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TWO ENDPOINT RESULTS FOR S-SHRINKING AND
B-CONVERGENT MULTIFUNCTIONS WITH APPLICATION TO
AN INTEGRAL EQUATION

H. Alikhani®, Sh. Rezapour?

We introduce B-shrinking, B-convergent and B-generalized weak contrac-
tive multifunctions, and give some results about the existence of endpoint of these
classes of multifunctions. We show that our main result generalizes a recent re-
lated theorem. Finally, we provide two applications for our main results.
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1. Introduction

One of valuable recent techniques in fixed point theory is the notion of a-1)-
contractive mappings which introduced by Samet, Vetro and Vetro in 2012 ([13]).
Some authors used it for some subjects in fixed point theory (see for example [5],
[8], [9] and [12]). Later, it was generalized to [S-iy-contractive multifunctions (see
for example [2], [3], [7] and [10]). In this paper, we introduce the new notion of -
shrinking, [-convergent and S-generalized weak contractive multifunctions and by
using this notion, we generalize a recent related result in fixed point theory.

2. Preliminaries

Let (X, d) be a metric space, CB(X) the collection of all nonempty bounded
and closed subsets of X, T: X — 2% a multifunction and H, the Hausdorff metric
with respect to d, that is, H(A, B) = max { sup,e4 d(z, B),supyep d(y, A)} for all
A, B € CB(X), where d(z, B) = infyepd(x,y). An element z € X is said to be an
endpoint of T' whenever Tz = {z} ([4]). We say that the multifunction 7" has the
approximate endpoint property whenever inf,e x sup,ep, d(x,y) = 0 ([4]). A function
g: R — Riis called upper semi-continuous whenever lim sup,,_, .. g(A,) < g(\), for all

sequence {A,}n>1 with A, = A ([1]). In 2010, Amini-Harandi proved the following
result ([4]).

Theorem 2.1. Let ¢: [0,00) — [0,00) be an upper semi-continuous function such
that ¥(t) <t and iminf; oo (t — () > 0, for allt > 0, (X,d) a complete metric
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space and T: X — CB(X) a multifunction satisfying
H(Tz,Ty) < ¢(d(z,y)), Va,yelX.

Then T has a unique endpoint if and only if T has the approximate endpoint
property.

Later, Moradi and Khojasteh by introducing generalized weak contractive mul-
tifunctions, improved it by providing the following result ([11]).

Theorem 2.2. Let ¢: [0,00) — [0,00) be an upper semi-continuous function such
that ¥(t) <t and iminf; oo (t — () > 0, for allt > 0, (X,d) a complete metric
space and T: X — CB(X) a generalized weak contractive multifunction, that is,
satisfying

H(Tz,Ty) <$(N(z,y)), Va,yelX,
d(z,Ty) + d(y, Tx)

where N(z,y) = max {d(w, y), d(z, Tx),d(y, Ty),

Then T has a unique endpoint if and only if T has the approximate endpoint
property.

In this paper, we introduce S-shrinking, 8-convergent and [-generalized weak
contractive multifunctions and generalize Theorems 2.1 and 2.2 for the class of mul-
tifunctions.

3. Main Results

Let (X, d) be a metric space and §: 2% x 2% — [0,00) a mapping. A multi-
function T: X — 2% is called f-generalized weak contraction whenever there exists
a nondecreasing upper semi-continuous function v: [0, +00) — [0,400) such that
P(t) < t, for all t > 0, and

B(Tz, Ty)H(Tx, Ty) <Y(N(x,y)), YVaz,yelX.

We say that the multifunction 7" is 8-shrinking whenever for each sequence {z,} in X
with lim diam (Tz,) = 0, there exists a natural number N such that 5(Tzy, T'zy,) >

n—oo
1, for all m > n > N. A multifunction T is said to be §-convergent whenever for

each convergent sequence {z, }, with x,, — x, there exists a natural number N such
that B(Txp, Tz) > 1, for all n > N.
Now, we are ready to state and prove our main results.

Theorem 3.1. Let (X, d) be a complete metric space, B: 2% x 2% — [0,00) a map-
ping and T: X — CB(X) a B-shrinking and (B-convergent multifunction satisfying

BTz, Ty)H(Tx, Ty) < P(d(z,y)), Va,yeX,

where 1: [0,00) — [0,00) is an upper semi-continuous function with (t) < t, for
allt > 0.
Then T has an endpoint if and only if T has the approximate endpoint property.

Proof. It is clear that T has the approximate endpoint property whenever T' has an
endpoint.
Suppose that T has the approximate endpoint property.

Choose a sequence {z,} in X such that sup d(z,,y) — 0. Thus, we obtain
yeTxy

H({xn},Tx,) — 0 and diam (Tx,) — 0. Since T is [-shrinking, there exists a
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natural number N such that S(Txy,,Tx,,) > 1 for all m > n > N. Hence for each
m >n > N, we have

d(mm xm) < H({l‘n}, TJUn) + H(Tl‘n, Txm) + H(T:Cm, {$m})
< H{zn}, Txy) + B(Txn, Tep) H(Txn, Taw) + H(TTm, {Tm})
< H({zn}, Trn) + Y(d(@n, 2m)) + H(T2m, {Tm}).
Because v is upper semi-continuous, we get
lim sup d(zy, ) < limsup ¢¥(d(xn, Tm)) < Y(limsup d(zy, ).
n,1M—00 n,Mm—00 n,M—00
Since 1(t) < t for all ¢t > 0, limsup,, ,;, o0 d(Tn, Tm) = 0 and so {z,} is a Cauchy
sequence.
Choose zg € X such that x,, — zg.
If there exists a natural number ng such that d(z,,z¢) = 0 for all n > ny,

then we have z,, = ¢ and H(Tx,,Tz) = 0, for all n > ng. Thus, for each n > ny,
we obtain

H({xo}, Txo) < d(zo,xn) + H{zn}, Txy) + H(Twp, Txo) < H{xn}, Txy)

and so H({zo},Txo) = 0.

If this is not, then without loss of generality (by replacing a subsequence) we
can suppose that d(z,, ) > 0 for all n. Since x,, — xg and T is S-convergent, there
exists a natural number Nj such that 5(Tx,,Tz¢) > 1, for all n > Nj. Thus, for
each n > N; we have

H({xo}, Txo) < d(xo,zn) + H{xn}, Txyn) + H(Txy, Txo)
<d(zo,zn) + H{xn}, Tay) + B(Txyn, Txo)H(Tzp, Txo)

< d(xo,zn) + H{xn}, Tay) + (d(zn, x0)) < 2d(zp,x0) + H{zn}, Tay).
Hence, H({zo}, Txo) = 0. Therefore, T' has an endpoint. O

Now, we add an assumption to obtain the uniqueness of endpoint. In this
respect, we introduce a new notion.

Let X be a set and B: 2% x 2% — [0,00) a map. We say that the set X has
the property (Gz) whenever (A, B) > 1, for all subsets A and B of X, with either
A¢ Bor B¢ A.

Corollary 3.1. Let (X,d) be a complete metric space, B: 2% x 2% — [0,00) a map-
ping and T: X — CB(X) a (-shrinking and (-convergent multifunction satisfying
B(Tz, Ty)H(Tz, Ty) < ¢(d(x,y)) for all x,y in X, where ¢: [0,00) — [0,00) is an
upper semi-continuous function with ¢ (t) < t, for all t > 0.

If T has the approximate endpoint property and X has the property (Gg), then
T has a unique endpoint.

Proof. By using Theorem 3.1, T has a endpoint. If T has two distinct endpoints =*
and y*, then S(Tz*,Ty*) = B({z*},{y*}) > 1 because X has the property (Gg).
Hence,
dz*,y*) < H(Tz",Ty") < p(Tx*,Ty")H(Tz*, Ty")
SYN(z",y")) < Nz, yx) = d(”,y")
which is a contradiction. Thus, T" has a unique endpoint. [l
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If we consider 3: 2% x 2% — [0,+00), B(A,B) = 1, for all A,B C X, then
every multifunction is S-shrinking and -convergent. Also, X has the property (G3).
Thus, Theorem 2.1 is a consequence of Theorem 3.1.

In 2011, Haghi, Rezapour and Shahzad showed that there are some fixed point
generalizations which are not real generalizations ([6]). Next example shows that
Theorem 3.1 is a real generalization of Theorem 2.1.

Example 3.1. Let X = [0,1] U [3,00) and d(z,y) = |z — y|. Now, define

(7,35, z€l0,1]
T: X - CB(X), Tz=
{1}, z €[5, 00).

Put z=1and y = % Then,

H(T2,Ty) = HITLTS) = H(7, 5 1) = 5 > w(3) = (d(z,v))
where 1: [0,00) — [0,00) is an arbitrary upper semi-continuous function, with
P(t) < t, for all ¢ > 0. Thus, the condition of Theorem 2.1 does not hold.
Now, we show that the conditions of Theorem 3.1 hold for this multifunction.
In this respect, define ¢ (t) = %t forallt > 0 and 3: 2% x2%X — [0,00) by (4, B) =0
whenever A C (3, 1], and B = {1} and 8(4, B) = 1 otherwise.
If0<x<y<1,then f(Tz,Ty) =1 and so

BT, Ty (T, Ty) = H(G, 5115, 8) = Sd(e.9) < gdle,y) = vd(w,v).

8

Ifogxg%andyz%,thenB(Tx,Ty)zlandso
T x T
_§+§ T3 Syt 2230, 5,8
884_88’y4828 8" 1

2 5 5 2 7 7
§y+8y—§$—§$ gy—giﬁ—g( y) = ¢(d(z,y)).
nd Ty = {1}. Hence, B(Tz, Ty) =0

If% <zx<landy> %,thenTa:C (% %]
and so B(Tx, Ty)H(Tx,Ty) = 0 < (d(z,y)).
If z,y > %, then f(Tz,Ty) =1 and SO

B(Tx, Ty)H(Tx, Ty) = H(Tx, Ty) = H{1},{1}) = 0 < ¢(d(z,y)).

Thus, (Tx, Ty)H(Tz,Ty) < ¢(d(z,y)) for all z,y € X.

Now, we show that T is S-shrinking.

Suppose that {z,} is a sequence in X with diamTz,, — 0.

If x, € [0,1] for all n > N, then 5(Txy,Txy) > 1 for all m >n > N.

If z, € [%, oo) for all n > N, then 5(Txy, Txy) > 1, for all m >n > N.

If there exist subsequences {xy, } and {zy,} of {x,} such that {z,} = {z,, } U
{zn,}, Tn, €[0,1] and x,, € [2,00), for all k and 4, then there exist natural numbers
Ni such that @, € [0,3] and @, € [3,00) for all k,i > Nyi. Thus, it is easy to see
that 8(Txp, Txy) > 1 for all m > n > N;. Hence, T is S-shrinking.

Now, we show that T is S-convergent.

Suppose that {z,} is a sequence in X with z,, — x.
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If z € [0,1], then there exists a natural number Ny such that z,, € [0, 1] for all
n > Nj. Hence, 5(Txy, Tz) > 1 for all n > Nj.

If z € [%,oo), then there exists a natural number N3 such that z,, € [%,
for all n > Ny. Hence, f(Tx,,Tx) > 1 for all n > Ny. Thus, T is -convergent.

Finally, note that sup,crd(0,y) = 0 and so infyex supyer, d(z,y) = 0.

Hence, T has the approximate endpoint property. Also, 70 = {0}.

)

Corollary 3.2. Let (X,d) be a complete metric space, B: 2% x 2% — [0,00) a map-
ping, k € [0,1) and T: X — CB(X) a B-shrinking and [3-convergent multifunction
satisfying B(Tx, Ty)H (Tx,Ty) < kd(x,y) for all x,y in X.
Then T has an endpoint if and only if T' has the approximate endpoint property.
If T has the approximate endpoint property and X has the property (Gg), then
T has a unique endpoint xg and Fix (T) = {xo}.

Proof. Define ¢: [0,00) — [0,00), 9(t) = kt. Then by using Theorem 3.1, T" has an
endpoint if and only if T has the approximate endpoint property.

Now, suppose that T" has the approximate endpoint property and X has the
property (Gg). Then by using Corollary 3.1, T' has a unique endpoint such .

Let y be a fixed point of T. We have to show that y = x.

If Txg =Ty, then xg = y.

If Txzg # Ty, then B(Txo, Ty) > 1 because X has the property (Gg). There-
fore, we obtain d(zg,y) < H(Tzo,Ty) < p(Txo, Ty)H(Txo,Ty) < kd(xo,y), and
we get d(xo,y) = 0. O

Next corollary shows us the role of a point in the existence of endpoints.

Corollary 3.3. Let (X,d) be a complete metric space, z* € X a fized element and
T: X — CB(X) a multifunction such that H(Tx,Ty) < ¥(d(z,y)) for all z,y € X
with x* € T NTy, where ¢: [0,00) — [0,00) is an upper semi-continuous function
such that ¥(t) <t for allt > 0.

Suppose that for each sequence {x,} in X with diam(Tz,) — 0, there ezists
a natural number N1 such that x* € Tx, N Tx,, for all m >n > Ni.

Also, assume that for each convergent sequence {x,} with x, — x, there exists
a natural number Ny such that x* € Tx, NTx for all n > Ns.

Then T has an endpoint if and only if T' has the approxzimate endpoint property.

Proof. Tt is sufficient to define B: 2% x 2X¥ — [0,00) by B(A,B) = 1 whenever
z* € AN B and B(A, B) = 0 otherwise, and then we use Theorem 3.1. O

Let (X,d, <) be an ordered metric space. Define the order < on arbitrary
subsets A and B of X by A < B if and only if for each a € A there exists b € B
such that a < b. It is easy to check that (CB(X), <) is a partially ordered set.

Corollary 3.4. Let (X,d,<) be a complete ordered metric space and T a closed
and bounded valued multifunction on X such that H(Tx,Ty) < (d(z,y)), for all
z,y € X with Tx < Ty, where 1: [0,400) — [0, +00) is an upper semi-continuous
function such that (t) <t for all t > 0.

Suppose that for each sequence {x,} in X with diam(Tx,) — 0, there exists
a natural number Ny such that Tx, =< Tx;, for allm >n > Nj.

Also, assume that for each convergent sequence {xy} with x, — x, there exists
a natural number No such that Tx, < Tx for all n > N.
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Then T has an endpoint if and only if T' has the approximate endpoint property.

Proof. 1t is sufficient to define S(A, B) = 1 whenever A < B and ($(A,B) = 0
otherwise, and then we use Theorem 3.1. O

Theorem 3.2. Let (X,d) be a complete metric space, B: 2% x 2X — [0,00) a
mapping and T: X — CB(X) a B-shrinking, -convergent and [-generalized weak
contractive multifunction.

Then T has an endpoint if and only if T has the approximate endpoint property.

Proof. It is clear that T has the approximate endpoint property whenever T" has an
endpoint.
Suppose that T" has the approximate endpoint property.
Choose a sequence {z,} in X such that sup,cp,, d(7n,y) — 0. Thus, we
obtain that H({z,},Tx,) — 0 and diam (T'z,,) — 0. But, we have
N(xp, ) = max{d(zy, Tm), d(xn, Txy), d(Tm, TTy,),
d(xp, Txm) + d(xm, Txy)
5 ¥
< d(@n, m) + H{xn}, Ton) + H{@m ), Tom)
=d(Tn,xm) — H{zn}, Ten) — H{zm}, Tam) + 2H ({20}, Tepn) + 2H ({2m }, Taem)
< H(Tzp,Txy) +2H{xn}, Txy) + 2H({xm )}, Tem)
for all m,n > 1. Since T is §-shrinking, there exists a natural number N such that

B(Txp, Txy) > 1 for all m >n > N.
For each m > n > N, we have

N(xp,xm) < HTxp, Txp) + 2H ({20}, Try) + 2H (T, {Tm})
< B(Txp, Txm)H(Txy, Tey) + 2H ({xn}, Tay) + 2H (Txm, {zm})
< Y(N(zp,xm)) + 2H{ 20}, Txyn) + 2H (T2, {m})-
Because v is upper semi-continuous, we get

limsup N (zp, Zp) < limsup (N (2p, ) < Y(limsup N (2, ).
n,Mm—00 n,m—00 n,M—00
Since ¢ (t) < t for all t > 0, limsup,, ,,, oo N(Tn, Ty) = 0. This implies that
lim sup,, 00 A(Tn, ) = 0. Hence, {z,,} is a Cauchy sequence.
Now, choose xg € X such that x,, — xg.
If there exists a natural number ng such that N(z,,z9) = 0 for all n > ny,
then d(zy,,z9) = 0 for all n > ny. Hence, z, = z¢ and H(Tz,,Txy) = 0 for all
n > ng. Thus, for each n > ng we have

H({xo}, Txo) < d(xo,2n) + H{xn}, Txyn) + H(Txp, Txg) < H{zp}, Tay)

and so H({zo},Txo) = 0.

If this is not, then without loss of generality (by replacing a subsequence) we
can suppose that N(x,,xq) > 0 for all n.

Since x,, — xg and T is S-convergent, there exists a natural number N; such
that 8(Txp, Tzg) > 1 for all n > Ny. Thus, for each n > N; we have

H({zxp}, Txo) — H{xn}, Txy) < H(Txp, Txo)
< B(Txp, Txo)H(Txy, Txo) < Y(N(2n,20)) < N(2p,z0)
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< d(zp,z0) + H{xn}, Txyn) + H{z0}, Txp).

Hence, N(zy,z0) = H({zo}, Txo).
Since v is upper semi-continuous, we get lim sup,, , o V(N (zn,x0)) < Y(H ({0}, Tz0)).
Now, from last inequalities, we conclude that H ({zo}, T'zo) < ¥(H ({zo}, Tx0)).

Thus, H({zo},Tzo) = 0. Therefore, T' has an endpoint. O

Corollary 3.5. Let (X,d) be a complete metric space, B: 2% x 2% — [0,00) a
mapping and T: X — CB(X) a [-shrinking, (-convergent and (-generalized weak
contractive multifunction.

If T has the approzimate endpoint property and X has the property (Gg), then
T has a unique endpoint.

It is easy to check that Theorem 2.2 is a consequence of Theorem 3.2. More-
over, Example 3.1 shows us that Theorem 3.2 is a real generalization of Theorem
2.2. In fact, one can easily check that the multifunction 7" in Example 3.1 is a
[B-generalized weak contractive multifunction while is not a generalized weak con-
tractive multifunction.

Corollary 3.6. Let (X,d) be a complete metric space, B: 2% x 2% — [0,00) a map-
ping, k € [0,1) and T: X — CB(X) a B-shrinking and [-convergent multifunction
satisfying B(Tx, Ty)H (Tx,Ty) < kN (z,y) for all x,y in X.
Then T has an endpoint if and only if T' has the approximate endpoint property.
If T has the approximate endpoint property and X has the property (Gg), then
T has a unique endpoint xg and Fix (T) = {xo}.

Corollary 3.7. Let (X,d) be a complete metric space, x* € X a fized element and
T: X — CB(X) a multifunction such that H(Tz,Ty) < ¢¥(N(z,y)) for allz,y € X
with ©* € T N Ty, where 1: [0,00) — [0,00) is an upper semi-continuous function
such that (t) <t for all t > 0.

Suppose that for each sequence {x,} in X with diam (T'z,) — 0, there ezists
a natural number Ny such that x* € Taxy, NTxy, for allm >n > Nj.

Also, assume that for each convergent sequence {xy} with x,, — x, there ezists
a natural number Ny such that x* € Tx, NTx for all n > Ns.

Then T has an endpoint if and only if T' has the approzimate endpoint property.

4. Applications

Let L be a positive real number and I = [0,L]. Denote the set of all real
valued continuous functions on I by C(I). If we endow this set with the uniform
distance, d(u,v) = sup;cy|u(t) — v(t)|, then (C(I),d) becomes a complete metric
space. Suppose that K: I x I x R —+ R and ¢g: R — R are continuous functions.
Consider the integral equation

L
u(t):/o K(t,s,u(s))ds + g(t), Vitel.

Now, let X be a set and ¢ a selfmap on X. Define the multifunction T,,: X — 2X,
T,x = {px}. In this case, it is easy to check that H(T,x,T,y) = d(px, py) for all
z,y € X.
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Theorem 4.1. Suppose that K: I x I x R — R and g: R — R are continuous
functions and there exist two mon-negative maps B: 20() » 2¢() [0,00) and
a: R xR — [0,00) such that sup,c; a(u(t),v(t)) = B({u},{v}) > 1, for all u,v €
c(I).

Assume that, there exists a continuous function G: I x I — R such that

K(ts.x) - K(tap)| <69 Y veyeR tsel

Also, suppose that

inf sup /Ktsu ds—()‘:,
ueC(I) ter

1

stlg</ G2(t, 5)ds)}, /Ktsu())ds+g /Ktsv(>>ds+g())>s\g

Then the integral equation has a solution.

L
Proof. Define ¢: C(I) — C(I), pu(t) = / K(t,s,u(s))ds + g(t), for all t € I.
0

Then, we have

L
lpu(t) — po(t)] < /O (K (¢, s,u(s)) — K(t,s,0(s))|ds

L _
< / G(t, s)Mds.
0 2
By using the Cauchy-Schwartz inequality, we obtain
L 1 Ju(s) = (s
jeutt) = poto)] < ([ GHesiant [ (T
)

for all t € I and u,v € C(I
Hence,

(ST

o(gu(t). pu(®)leutt) - po(t)
L 1 L u(s) — vis
atgutt). )| G2 [ (M

[NIES

NI

L 1 L uls) — vls
< supalpu(t) pol)( | 62t () =02

tel 2
L [FJuls) —v(s)l ) o1 d(u,v)
< — ———")%ds)2 < ,
< (| Rt < 5
for all t € I and u,v € C(I).
This implies that
B(Tpu, Tov)H(Tou, Tpv) < ¢(d(u,v))

for all u,v € C(I), where (t) = %, for all t > 0.
It is easy to check that T, a B-shrinking and 3-convergent multifunction.
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Since
inf d(u,T,u inf su K(t,s,u(s))ds — =0,
ueC(I) ( )= ueC(I) te? / (#)) 9(t)
T, has the approximate fixed point property. Thus, by using Theorem 3.1, T, has
a fixed point ©*, which is a solution for the integral equation. O
Now, let f: R - R and ¢: C(I) — C(I) be two functions. Put
r— fyl+ly—fx
Iay) = max {e —yl Ja — fal ly - o), ZZ AW T

for all z,y € R and

Ny (u,v) = max {d(u, v), d(u, Yu)d(v, Yv),

for all u,v € C'(I). Note that, Ny(u,v) = sup;er J(u(t), v(t)).
By using a similar proof of Theorem 4.1 and Theorem 3.2, one can prove next
result.

d(v,Yu) + d(u,pv) }
2

)

Theorem 4.2. Suppose that K: I x I xR — R and g: R — R are continuous
functions and there exist two non-negative maps : 26U x 2¢() [0,00) and
a: R xR — [0,00) such that sup,c;o(u(t),v(t)) = f({u},{v}) > 1 for all u,v €

o Assume that, there exists a continuous function G: I x I — R such that
|K(t,s,z) — K(t,s,y)| < G(t,s)(](?y), Vez,yeR, t,sel.
Also, suppose that
uelgf Stlelg) / K(t,s,u(s))ds — ()‘:0,

an

1

btg)(/ G(t, 5)ds)?, /Ktsu())ds+g /Ktsv())ds—i—g()))g\/lz.

Then the integral equation has a solution.
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