C6)

36C3(C4x+ C5)
8
3

dx,

+

∫
(9C1C

2
4x

2 + 18C1C4C5x+ 9C1C
2
5 − 5C3C

2
4 )(C4x+ C5)

2
3

36C3(C4x+ C5)
8
3

dx+ C7,

where Ci, i = 1, 2, ..., 7 are arbitrary constants. Then we have

u9(x, y, t) =
λ[−1

2
(3C4x+ 3C5)

1
3 ± i

√
3

2
(3C4x+ 3C5)

1
3 ]

1 + λdeλ(C1t+C2+C3y)

+

∫
(36C3C

2
4C6x

2 + 72C3C4C5C6x+ 36C3C
2
5C6)

36C3(C4x+ C5)
8
3

dx,

+

∫
(9C1C

2
4x

2 + 18C1C4C5x+ 9C1C
2
5 − 5C3C

2
4 )(C4x+ C5)

2
3

36C3(C4x+ C5)
8
3

dx+ C7. (21)

Family 8:

ξ(x, y, t) = C1t+ C2 + C3y, a1(x) = (3C4x+ 3C5)
1
3 ,

a0(x) =

∫
(36C3C

2
4C6x

2 + 72C3C4C5C6x+ 36C3C
2
5C6)

36C3(C4x+ C5)
8
3

dx,

+

∫
(9C1C

2
4x

2 + 18C1C4C5x+ 9C1C
2
5 − 5C3C

2
4 )(C4x+ C5)

2
3

36C3(C4x+ C5)
8
3

dx+ C7,

where Ci, i = 1, 2, ..., 7 are arbitrary constants. Then we have

u10(x, y, t) =
λ(3C4x+ 3C5)

1
3

1 + λdeλ(C1t+C2+C3y)
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+

∫
(36C3C

2
4C6x

2 + 72C3C4C5C6x+ 36C3C
2
5C6)

36C3(C4x+ C5)
8
3

dx,

+

∫
(9C1C

2
4x

2 + 18C1C4C5x+ 9C1C
2
5 − 5C3C

2
4 )(C4x+ C5)

2
3

36C3(C4x+ C5)
8
3

dx+ C7. (22)

Family 9:

ξ(x, y, t) = [
C3

(C1y + C2)(C3 − 1)2C4

]
C3

1−C3 ,

a1(x) = −1

2
(3C5x+ 3C6)

1
3 ± i

√
3

2
(3C5x+ 3C6)

1
3 ,

a0(x) =
3C7(C5x+ C6)

1
3

C5
+

5C5

36(C5x+ C6)
+ C8,

where Ci, i = 1, 2, ..., 8 are arbitrary constants. Then we have

u11(x, y, t) =
λ[−1

2
(3C5x+ 3C6)

1
3 ± i

√
3

2
(3C5x+ 3C6)

1
3 ]

1 + λde
λ[

C3

(C1y + C2)(C3 − 1)2C4
]

C3
1−C3

+
3C7(C5x+ C6)

1
3

C5
+

5C5

36(C5x+ C6)
+ C8. (23)

Family 10:

ξ(x, y, t) = F1(x)− C2ln[
C1(C3y + C4)

C2
2

], a1(x) = 2F ′
1(x),

a0(x) =

∫
2F ′

1(x)F
′′′
1 (x)− 4λF ′2

1 (x)F ′′
1 (x)− F ′′2

1 (x) + λ2F ′4
1 (x)

4F ′2
1 (x)

+ C1,

where Ci, i = 1, 2, 3, 4 are arbitrary constants, and F1(x) is an arbitrary function.
Then we have

u12(x, y, t) =
2λF ′

1(x)

1 + λde
λ(F1(x)−C2ln[

C1(C3y + C4)
C2
2

])

+

∫
2F ′

1(x)F
′′′
1 (x)− 4λF ′2

1 (x)F ′′
1 (x)− F ′′2

1 (x) + λ2F ′4
1 (x)

4F ′2
1 (x)

+ C1. (24)

Remark 3.1. In Families 2-10, if we use Eqs. (3)-(4), then we also obtain corre-
sponding hyperbolic function solutions and trigonometric function solutions as the
analysis in Family 1, which are omitted here.

Remark 3.2. We note that the established exact solutions for the (2+1)-dimensional
breaking soliton equation above are different from those in [20-22] essentially as
we have used a new variable-coefficient method based on a different Bernoulli sub-
equation here, and are new exact solutions which have not been reported by other
authors in the literature.
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3.2. (2+1)-dimensional dispersive long wave equation

We consider the known (2+1)-dimensional dispersive long wave equations [24-
37]:

uyt + vxx + (uux)y = 0, (25)

vt + ux + (uv)x + uxxy = 0, (26)

Some types of exact solutions for Eqs. (27)-(28) have been obtained in [24-37] by
use of various methods including the Riccati sub-equation method [24, 25, 30], the
nonlinear transformation method [26], Jacobi function method [28, 29, 37], (G’/G)-
expansion method [27], modified CK’s direct method [31], EXP-function method
[32], Hopf-Cole transformation method [33], modified extended Fan’s sub-equation
method [34, 35], generalized algebraic method [36].

To apply the proposed method, similar to the process above, we assume
that u(x, y, t) = U(ξ), ξ = ξ(x, y, t), and suppose

U(ξ) =
m∑
i=0

ai(y, t)G
i, V (ξ) =

n∑
i=0

bi(y, t)G
i, (27)

where G = G(ξ) satisfies Eq. (1). By balancing the highest order derivatives and
nonlinear terms in Eqs. (27)-(28) we have m = 1, n = 2. So

U(ξ) = a1(y, t)G+ a0(y, t), V (ξ) = b2(y, t)G
2 + b1(y, t)G+ b0(y, t), (28)

Combining (27), (28), (30), collecting all the terms with the same power of G
together, equating each coefficient to zero yields a set of under-determined partial
differential equations for a0(y, t), a1(y, t), b0(y, t), b1(y, t), b2(y, t) and ξ(x, y, t).
Solving these equations with the aid of Maple software yields

Family 1:

ξ(x, y, t) =
C1x

2
− 1

2

∫
C1F1(t)dt−

1

4
C2
1λt−

1

2
C1tF2(y) + F3(y),

a1(y, t) = C1, a0(y, t) = F1(t) + F2(y),

b2(y, t) =
C1

2
(C1tF

′
2(y)− 2F ′

3(y)), b1(y, t) = C1λ(F
′
3(y)−

C1t

2
F ′
2(y)),

b0(y, t) = −F ′
2(y)− 1,

where C1 is an arbitrary constant, and F1(t), F2(y), F3(y) are arbitrary functions.
Combining with Eq. (2) we can obtain the following exact solutions for the (2+1)-
dimensional dispersive long wave equation:

u1(x, y, t) = [
C1λ

1 + λde
λ[
C1x
2

−1
2

∫
C1F1(t)dt−14

C2
1λt−

1
2
C1tF2(y)+F3(y)]

] + F1(t) + F2(y),

(29)

v1(x, y, t) =
C1

2
(C1tF

′
2(y)− 2F ′

3(y))
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[
λ

1 + λde
λ[
C1x
2

−1
2

∫
C1F1(t)dt−14

C2
1λt−

1
2
C1tF2(y)+F3(y)]

]2

+C1λ(F
′
3(y)−

C1t

2
F ′
2(y))[

λ

1 + λde
λ[
C1x
2

−1
2

∫
C1F1(t)dt−14

C2
1λt−

1
2
C1tF2(y)+F3(y)]

]

−F ′
2(y)− 1. (30)

In the special case of Eq. (3) we obtain the following solitary wave solutions:

u2(x, y, t) =
C1λ

2

{1− tanh(

λ[
C1x

2
− 1

2

∫
C1F1(t)dt−

1

4
C2

1λt−
1

2
C1tF2(y) + F3(y)]

2
)}+F1(t)+F2(y), (31)

v2(x, y, t) =
C1λ

2(C1tF
′
2(y)− 2F ′

3(y))

8

{1− tanh(

λ[
C1x

2
− 1

2

∫
C1F1(t)dt−

1

4
C2
1λt−

1

2
C1tF2(y) + F3(y)]

2
)}2

+
C1λ

2(F ′
3(y)−

C1t

2
F ′
2(y))

2

{1− tanh(

λ[
C1x

2
− 1

2

∫
C1F1(t)dt−

1

4
C2
1λt−

1

2
C1tF2(y) + F3(y)]

2
)} − F ′

2(y)− 1.

(32)
Using Eq. (4) we obtain the following trigonometric function solutions:

u3(x, y, t) =
C1λ

2

{1− itan(

λ̃[
C1x

2
− 1

2

∫
C1F1(t)dt−

1

4
C2

1λt−
1

2
C1tF2(y) + F3(y)]

2
)}+F1(t) +F2(y), (33)

v3(x, y, t) =
C1λ

2(C1tF
′
2(y)− 2F ′

3(y))

8

{1− itan(

λ̃[
C1x

2
− 1

2

∫
C1F1(t)dt−

1

4
C2
1λt−

1

2
C1tF2(y) + F3(y)]

2
)}2

+
C1λ

2(F ′
3(y)−

C1t

2
F ′
2(y))

2

{1− itan(

λ̃[
C1x

2
− 1

2

∫
C1F1(t)dt−

1

4
C2

1λt−
1

2
C1tF2(y) + F3(y)]

2
)} − F ′

2(y)− 1. (34)

Family 2:

ξ(x, y, t) = −C1x

2
+

1

2

∫
C1F1(t)dt+

1

4
C2
1λt+

1

2
C1tF2(y) + F3(y),

a1(y, t) = C1, a0(y, t) = F1(t) + F2(y),
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b2(y, t) =
C1

2
(C1tF

′
2(y) + 2F ′

3(y)), b1(y, t) = −C1λ(F
′
3(y) +

C1t

2
F ′
2(y)),

b0(y, t) = F ′
2(y)− 1,

where C1 is an arbitrary constant, and F1(t), F2(y), F3(y) are arbitrary functions.
Then combining with Eq. (2) we obtain the following exact solutions:

u4(x, y, t) =
C1λ

1 + λde
λ[−C1x

2
+1
2

∫
C1F1(t)dt+

1
4
C2

1λt+
1
2
C1tF2(y)+F3(y)]

+ F1(t) + F2(y),

(35)

v4(x, y, t) =
C1(C1tF

′
2(y) + 2F ′

3(y))

2

{ λ

1 + λde
λ[−C1x

2
+1
2

∫
C1F1(t)dt+

1
4
C2

1λt+
1
2
C1tF2(y)+F3(y)]

}2

−C1λ(F
′
3(y) +

C1t

2
F ′
2(y))

{ λ

1 + λde
λ[−C1x

2
+1
2

∫
C1F1(t)dt+

1
4
C2

1λt+
1
2
C1tF2(y)+F3(y)]

}+ F ′
2(y)− 1. (36)

Family 3:

ξ(x, y, t) = C1x− C1

∫
F1(t)dt∓ C2

1λt+ F2(y), a1(y, t) = ±2C1, a0(y, t) = F1(t),

b2(y, t) = −2C1F
′
2(y), b1(y, t) = 2C1λF

′
2(y), b0(y, t) = −1,

where C1 is an arbitrary constant, and F1(t), F2(y) are arbitrary functions. Then
we have

u5(x, y, t) =
±2C1λ

1 + λdeλ[C1x−C1

∫
F1(t)dt∓C2

1λt+F2(y)]
+ F1(t), (37)

v5(x, y, t) = −2C1F
′
2(y){

λ

1 + λdeλ[C1x−C1

∫
F1(t)dt∓C2

1λt+F2(y)]
}2

+2C1λF
′
2(y){

λ

1 + λdeλ[C1x−C1

∫
F1(t)dt∓C2

1λt+F2(y)]
} − 1. (38)

Family 4:

ξ(x, y, t) = C1x+ F1(y), a1(y, t) = ±2C1, a0(y, t) = ∓C1λ,

b2(y, t) = −2C1F
′
1(y), b1(y, t) = 2C1λF

′
1(y), b0(y, t) = −1,

where C1 is an arbitrary constant, and F1(y) is an arbitrary function. Then we have

u6(x, y, t) =
±2C1λ

1 + λdeλ[C1x+F1(y)]
∓ C1λ, (39)

v6(x, y, t) = −2C1F
′
1(y){

λ

1 + λdeλ[C1x+F1(y)]
}2

+2C1λF
′
1(y){

λ

1 + λdeλ[C1x+F1(y)]
} − 1. (40)
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Family 5:

ξ(x, y, t) = C1x+ C2t+ F1(y), a1(y, t) = ±2C1, a0(y, t) =
∓C2

1λ− C2

C1
,

b2(y, t) = −2C1F
′
1(y), b1(y, t) = 2C1λF

′
1(y), b0(y, t) = −1,

where C1, C2 are arbitrary constants, and F1(y) is an arbitrary function. Then we
have

u7(x, y, t) =
±2C1λ

1 + λdeλ[C1x+C2t+F1(y)]
+

∓C2
1λ− C2

C1
, (41)

v7(x, y, t) = −2C1F
′
1(y){

λ

1 + λdeλ[C1x+C2t+F1(y)]
}2

+2C1λF
′
1(y){

λ

1 + λdeλ[C1x+C2t+F1(y)]
} − 1. (42)

Family 6:

ξ(x, y, t) = C1x+ C2y + F1(t), a1(y, t) = ±2C1, a0(y, t) =
∓C2

1λ− C2

C1
,

b2(y, t) = −2C1C2, b1(y, t) = 2C1C2λ, b0(y, t) = −1,

where C1, C2 are arbitrary constants, and F1(t) is an arbitrary function. Then we
have

u8(x, y, t) =
±2C1λ

1 + λdeλ[C1x+C2y+F1(t)]
+

∓C2
1λ− C2

C1
, (43)

v8(x, y, t) = −2C1C2{
λ

1 + λdeλ[C1x+C2y+F1(t)]
}2

+2C1C2λ{
λ

1 + λdeλ[C1x+C2y+F1(t)]
} − 1. (44)

Remark 3.3. By the combination of Families 2-6 with Eqs. (3)-(4), we also obtain
some hyperbolic function solutions and trigonometric function solutions, which are
omitted here.

Remark 3.4. The established solutions Eqs. (31)-(46) for the (2+1)-dimensional
dispersive long wave equations can not be obtained by the methods in [24-37], and
are new exact solutions to our best knowledge.

4. Conclusions

We have proposed a variable-coefficient Bernoulli equation-based sub-equation
method method for solving nonlinear differential equations. Based on this method,
abundant exact solutions have been obtained with the aid of Maple software for the
(2+1)-dimensional breaking soliton equation and the (2+1)-dimensional dispersive
long wave equations. As one can see, this method is concise, powerful, and can be
applied to solve other nonlinear differential equations.
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