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DISCRETE-TIME CONTROL STATEGIES FOR
HORIZONTAL AXIS WIND TURBINES

Raluca MATEESCU', Nicolai CHRISTOV?, Dan STEFANOIU?

This paper introduces two discrete-time controllers for horizontal axis wind
turbines (HAWTs): a Linear Quadratic Gaussian (LQG) one and a model predictive
(MPC) one. The LQG controller aims to strongly attenuate the disturbances
influence on the system output. The control objective consists of keeping the output
power constant, despite the wind variation, and thus reducing the fatigue that
involves damaging the turbine components. The MPC provides an integrated
solution for controlling systems with interacting variables, complex dynamics and
constraints. Both controllers have the advantage that can easily be implemented
and in case of HAWTs.
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1. Introduction

In 2010, Romania has increased the energy production using wind turbines
with 448MW, ensuring a total of 462MW. Although this only represents 1.6% of
the totally produced energy in Romania, many private companies are developing
projects to build more wind farms. The research in wind turbine control has
established as an objective the maximization of the power produced when the
wind speed is in the range between the cut in and the cut out wind speed. This
goal is usually achieved by controlling the electromagnetic torque of the
generator, in order to obtain the optimal rotor speed for optimum power
coefficient [1]. The problem that arises in this framework is the turbine grid
integration. Thus, in many cases, it is important to obtain an optimal value, rather
than the maximum available amount [2]. In order to reach for this goal, in the past
years, different control strategies have been analysed, from classical control ones
(using PI) to RST [3], optimal [4] and predictive [5] control ones, for different
types of wind turbines.

The turbine considered within this article is an onshore horizontal axis
wind turbine (HAWT) with variable rotor speed. This paper introduces two
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discrete controllers: a discrete Linear Quadric Gaussian (LQG) one and a Model
Predictive (MPC) one. The objective for these controllers is to keep the output
power at its nominal value, in presence of disturbances (wind speed variations).
The LQG controller modifies the value of the pitch angle, in order to maintain the
turbine output power nearby the constant nominal value (referred to as rated
power) and rejects the disturbances influence on the system output. The MPC
predicts the future state of the plant and computes a new control signal in order to
obtain the desired closed-loop performances.

2. General model of wind power

As the wind is the power source for wind turbines, it is important to know
the amount of energy available on site. The electrical energy that can be obtained
from the wind (without considering the limitations of the physical system) is:

E(t)= 1 P, AVt
2 ,VteR,, (1)

where A is the area swept by the wind, p,_,. is the air density and v, is the wind

speed. However, the wind turbine is a complex system, consisting of mechanical
and electrical components that introduce losses in the energy conversion process.
Thus, the power extraction efficiency of a wind turbine is defined in terms of a

factor refered to as power coefficient, C,. According to A. Betz [6], the
theoretical upper bound of C, is 0.593. The power produced by a wind turbine is
defined as:

P, = lpairAvi'CP (ﬂ” ﬁ)

2 : )
where A is the relative speed (the ratio between peripheral speed of blades and
the wind speed), while £ is the pitch angle of blades.

As the output power is proportional to the cube of the wind speed, it is
necessary to determine a wind speed model, in order to integrate it into the
process model. The wind speed v, is generally considered as a non-stationary
random process expressed by:

v, =V, +V, 3)

5

where v, is a low frequency component and v, is a high frequency turbulent

component. The first one refers to the long term variations of wind currents,
whereas the second one corresponds to the fast, unexpected changes of wind

direction and/or speed. In this paper v, will be considered as a constant and v, as
a zero-mean Gaussian white noise process.
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The wind speed can produce several damages on the turbine, depending on
its value and blades orientation against the air flow. Thus, it is important to
consider aspects like structural dynamic loads and reliability of the wind speed
components such as drive trains, blades and tower, in the controller design
process. It is suitable to divide the turbine operation into three different operating
regions depending on the value of wind speed [10, 11]. Within this article, the
third region is under concern. Here, the wind speed is above the rated value.
Therefore, the blades pitch should be controlled such that the optimally captured
wind power involves minimal fatigue of the physical components.

3. Wind Turbine Mathematical Model

The plant model used in this paper is one of a variable speed HAWT with
two blades. The mathematical model will be built considering the main
components with as mnay degrees of freedom as possible, in order to obtain an
accurate representation of this system. To avoid the implementation constraints of
high order model control algorithms using physical controllers, the following
elements will be considered: the first mode of the drive train, the first mode of
tower bending dynamics, the first mode of the blades flapping, the two blades as a
whole facing same forces acting on them [7].

It is important to define first the two important factors of a wind turbine:

the power coefficient C, (/1, p ) (see eq. (2)) and the thrust coefficient C,(4, ),
both depending on two specific variables of the wind turbine: A and f. The
thrust coefficient C, (4, f), which depends on the thrust force exerted by the wind

on the turbine rotor is determined empirically. The definition used in this paper
can be found in Reference [10].

The next step consists of modelling the HAWT mechanical equations of
its components. The wind turbine is an assembly of interconnected subsystems:
aerodynamic, mechanical and electrical [8]. The Lagrange equations are suitable
to express the mathematical model:

i(@ECJ_éEC , 9, , OE,
oq,

dt
where E is the kinetic energy, E, is the potential energy, E,, is the dissipated

: =Q
aq; aq; aq[ 4)

>

energy of the system, Q is the vector of the generalized forces acting on the
system and q is the vector of generalized coordinates.

The three energies can be expressed as sums of energies specific to the
wind turbine components considered for the model,
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where J,, J,, M,, M,, k,, k., k;, d,, d, and d, are coefficients specific to

the wind turbine components as defined in Appendix, @, is the generator angular
speed and 7, is the distance from the rotor hub to the point on the blade where the

generalized thrust force is applied. The values of all parameters can be found in
the Appendix as well.
For the wind turbine model, the generalized coordinates vector is:

q:(er eG G G, yr) (6)

5

where 0, is the angular position of the rotor, 0, represents the angular position
of the generator, €, and C, are the blades bending angles, while y, represents the

horizontal movement of the tower. The vector Q representing the generalized

forces acting on the system is:
Q = (Caem - Cem F F 2F )

aero,l aero,2 aero (7)
9

where C,, is the aerodynamic torque, C, represents is the electromagnetic

aero

torque and F, F,, ., stand for the thrust forces acting on the blades.

ero,l aero,

As previously stated, some simplifying hypotheses were made, in order to
decrease the model order. The thrust forces acting on the blades can be considered
equal. Consequently, as the blades are similar, it can be assumed that the blades
equaly bent under the action of the same thrust forces. The mathematical
expressions for the aerodynamic torque and the thrust force can be written as
follows:

3
C.. =2 paR Y C (1. ).
2 Wy

oo =5 PTRVC, (1. ).
2 (®)
Another important component of the mathematical model is the wind

speed profile. According to [5]:

50 = v ()40,
T,  VieR,, 9)
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where T, is the time constant, calculated in [8], and v, is the turbulent component

of the wind speed.
The last expression of the mathematical model corresponds to the output
power of the wind turbine:
F, =0:C,, (10)
Based on the mathematical models expressed so far, the state space
representation of the wind turbine can be obtained. The command vector is
represented by u=(f C,), the state vector is represented by

. T
x T :(HT—HG Sy, op w; v B vw) while the system output is y=2P,.

Since the mathematical expressions of C . and F,, introduce a certain level of

aero aero

nonlinearity to the system, it is necessary to perform a linearization on the model,
around some operating point P, (@r,o 0 Bops Ve d) .
The linear state space continuous-time model is then:
X, (1) =FX(#)+G,u(t)+G,w, (¢)

y() = Hx,, () +Mu(@) +w, (1) ,VteR,, (1)

where v, and v, represent the disturbances of the system: v, is the wind speed
variatio. The matrices F, G,, G,, H and M corresponding to this model were
computed with the numerical values from the Appendix.

4. Discrete-time LQG controller design

In this section, the discrete-time LQG controller with integral action is
designed for the considered HAWT, in order to minimize the effect of wind
variations on the produced electrical power. The Fig. 1 illustrates the structure of
such cotroller.

K alman Fiter

Fig.1. LQG controller with integral action.

The integrator is included in the control loop in order to cancel the
tracking error y,,—y. The design of LQG controllers with integral action is

reduced to the standard LQG design introducing the augmented state vector
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z= [XT s]r. The standard LQG control problem for (11) consists in finding a

control law U’ that minimizes the quadratic cost function J (u) .

A discrete-time turbine model for sample time 7, =0.01 s is first obtained
from (11):
{X[n +1]=Fx{n]+G,u[n]+G,w,[n]

yin]=Hx(nl+ Muln]+w[n] (12)

For the LQG controller design, the augmented model is:
{Z[n +1]= Az[n]+Bu[n]+Ev,[n]+Ev [n]

yln] = Cz[n]+ Du[n]+win] ,VneN. (13)

and the corresponding quadratic cost function can be expressed like below:

-M[—ME{ZUM [n]+ mmmwﬁ=

— lim £ {— > (2" [n1QInJz[n]+ U’ [n]R[n]uln] + 22T[n]S[n]u[n])},
N-owx N 0 (14)

where z[n]=[x"[n] &[n]] , en]=y,, -)yn], Q=C'QC, R=R,+D'QD
and S=C'Q,D, while Q, and R, are positive definite weighting matrices

selected by the user.
The discrete-time LQG control law is:

u'[n] = K2[n], with 2[n] =[X[n] e[n]] ’ (15)
where X[#] is the optimal estimate of X[n], as given by the Kalman filter:
{ﬁ[n +1]= AX[n]+Bu[n]+ K, (y[n] - §[n))

Vn]=CX[n]+Duln] ,VneN. (16)

The gain matrix K = {_Igd Ig } in (15) is computed as:

_ T T T
K=(R+B'PB) (B'PA+S ) an
where P is the non negative definite solution of a discrete matrix Riccati
equation. The gain matrix K , of the Kalman filter (16) is determined as:

_ T 7)™}
K,=AP,C"(W+CP,.CT) ’ (18)
where P, is the non negative definite solution of another Riccati equation.
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5. Discrete MPC design

The general design objective of model predictive control is to compute a
trajectory of a future manipulated variable u to optimize the future behavior of
the plant output y. The optimization is performed within a limited time window

by giving plant information at the begining of that window [9].
The model described in (11) must be transformed from continuous-time
into a discrete-time one. The sample time chosen for this controller is 7, =0.02 s .

Using the discrete model, the matrices corresponding to the augmented model are
computed:
X[n+1]= A X[n]+B,Au[n]+ B _¢g[n]

y[n]=C.x[n] VneN, (19)

where  x[n]=[AX,,[n] y[n]]T , Au[n]=u[n]-u[n—1] and & is the input
disturbance corresponding to the wind speed variation, assumed to be a sequence
of integrated white noise. This means that the input disturbance w is related to a
zero mean, white noise sequence & by the difference equation
win]-win—1]=¢[n], VneN.

The system signals will be referred as m - number of inputs (m=2), n, -
the number of states (7, =9) and ¢ - the number of outputs (¢ =1). Then the
dimension of the augmented state-space equation is n=n, +¢ (= 10) .

The strategy of MPC design implies that the plant output has to be
predicted with the future control signals as the adjustable variables, within an

optimization window length N, . In order to proceed, the future control trajectory
is denoted by: Au[n], Au[n+1], ..., Au[n+ N, —1], where N, is the control

horizon length. This parameter sets the number of samples used to capture the
future control trajectory. Considering that the state vector X[n] is known, the

future state variables - X[n+1|n], X[n+2|n],...,X[n+ N , |n] - are predicted for
N, number of samples, where N, referred to as prediction horizon length. In the
future state variables representation, the term X[n+i|#n] stands for the predicted
state variable at n+i, with given current plant information X[#n]. The control
horizon length N, is chosen to be less than (or equal to) the prediction horizon

length N, . The following vectors can then naturally be defined as:
T T 7
AU =[ Auln]” Au[n+11" ... Au[n+ N, 11" |

Y=[stn+timyine2nllne Nolnl] (20)
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Based on the state-space model (A,,B,,C,,B,), the future state variables
are recursively computed using the set of future control parameters:
X[n+ N, |n]=A""x[n]+ A" 'BAu[n]+ A" ?BAuln +1]
+ AN BAU[R + N 1]+ A" B g[n]
+A"?Beg[n+1|n]+...+Ben+N,—1|n]. (1)

With the assumption that € is a zero-mean white noise sequence, the
predicted value of e(n+i|n) at future sample i is assumed to be null. The
predicted state and output variables are calculated as this mean values. Hence, the
noise effect to the predicted values is minimal.

Effectively, one obtaines:

Y =Fx+LAU (22)
where: ) . ) .
CA CB 0 0
CA’ CAB CB 0
F=| CA’ |;L=| CA’B CAB .- 0
| CA™ | | CA"™'B CAY?B ... CA™ B _ 23)

Let r be a given set-point signal within a prediction horizon. Then, the
objective of the predictive control system is to bring the predicted output as close
as possible to the set-point signal (which is kept constant in the optimization
window). This objective involves solving the problem to find the optimal control
parameter vector AU, such that an error function between the set-point and the
predicted output is minimized.

Assuming that the data vector that contains the set-point information is:
Np
/_}%

Rg[n]:[l 1 .. 1] r[n], for each sample time n, the cost function J that
reflects the control objective is:

r _
J=(R,-Y) (R,-Y)+AU'RAU (24)
The first term in (24) is linked to the objective of minimizing the errors between
the predicted output and the set-point signal, while the second term purpose is to

limit the variation of AU, when minimizing J, in order to avoid operation shocks
(rw > 0) ,

where 7, is used as a tuning parameter for the desired closed-loop performance.

applied to the plant. Also, R is a diagonal matrix such as R = Tolyon,

The incremental optimal control within the optimization window is linked
to the current set-point signal r and state variable X, via the following equation:
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(T S5\ 1T T
AU=(L"L+R) (L'Rr-L Fx). 25)
Applying the receding horizon control principle, the first m elements of
AU are considered to form the incremental optimal control:

N L B
Au[n]=[1, .. 0,](L'[nIL[n]+R) x(L'[nIRr[n]-L"[n]FX[n])
=Ky[n]r[n] - Kmpc [n]X[n] (26)

The mesurable state of the process, will be estimated using the following
observer:

model correction term

X [n+1]=A X [n]+B un]+K, (y[n] - Cm)A(m[n]) @7)

where K, is the observer gain matrix, while A and B, correspond to the plant

model. Note that K , was computed using the Matlab place function.

6. Simulation results

The simulation environment used for performance analysis of the designed
controllers is MATLAB/ SIMULINK.

The turbine model (11) was implemented for the operating point
P, =(8rad/s, 1°,17 m/s). The presented simulation results were obtained for the
wind speed profile given in Fig. 2.

185

Wind speed [m/s]

Simulation time [s]

Fig. 2. Wind speed profile.

As one can observe, the wind speed has a deviation from the initial value,
17 m/s, at instant ¢, =20 s, when it becomes 18 m/s and even a bigger one at

instant ¢, =80 s, when it becomes 16 m/s.

6.1 Simulation results for the wind turbine controlled by the discrete-
time LQG controller with integral action

The simulation results of the controller described on Chapter 4 are
described in this paragraf.
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The two control signals: pitch angle £ and generator electomagnetic torque C,,
provided by the LQG controller are shown in Fig. 3.
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Fig. 3. Control signals: pitch angle and generator electromagnetic torque.

At instants #, =20 s and £, =80 s, small deviation from the initial values

can be observed in both command signals, corresponding to wind speed variation.
The average stabilization time is 30 s, although this is not a fast reaction, the
deviation is very small and it does not affect the HAWT components. In turn, Fig.
4 illustrates the output power of the wind turbine, obtained when using the
designed discrete-time LQG controller.
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Fig. 4. Electrical power produced by the wind turbine
The nominal power of the considered HAWT is 400 kW . One can observe
that, at instants #, and f,, the output power has two spikes produced by the
variation of wind speed. At ¢, the deviation is of 1.25 kW and, at ¢, the deviation
reises to 2.4 kW . The controller manages to reject the disturbances in 2's at ¢
andin 3 s at £, .

6.2 Simulation results for the wind turbine controlled by the Discrete-
time MPC controller

The the control signals provided by the MPC strategy described in Chapter
5 are illustrated in Fig. 5. At instant =4 s, a small variation from the initial
values can be observed in both command signals, corresponding to wind speed
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variation. The average stabilization time is 0.5 s, wich is quite a fast reaction.
Since the variation is small enough, it does not affect the HAWT components.
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Fig. 5. Control signals: pitch angle variation (left) and generator electromagnetic torque variation
(right).

In turn, Fig. 6 illustrates the output power of the wind turbine obtained
using the designed discrete-time MPC controller.
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Fig. 6. Electrical power produced by the wind turbine with MPC control.

At instant ¢, =4 s, while facing the input disturbance corresponding to the

wind speed variation, the output has quite a small variation, but the predictive
control is effective at instant ¢, =4.5 s, as the output signal is stabilized at its
nominal value.

7. Conclusions

For this study, the discrete-time approach has been chosen, in order to
provide two control strategies that can easily be implemented in digital control
systems especially in case of HAWTs. The LQG approach presented has showed
very good results in disturbance (the wind speed variation) rejection. Regarding
the MPC strategy, one can observe that, based on the current plant information
represented by the state variable vector, the prediction of the future behavior of
the plant output relies on the state-space model where the optimal control
trajectory is captured by the set of parameters that define the incremental control
movement. The MPC approach presented has showed sufficiently good results for
the output power of the wind turbine. Nevertheless, improvements are posible, by
cosidering more performant predictors (e.g. of ARMAX class) and a finer tunning
for 7, parameter in definition (24). Future developments can include the

implementation of the two controllers on a digital processor or on a
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microcontroller. These control strategies can be easily implemented on a real wind
turbine with the proper configuration of the parameters according to the physical
characteristics of the turbine.
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APPENDIX
Table 1
Significance and numerical values of the wind turbine parameters

Symbol. | Physical meaning Value Symbol. | Physical meaning Value

J; Turbine inertia 214 000 kg x m* d, Tower Damping coefficient | 50 000 kgxm/s

J Generator inertia 41 kgxm® d, CDOrg;Ciemshaft damping |~ 6 000 kgxm? /s

M, ;(;‘;,:r and - nacelle | 35000 kg s Distance from the rotor hub | 8 m

M, Blade mass 3000 kg N Number of blades 2

kp ]:szggci ent. Stiffness 1000 kgxmz/ s? O om Nominal rotor speed 4 rad/s

Tower Stiffness Rotor speed — operational

kr coefficient. 8500 kgxm/ s Orap point 8 rad/s

k, Drive ‘Shaft Stiffness 11000 kgxmz /S2 B, Pit‘ch angle - operational 9 rad

coefficient. point
Blade Damping 2 Speed  trip ratio -
d coefficient. 10000 kgxm / S Mo operational point 8




