

**TWO ENDPOINT RESULTS FOR β -SHRINKING AND
 β -CONVERGENT MULTIFUNCTIONS WITH APPLICATION TO
AN INTEGRAL EQUATION**

H. Alikhani¹, Sh. Rezapour²

We introduce β -shrinking, β -convergent and β -generalized weak contractive multifunctions, and give some results about the existence of endpoint of these classes of multifunctions. We show that our main result generalizes a recent related theorem. Finally, we provide two applications for our main results.

Keywords: β -generalized weak contractive multifunction, β -shrinking multifunction, β -convergent multifunction, approximate endpoint property, endpoint.

MSC2010: Primary 54H25; 32A12.

1. Introduction

One of valuable recent techniques in fixed point theory is the notion of α - ψ -contractive mappings which introduced by Samet, Vetro and Vetro in 2012 ([13]). Some authors used it for some subjects in fixed point theory (see for example [5], [8], [9] and [12]). Later, it was generalized to β - ψ -contractive multifunctions (see for example [2], [3], [7] and [10]). In this paper, we introduce the new notion of β -shrinking, β -convergent and β -generalized weak contractive multifunctions and by using this notion, we generalize a recent related result in fixed point theory.

2. Preliminaries

Let (X, d) be a metric space, $CB(X)$ the collection of all nonempty bounded and closed subsets of X , $T: X \rightarrow 2^X$ a multifunction and H , the Hausdorff metric with respect to d , that is, $H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \sup_{y \in B} d(y, A) \right\}$ for all $A, B \in CB(X)$, where $d(x, B) = \inf_{y \in B} d(x, y)$. An element $x \in X$ is said to be an *endpoint* of T whenever $Tx = \{x\}$ ([4]). We say that the multifunction T has the *approximate endpoint property* whenever $\inf_{x \in X} \sup_{y \in Tx} d(x, y) = 0$ ([4]). A function $g: \mathbb{R} \rightarrow \mathbb{R}$ is called *upper semi-continuous* whenever $\limsup_{n \rightarrow \infty} g(\lambda_n) \leq g(\lambda)$, for all sequence $\{\lambda_n\}_{n \geq 1}$ with $\lambda_n \rightarrow \lambda$ ([1]). In 2010, Amini-Harandi proved the following result ([4]).

Theorem 2.1. *Let $\psi: [0, \infty) \rightarrow [0, \infty)$ be an upper semi-continuous function such that $\psi(t) < t$ and $\liminf_{t \rightarrow \infty} (t - \psi(t)) > 0$, for all $t > 0$, (X, d) a complete metric*

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran, e-mail: h.alikhani09@gmail.com

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran, e-mail: sh.rezapour@azaruniv.edu

space and $T: X \rightarrow CB(X)$ a multifunction satisfying

$$H(Tx, Ty) \leq \psi(d(x, y)), \quad \forall x, y \in X.$$

Then T has a unique endpoint if and only if T has the approximate endpoint property.

Later, Moradi and Khojasteh by introducing generalized weak contractive multifunctions, improved it by providing the following result ([11]).

Theorem 2.2. Let $\psi: [0, \infty) \rightarrow [0, \infty)$ be an upper semi-continuous function such that $\psi(t) < t$ and $\liminf_{t \rightarrow \infty} (t - \psi(t)) > 0$, for all $t > 0$, (X, d) a complete metric space and $T: X \rightarrow CB(X)$ a generalized weak contractive multifunction, that is, satisfying

$$H(Tx, Ty) \leq \psi(N(x, y)), \quad \forall x, y \in X,$$

$$\text{where } N(x, y) = \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}.$$

Then T has a unique endpoint if and only if T has the approximate endpoint property.

In this paper, we introduce β -shrinking, β -convergent and β -generalized weak contractive multifunctions and generalize Theorems 2.1 and 2.2 for the class of multifunctions.

3. Main Results

Let (X, d) be a metric space and $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a mapping. A multifunction $T: X \rightarrow 2^X$ is called β -generalized weak contraction whenever there exists a nondecreasing upper semi-continuous function $\psi: [0, +\infty) \rightarrow [0, +\infty)$ such that $\psi(t) < t$, for all $t > 0$, and

$$\beta(Tx, Ty)H(Tx, Ty) \leq \psi(N(x, y)), \quad \forall x, y \in X.$$

We say that the multifunction T is β -shrinking whenever for each sequence $\{x_n\}$ in X with $\lim_{n \rightarrow \infty} \text{diam}(Tx_n) = 0$, there exists a natural number N such that $\beta(Tx_n, Tx_m) \geq 1$, for all $m > n \geq N$. A multifunction T is said to be β -convergent whenever for each convergent sequence $\{x_n\}$, with $x_n \rightarrow x$, there exists a natural number N such that $\beta(Tx_n, Tx) \geq 1$, for all $n \geq N$.

Now, we are ready to state and prove our main results.

Theorem 3.1. Let (X, d) be a complete metric space, $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a mapping and $T: X \rightarrow CB(X)$ a β -shrinking and β -convergent multifunction satisfying

$$\beta(Tx, Ty)H(Tx, Ty) \leq \psi(d(x, y)), \quad \forall x, y \in X,$$

where $\psi: [0, \infty) \rightarrow [0, \infty)$ is an upper semi-continuous function with $\psi(t) < t$, for all $t > 0$.

Then T has an endpoint if and only if T has the approximate endpoint property.

Proof. It is clear that T has the approximate endpoint property whenever T has an endpoint.

Suppose that T has the approximate endpoint property.

Choose a sequence $\{x_n\}$ in X such that $\sup_{y \in Tx_n} d(x_n, y) \rightarrow 0$. Thus, we obtain $H(\{x_n\}, Tx_n) \rightarrow 0$ and $\text{diam}(Tx_n) \rightarrow 0$. Since T is β -shrinking, there exists a

natural number N such that $\beta(Tx_n, Tx_m) \geq 1$ for all $m > n \geq N$. Hence for each $m > n \geq N$, we have

$$\begin{aligned} d(x_n, x_m) &\leq H(\{x_n\}, Tx_n) + H(Tx_n, Tx_m) + H(Tx_m, \{x_m\}) \\ &\leq H(\{x_n\}, Tx_n) + \beta(Tx_n, Tx_m)H(Tx_n, Tx_m) + H(Tx_m, \{x_m\}) \\ &\leq H(\{x_n\}, Tx_n) + \psi(d(x_n, x_m)) + H(Tx_m, \{x_m\}). \end{aligned}$$

Because ψ is upper semi-continuous, we get

$$\limsup_{n,m \rightarrow \infty} d(x_n, x_m) \leq \limsup_{n,m \rightarrow \infty} \psi(d(x_n, x_m)) \leq \psi(\limsup_{n,m \rightarrow \infty} d(x_n, x_m)).$$

Since $\psi(t) < t$ for all $t > 0$, $\limsup_{n,m \rightarrow \infty} d(x_n, x_m) = 0$ and so $\{x_n\}$ is a Cauchy sequence.

Choose $x_0 \in X$ such that $x_n \rightarrow x_0$.

If there exists a natural number n_0 such that $d(x_n, x_0) = 0$ for all $n \geq n_0$, then we have $x_n = x_0$ and $H(Tx_n, Tx_0) = 0$, for all $n \geq n_0$. Thus, for each $n \geq n_0$, we obtain

$$H(\{x_0\}, Tx_0) \leq d(x_0, x_n) + H(\{x_n\}, Tx_n) + H(Tx_n, Tx_0) \leq H(\{x_n\}, Tx_n)$$

and so $H(\{x_0\}, Tx_0) = 0$.

If this is not, then without loss of generality (by replacing a subsequence) we can suppose that $d(x_n, x_0) > 0$ for all n . Since $x_n \rightarrow x_0$ and T is β -convergent, there exists a natural number N_1 such that $\beta(Tx_n, Tx_0) \geq 1$, for all $n \geq N_1$. Thus, for each $n \geq N_1$ we have

$$\begin{aligned} H(\{x_0\}, Tx_0) &\leq d(x_0, x_n) + H(\{x_n\}, Tx_n) + H(Tx_n, Tx_0) \\ &\leq d(x_0, x_n) + H(\{x_n\}, Tx_n) + \beta(Tx_n, Tx_0)H(Tx_n, Tx_0) \\ &\leq d(x_0, x_n) + H(\{x_n\}, Tx_n) + \psi(d(x_n, x_0)) < 2d(x_n, x_0) + H(\{x_n\}, Tx_n). \end{aligned}$$

Hence, $H(\{x_0\}, Tx_0) = 0$. Therefore, T has an endpoint. \square

Now, we add an assumption to obtain the uniqueness of endpoint. In this respect, we introduce a new notion.

Let X be a set and $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a map. We say that the set X has the property (G_β) whenever $\beta(A, B) \geq 1$, for all subsets A and B of X , with either $A \not\subseteq B$ or $B \not\subseteq A$.

Corollary 3.1. *Let (X, d) be a complete metric space, $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a mapping and $T: X \rightarrow CB(X)$ a β -shrinking and β -convergent multifunction satisfying $\beta(Tx, Ty)H(Tx, Ty) \leq \psi(d(x, y))$ for all x, y in X , where $\psi: [0, \infty) \rightarrow [0, \infty)$ is an upper semi-continuous function with $\psi(t) < t$, for all $t > 0$.*

If T has the approximate endpoint property and X has the property (G_β) , then T has a unique endpoint.

Proof. By using Theorem 3.1, T has a endpoint. If T has two distinct endpoints x^* and y^* , then $\beta(Tx^*, Ty^*) = \beta(\{x^*\}, \{y^*\}) \geq 1$ because X has the property (G_β) . Hence,

$$\begin{aligned} d(x^*, y^*) &\leq H(Tx^*, Ty^*) \leq \beta(Tx^*, Ty^*)H(Tx^*, Ty^*) \\ &\leq \psi(N(x^*, y^*)) < N(x^*, y^*) = d(x^*, y^*) \end{aligned}$$

which is a contradiction. Thus, T has a unique endpoint. \square

If we consider $\beta: 2^X \times 2^X \rightarrow [0, +\infty)$, $\beta(A, B) = 1$, for all $A, B \subseteq X$, then every multifunction is β -shrinking and β -convergent. Also, X has the property (G_β) . Thus, Theorem 2.1 is a consequence of Theorem 3.1.

In 2011, Haghi, Rezapour and Shahzad showed that there are some fixed point generalizations which are not real generalizations ([6]). Next example shows that Theorem 3.1 is a real generalization of Theorem 2.1.

Example 3.1. Let $X = [0, 1] \cup [\frac{3}{2}, \infty)$ and $d(x, y) = |x - y|$. Now, define

$$T: X \rightarrow CB(X), \quad Tx = \begin{cases} [\frac{x}{4}, \frac{x}{2}], & x \in [0, 1] \\ \{1\}, & x \in [\frac{3}{2}, \infty). \end{cases}$$

Put $x = 1$ and $y = \frac{3}{2}$. Then,

$$H(Tx, Ty) = H(T1, T\frac{3}{2}) = H([\frac{1}{4}, \frac{1}{2}], \{1\}) = \frac{3}{4} > \psi(\frac{1}{2}) = \psi(d(x, y)),$$

where $\psi: [0, \infty) \rightarrow [0, \infty)$ is an arbitrary upper semi-continuous function, with $\psi(t) < t$, for all $t > 0$. Thus, the condition of Theorem 2.1 does not hold.

Now, we show that the conditions of Theorem 3.1 hold for this multifunction. In this respect, define $\psi(t) = \frac{7}{8}t$ for all $t \geq 0$ and $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ by $\beta(A, B) = 0$ whenever $A \subseteq (\frac{1}{8}, \frac{1}{2}]$, and $B = \{1\}$ and $\beta(A, B) = 1$ otherwise.

If $0 \leq x \leq y \leq 1$, then $\beta(Tx, Ty) = 1$ and so

$$\beta(Tx, Ty)H(Tx, Ty) = H([\frac{x}{4}, \frac{x}{2}], [\frac{y}{4}, \frac{y}{2}]) = \frac{1}{2}d(x, y) \leq \frac{7}{8}d(x, y) = \psi(d(x, y)).$$

If $0 \leq x \leq \frac{1}{2}$ and $y \geq \frac{3}{2}$, then $\beta(Tx, Ty) = 1$ and so

$$\begin{aligned} \beta(Tx, Ty)H(Tx, Ty) &= H(Tx, Ty) = H([\frac{x}{4}, \frac{x}{2}], \{1\}) = 1 - \frac{x}{4} \\ &= \frac{3}{8} + \frac{5}{8} - \frac{x}{4} \leq \frac{3}{8} + \frac{5}{8}d(x, y) - \frac{x}{4} = \frac{2}{8} \cdot \frac{3}{2} + \frac{5}{8}y - \frac{5}{8}x - \frac{x}{4} \\ &\leq \frac{2}{8}y + \frac{5}{8}y - \frac{5}{8}x - \frac{2}{8}x = \frac{7}{8}y - \frac{7}{8}x = \frac{7}{8}d(x, y) = \psi(d(x, y)). \end{aligned}$$

If $\frac{1}{2} < x \leq 1$ and $y \geq \frac{3}{2}$, then $Tx \subseteq (\frac{1}{8}, \frac{1}{2}]$ and $Ty = \{1\}$. Hence, $\beta(Tx, Ty) = 0$ and so $\beta(Tx, Ty)H(Tx, Ty) = 0 \leq \psi(d(x, y))$.

If $x, y \geq \frac{3}{2}$, then $\beta(Tx, Ty) = 1$ and so

$$\beta(Tx, Ty)H(Tx, Ty) = H(Tx, Ty) = H(\{1\}, \{1\}) = 0 \leq \psi(d(x, y)).$$

Thus, $\beta(Tx, Ty)H(Tx, Ty) \leq \psi(d(x, y))$ for all $x, y \in X$.

Now, we show that T is β -shrinking.

Suppose that $\{x_n\}$ is a sequence in X with $\text{diam } Tx_n \rightarrow 0$.

If $x_n \in [0, 1]$ for all $n \geq N$, then $\beta(Tx_n, Tx_m) \geq 1$ for all $m > n \geq N$.

If $x_n \in [\frac{3}{2}, \infty)$ for all $n \geq N$, then $\beta(Tx_n, Tx_m) \geq 1$, for all $m > n \geq N$.

If there exist subsequences $\{x_{n_k}\}$ and $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_n\} = \{x_{n_k}\} \cup \{x_{n_i}\}$, $x_{n_k} \in [0, 1]$ and $x_{n_i} \in [\frac{3}{2}, \infty)$, for all k and i , then there exist natural numbers N_1 such that $x_{n_k} \in [0, \frac{1}{8}]$ and $x_{n_i} \in [\frac{3}{2}, \infty)$ for all $k, i \geq N_1$. Thus, it is easy to see that $\beta(Tx_n, Tx_m) \geq 1$ for all $m > n \geq N_1$. Hence, T is β -shrinking.

Now, we show that T is β -convergent.

Suppose that $\{x_n\}$ is a sequence in X with $x_n \rightarrow x$.

If $x \in [0, 1]$, then there exists a natural number N_1 such that $x_n \in [0, 1]$ for all $n \geq N_1$. Hence, $\beta(Tx_n, Tx) \geq 1$ for all $n \geq N_1$.

If $x \in [\frac{3}{2}, \infty)$, then there exists a natural number N_2 such that $x_n \in [\frac{3}{2}, \infty)$ for all $n \geq N_2$. Hence, $\beta(Tx_n, Tx) \geq 1$ for all $n \geq N_2$. Thus, T is β -convergent.

Finally, note that $\sup_{y \in T0} d(0, y) = 0$ and so $\inf_{x \in X} \sup_{y \in Tx} d(x, y) = 0$. Hence, T has the approximate endpoint property. Also, $T0 = \{0\}$.

Corollary 3.2. *Let (X, d) be a complete metric space, $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a mapping, $k \in [0, 1)$ and $T: X \rightarrow CB(X)$ a β -shrinking and β -convergent multifunction satisfying $\beta(Tx, Ty)H(Tx, Ty) \leq kd(x, y)$ for all x, y in X .*

Then T has an endpoint if and only if T has the approximate endpoint property.

If T has the approximate endpoint property and X has the property (G_β) , then T has a unique endpoint x_0 and $\text{Fix}(T) = \{x_0\}$.

Proof. Define $\psi: [0, \infty) \rightarrow [0, \infty)$, $\psi(t) = kt$. Then by using Theorem 3.1, T has an endpoint if and only if T has the approximate endpoint property.

Now, suppose that T has the approximate endpoint property and X has the property (G_β) . Then by using Corollary 3.1, T has a unique endpoint such x_0 .

Let y be a fixed point of T . We have to show that $y = x_0$.

If $Tx_0 = Ty$, then $x_0 = y$.

If $Tx_0 \neq Ty$, then $\beta(Tx_0, Ty) \geq 1$ because X has the property (G_β) . Therefore, we obtain $d(x_0, y) \leq H(Tx_0, Ty) \leq \beta(Tx_0, Ty)H(Tx_0, Ty) \leq kd(x_0, y)$, and we get $d(x_0, y) = 0$. \square

Next corollary shows us the role of a point in the existence of endpoints.

Corollary 3.3. *Let (X, d) be a complete metric space, $x^* \in X$ a fixed element and $T: X \rightarrow CB(X)$ a multifunction such that $H(Tx, Ty) \leq \psi(d(x, y))$ for all $x, y \in X$ with $x^* \in Tx \cap Ty$, where $\psi: [0, \infty) \rightarrow [0, \infty)$ is an upper semi-continuous function such that $\psi(t) < t$ for all $t > 0$.*

Suppose that for each sequence $\{x_n\}$ in X with $\text{diam}(Tx_n) \rightarrow 0$, there exists a natural number N_1 such that $x^ \in Tx_n \cap Tx_m$ for all $m > n \geq N_1$.*

Also, assume that for each convergent sequence $\{x_n\}$ with $x_n \rightarrow x$, there exists a natural number N_2 such that $x^ \in Tx_n \cap Tx$ for all $n \geq N_2$.*

Then T has an endpoint if and only if T has the approximate endpoint property.

Proof. It is sufficient to define $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ by $\beta(A, B) = 1$ whenever $x^* \in A \cap B$ and $\beta(A, B) = 0$ otherwise, and then we use Theorem 3.1. \square

Let (X, d, \leq) be an ordered metric space. Define the order \preceq on arbitrary subsets A and B of X by $A \preceq B$ if and only if for each $a \in A$ there exists $b \in B$ such that $a \leq b$. It is easy to check that $(CB(X), \preceq)$ is a partially ordered set.

Corollary 3.4. *Let (X, d, \leq) be a complete ordered metric space and T a closed and bounded valued multifunction on X such that $H(Tx, Ty) \leq \psi(d(x, y))$, for all $x, y \in X$ with $Tx \preceq Ty$, where $\psi: [0, +\infty) \rightarrow [0, +\infty)$ is an upper semi-continuous function such that $\psi(t) < t$ for all $t > 0$.*

Suppose that for each sequence $\{x_n\}$ in X with $\text{diam}(Tx_n) \rightarrow 0$, there exists a natural number N_1 such that $Tx_n \preceq Tx_m$ for all $m > n \geq N_1$.

Also, assume that for each convergent sequence $\{x_n\}$ with $x_n \rightarrow x$, there exists a natural number N_2 such that $Tx_n \preceq Tx$ for all $n \geq N_2$.

Then T has an endpoint if and only if T has the approximate endpoint property.

Proof. It is sufficient to define $\beta(A, B) = 1$ whenever $A \preceq B$ and $\beta(A, B) = 0$ otherwise, and then we use Theorem 3.1. \square

Theorem 3.2. *Let (X, d) be a complete metric space, $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a mapping and $T: X \rightarrow CB(X)$ a β -shrinking, β -convergent and β -generalized weak contractive multifunction.*

Then T has an endpoint if and only if T has the approximate endpoint property.

Proof. It is clear that T has the approximate endpoint property whenever T has an endpoint.

Suppose that T has the approximate endpoint property.

Choose a sequence $\{x_n\}$ in X such that $\sup_{y \in Tx_n} d(x_n, y) \rightarrow 0$. Thus, we obtain that $H(\{x_n\}, Tx_n) \rightarrow 0$ and $\text{diam}(Tx_n) \rightarrow 0$. But, we have

$$\begin{aligned} N(x_n, x_m) &= \max\{d(x_n, x_m), d(x_n, Tx_n), d(x_m, Tx_m), \\ &\quad \frac{d(x_n, Tx_m) + d(x_m, Tx_n)}{2}\} \\ &\leq d(x_n, x_m) + H(\{x_n\}, Tx_n) + H(\{x_m\}, Tx_m) \\ &= d(x_n, x_m) - H(\{x_n\}, Tx_n) - H(\{x_m\}, Tx_m) + 2H(\{x_n\}, Tx_n) + 2H(\{x_m\}, Tx_m) \\ &\leq H(Tx_n, Tx_m) + 2H(\{x_n\}, Tx_n) + 2H(\{x_m\}, Tx_m) \end{aligned}$$

for all $m, n \geq 1$. Since T is β -shrinking, there exists a natural number N such that $\beta(Tx_n, Tx_m) \geq 1$ for all $m > n \geq N$.

For each $m > n \geq N$, we have

$$\begin{aligned} N(x_n, x_m) &\leq H(Tx_n, Tx_m) + 2H(\{x_n\}, Tx_n) + 2H(Tx_m, \{x_m\}) \\ &\leq \beta(Tx_n, Tx_m)H(Tx_n, Tx_m) + 2H(\{x_n\}, Tx_n) + 2H(Tx_m, \{x_m\}) \\ &\leq \psi(N(x_n, x_m)) + 2H(\{x_n\}, Tx_n) + 2H(Tx_m, \{x_m\}). \end{aligned}$$

Because ψ is upper semi-continuous, we get

$$\limsup_{n, m \rightarrow \infty} N(x_n, x_m) \leq \limsup_{n, m \rightarrow \infty} \psi(N(x_n, x_m)) \leq \psi(\limsup_{n, m \rightarrow \infty} N(x_n, x_m)).$$

Since $\psi(t) < t$ for all $t > 0$, $\limsup_{n, m \rightarrow \infty} N(x_n, x_m) = 0$. This implies that $\limsup_{n, m \rightarrow \infty} d(x_n, x_m) = 0$. Hence, $\{x_n\}$ is a Cauchy sequence.

Now, choose $x_0 \in X$ such that $x_n \rightarrow x_0$.

If there exists a natural number n_0 such that $N(x_n, x_0) = 0$ for all $n \geq n_0$, then $d(x_n, x_0) = 0$ for all $n \geq n_0$. Hence, $x_n = x_0$ and $H(Tx_n, Tx_0) = 0$ for all $n \geq n_0$. Thus, for each $n \geq n_0$ we have

$$H(\{x_0\}, Tx_0) \leq d(x_0, x_n) + H(\{x_n\}, Tx_n) + H(Tx_n, Tx_0) \leq H(\{x_n\}, Tx_n)$$

and so $H(\{x_0\}, Tx_0) = 0$.

If this is not, then without loss of generality (by replacing a subsequence) we can suppose that $N(x_n, x_0) > 0$ for all n .

Since $x_n \rightarrow x_0$ and T is β -convergent, there exists a natural number N_1 such that $\beta(Tx_n, Tx_0) \geq 1$ for all $n \geq N_1$. Thus, for each $n \geq N_1$ we have

$$\begin{aligned} H(\{x_n\}, Tx_0) - H(\{x_n\}, Tx_n) &\leq H(Tx_n, Tx_0) \\ &\leq \beta(Tx_n, Tx_0)H(Tx_n, Tx_0) \leq \psi(N(x_n, x_0)) < N(x_n, x_0) \end{aligned}$$

$$\leq d(x_n, x_0) + H(\{x_n\}, Tx_n) + H(\{x_0\}, Tx_0).$$

Hence, $N(x_n, x_0) \rightarrow H(\{x_0\}, Tx_0)$.

Since ψ is upper semi-continuous, we get $\limsup_{n \rightarrow \infty} \psi(N(x_n, x_0)) \leq \psi(H(\{x_0\}, Tx_0))$.

Now, from last inequalities, we conclude that $H(\{x_0\}, Tx_0) \leq \psi(H(\{x_0\}, Tx_0))$.

Thus, $H(\{x_0\}, Tx_0) = 0$. Therefore, T has an endpoint. \square

Corollary 3.5. *Let (X, d) be a complete metric space, $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a mapping and $T: X \rightarrow CB(X)$ a β -shrinking, β -convergent and β -generalized weak contractive multifunction.*

If T has the approximate endpoint property and X has the property (G_β) , then T has a unique endpoint.

It is easy to check that Theorem 2.2 is a consequence of Theorem 3.2. Moreover, Example 3.1 shows us that Theorem 3.2 is a real generalization of Theorem 2.2. In fact, one can easily check that the multifunction T in Example 3.1 is a β -generalized weak contractive multifunction while is not a generalized weak contractive multifunction.

Corollary 3.6. *Let (X, d) be a complete metric space, $\beta: 2^X \times 2^X \rightarrow [0, \infty)$ a mapping, $k \in [0, 1)$ and $T: X \rightarrow CB(X)$ a β -shrinking and β -convergent multifunction satisfying $\beta(Tx, Ty)H(Tx, Ty) \leq kN(x, y)$ for all x, y in X .*

Then T has an endpoint if and only if T has the approximate endpoint property.

If T has the approximate endpoint property and X has the property (G_β) , then T has a unique endpoint x_0 and $\text{Fix}(T) = \{x_0\}$.

Corollary 3.7. *Let (X, d) be a complete metric space, $x^* \in X$ a fixed element and $T: X \rightarrow CB(X)$ a multifunction such that $H(Tx, Ty) \leq \psi(N(x, y))$ for all $x, y \in X$ with $x^* \in Tx \cap Ty$, where $\psi: [0, \infty) \rightarrow [0, \infty)$ is an upper semi-continuous function such that $\psi(t) < t$ for all $t > 0$.*

Suppose that for each sequence $\{x_n\}$ in X with $\text{diam}(Tx_n) \rightarrow 0$, there exists a natural number N_1 such that $x^ \in Tx_n \cap Tx_m$ for all $m > n \geq N_1$.*

Also, assume that for each convergent sequence $\{x_n\}$ with $x_n \rightarrow x$, there exists a natural number N_2 such that $x^ \in Tx_n \cap Tx$ for all $n \geq N_2$.*

Then T has an endpoint if and only if T has the approximate endpoint property.

4. Applications

Let L be a positive real number and $I = [0, L]$. Denote the set of all real valued continuous functions on I by $C(I)$. If we endow this set with the uniform distance, $d(u, v) = \sup_{t \in I} |u(t) - v(t)|$, then $(C(I), d)$ becomes a complete metric space. Suppose that $K: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions. Consider the integral equation

$$u(t) = \int_0^L K(t, s, u(s))ds + g(t), \quad \forall t \in I.$$

Now, let X be a set and φ a selfmap on X . Define the multifunction $T_\varphi: X \rightarrow 2^X$, $T_\varphi x = \{\varphi x\}$. In this case, it is easy to check that $H(T_\varphi x, T_\varphi y) = d(\varphi x, \varphi y)$ for all $x, y \in X$.

Theorem 4.1. Suppose that $K: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions and there exist two non-negative maps $\beta: 2^{C(I)} \times 2^{C(I)} \rightarrow [0, \infty)$ and $\alpha: \mathbb{R} \times \mathbb{R} \rightarrow [0, \infty)$ such that $\sup_{t \in I} \alpha(u(t), v(t)) = \beta(\{u\}, \{v\}) \geq 1$, for all $u, v \in C(I)$.

Assume that, there exists a continuous function $G: I \times I \rightarrow \mathbb{R}$ such that

$$|K(t, s, x) - K(t, s, y)| \leq G(t, s) \frac{|x - y|}{2}, \quad \forall x, y \in \mathbb{R}, \quad t, s \in I.$$

Also, suppose that

$$\inf_{u \in C(I)} \sup_{t \in I} \left| u(t) - \int_0^L K(t, s, u(s)) ds - g(t) \right| = 0,$$

and

$$\sup_{t \in I} \left(\int_0^L G^2(t, s) ds \right)^{\frac{1}{2}}, \quad \alpha \left(\int_0^L K(t, s, u(s)) ds + g(t), \int_0^L K(t, s, v(s)) ds + g(t) \right) \leq \frac{1}{\sqrt{L}}.$$

Then the integral equation has a solution.

Proof. Define $\varphi: C(I) \rightarrow C(I)$, $\varphi u(t) = \int_0^L K(t, s, u(s)) ds + g(t)$, for all $t \in I$. Then, we have

$$\begin{aligned} |\varphi u(t) - \varphi v(t)| &\leq \int_0^L |K(t, s, u(s)) - K(t, s, v(s))| ds \\ &\leq \int_0^L G(t, s) \frac{|u(s) - v(s)|}{2} ds. \end{aligned}$$

By using the Cauchy-Schwartz inequality, we obtain

$$|\varphi u(t) - \varphi v(t)| \leq \left(\int_0^L G^2(t, s) ds \right)^{\frac{1}{2}} \left(\int_0^L \left(\frac{|u(s) - v(s)|}{2} \right)^2 ds \right)^{\frac{1}{2}}$$

for all $t \in I$ and $u, v \in C(I)$.

Hence,

$$\begin{aligned} &\alpha(\varphi u(t), \varphi v(t)) |\varphi u(t) - \varphi v(t)| \\ &\leq \alpha(\varphi u(t), \varphi v(t)) \left(\int_0^L G^2(t, s) ds \right)^{\frac{1}{2}} \left(\int_0^L \left(\frac{|u(s) - v(s)|}{2} \right)^2 ds \right)^{\frac{1}{2}} \\ &\leq \sup_{t \in I} \alpha(\varphi u(t), \varphi v(t)) \left(\int_0^L G^2(t, s) ds \right)^{\frac{1}{2}} \left(\int_0^L \left(\frac{|u(s) - v(s)|}{2} \right)^2 ds \right)^{\frac{1}{2}} \\ &\leq \frac{1}{\sqrt{L}} \left(\int_0^L \left(\frac{|u(s) - v(s)|}{2} \right)^2 ds \right)^{\frac{1}{2}} \leq \frac{d(u, v)}{2}, \end{aligned}$$

for all $t \in I$ and $u, v \in C(I)$.

This implies that

$$\beta(T_\varphi u, T_\varphi v) H(T_\varphi u, T_\varphi v) \leq \psi(d(u, v))$$

for all $u, v \in C(I)$, where $\psi(t) = \frac{t}{2}$, for all $t \geq 0$.

It is easy to check that T_φ a β -shrinking and β -convergent multifunction.

Since

$$\inf_{u \in C(I)} d(u, T_\varphi u) = \inf_{u \in C(I)} \sup_{t \in I} \left| u(t) - \int_0^L K(t, s, u(s)) ds - g(t) \right| = 0,$$

T_φ has the approximate fixed point property. Thus, by using Theorem 3.1, T_φ has a fixed point u^* , which is a solution for the integral equation. \square

Now, let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi: C(I) \rightarrow C(I)$ be two functions. Put

$$J(x, y) = \max \left\{ |x - y|, |x - fx|, |y - fy|, \frac{|x - fy| + |y - fx|}{2} \right\},$$

for all $x, y \in \mathbb{R}$ and

$$N_\psi(u, v) = \max \left\{ d(u, v), d(u, \psi u) d(v, \psi v), \frac{d(v, \psi u) + d(u, \psi v)}{2} \right\},$$

for all $u, v \in C(I)$. Note that, $N_\psi(u, v) = \sup_{t \in I} J(u(t), v(t))$.

By using a similar proof of Theorem 4.1 and Theorem 3.2, one can prove next result.

Theorem 4.2. Suppose that $K: I \times I \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions and there exist two non-negative maps $\beta: 2^{C(I)} \times 2^{C(I)} \rightarrow [0, \infty)$ and $\alpha: \mathbb{R} \times \mathbb{R} \rightarrow [0, \infty)$ such that $\sup_{t \in I} \alpha(u(t), v(t)) = \beta(\{u\}, \{v\}) \geq 1$ for all $u, v \in C(I)$.

Assume that, there exists a continuous function $G: I \times I \rightarrow \mathbb{R}$ such that

$$|K(t, s, x) - K(t, s, y)| \leq G(t, s) \frac{J(x, y)}{2}, \quad \forall x, y \in \mathbb{R}, \quad t, s \in I.$$

Also, suppose that

$$\inf_{u \in C(I)} \sup_{t \in I} \left| u(t) - \int_0^L K(t, s, u(s)) ds - g(t) \right| = 0,$$

and

$$\sup_{t \in I} \left(\int_0^L G^2(t, s) ds \right)^{\frac{1}{2}}, \quad \alpha \left(\int_0^L K(t, s, u(s)) ds + g(t), \int_0^L K(t, s, v(s)) ds + g(t) \right) \leq \frac{1}{\sqrt{L}}.$$

Then the integral equation has a solution.

REFERENCES

- [1] R. P. Agarwal, D. O'Regan, D. R. Sahu, *Fixed point theory for Lipschitzian-type mappings with applications*, Springer, New York (2009).
- [2] H. Alikhani, V. Rakocevic, Sh. Rezapour, N. Shahzad *Some fixed point results for β - ψ -contractive multifunctions*, J. Nonlinear Conv. Anal. 16 (2015) No. 12, 2491–2497.
- [3] H. Alikhani, Sh. Rezapour, N. Shahzad *Fixed points of a new type contractive mappings and multifunctions*, Filomat 27 (2013) No. 7, 1315–1319.
- [4] A. Amini-Harandi, *Endpoints of set-valued contractions in metric spaces*, Nonlinear Anal. 72 (2010) 132–134.
- [5] D. Baleanu, H. Mohammadi, Sh. Rezapour, *Some existence results on nonlinear fractional differential equations*, Philos. Trans. of the Royal Society A 371 (2013) 20120144.
- [6] R. H. Haghi, Sh. Rezapour, N. Shahzad, *Some fixed point generalizations are not real generalizations*, Nonlinear Anal. 74 (2011) 1799–1803.
- [7] J. Hasanzadeh Asl, Sh. Rezapour, N. Shahzad, *On fixed points of α - ψ -contractive multifunctions*, Fixed Point Theory Appl. (2012) 2012:212.

- [8] M. Jleli, B. Samet, *Best proximity points for α - ψ -proximal contractive type mappings and applications*, Bull. Sci. Math. 137 (2013) 977–995.
- [9] M. A. Miandaragh, M. Postolache, Sh. Rezapour, *Some approximate fixed point results for generalized α -contractive mappings*, U. Politeh. Buch. Sci. Bull. Ser. A 75 (2013) No. 2, 3-10.
- [10] B. Mohammadi, Sh. Rezapour, N. Shahzad, *Some results on fixed points of α - ψ -Ciric generalized multifunctions*, Fixed Point Theory Appl. (2013) 2013:24.
- [11] S. Moradi, F. Khojasteh, *Endpoints of multi-valued generalized weak contraction mappings*, Nonlinear Anal. 74 (2011) 2170–2174.
- [12] Sh. Rezapour, J. Hasanzade Asl, *A simple method for obtaining coupled fixed points of α - ψ -contractive type mappings*, Int. J. Anal. (2013) Article ID 438029, 7 pages.
- [13] B. Samet, C. Vetro, P. Vetro, *Fixed point theorems for α - ψ -contractive type mappings*, Nonlinear Anal. 75 (2012) 2154–2165.