

3-HOMOMORPHISM AMENABILITY OF BANACH ALGEBRAS

Abasalt Bodaghi¹, Malihe Peyvaste²

In the current work, the notion of 3-homomorphism amenability of Banach algebras is introduced. The hereditary properties of this new concept for Banach algebras are investigated and the relations between 3-homomorphism amenability of a Banach algebra and its ideals are found. The equivalence of 3-homomorphism amenability and the concept of the (right) character amenability is proved. As a consequence, 3-homomorphism amenability for either of the group algebra $L^1(G)$ or the Fourier algebra $A(G)$ is equivalent to the amenability of the underlying group G .

Keywords: 3-homomorphism; Amenability; Contractibility.

MSC2010: 43A20, 46H20, 46H25, 46L05

1. Introduction

The concept of amenability for Banach algebras was initiated by Johnson in [11]. One of the fundamental results was that $L^1(G)$ is an amenable Banach algebra if and only if G is an amenable locally compact group. Since then, several modifications of this notion, through using homomorphisms between Banach algebras, have been introduced by others (for instance, see [2] and [15]).

In [12], Kaniuth, Lau and Pym studied the concept of φ -amenability of a Banach algebra A , where φ is a character on A . They also gave two characterizations of φ -amenability in terms of cohomology groups and Hahn-Banach type extension property in [13]. Monfared [14] introduced the notion of character amenability for Banach algebras. He used [14] in characterizing the structure of left (right) character amenable Banach algebras in several ways, and also showed that for any locally compact group G , left (right) character amenability of the generalized Fourier algebra $A_p(G)$ ($1 < p < \infty$), is equivalent to the amenability of G . This result also holds for the group algebra $L^1(G)$. Characterizations of character amenability of the Fourier-Stieltjes algebra $B(G)$ and natural uniform algebra on a compact space are obtained in [10]. Recently, the concept of character contractibility for Banach algebras was introduced in [16].

Let A and B be (Banach) algebras. A linear map $h : A \longrightarrow B$ is called 3-homomorphism if $h(a_1a_2a_3) = h(a_1)h(a_2)h(a_3)$ for all $a_1, a_2, a_3 \in A$. Obviously, every homomorphism is a 3-homomorphism, but the converse is false, in general. If $h : A \longrightarrow B$ is a homomorphism, then $g := -h$ is a 3-homomorphism that is

¹Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran, e-mail: abasalt.bodaghi@gmail.com

²Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran, e-mail: malihepeyvaste.88@gmail.com

not a homomorphism [3]. However, each 3-homomorphism $h : A \rightarrow \mathbb{C}$ induces a homomorphism on A which is not necessary unique (see Theorem 2.4 for more details).

For any Banach space X and Banach algebra A , each 3-homomorphism $\varphi : A \rightarrow \mathbb{C}$ induces a (innumerable) module structure on X . In the second section, using this structure(s), we introduce the concept of 3- φ -amenability for A and characterize it in term of first Hochschild cohomology group of A with coefficients in X^* (for general form, see [1]). We also define the notion of 3-homomorphism amenability for Banach algebras and find the relationship between this new definition and character amenability. This relation will show that for a locally compact group G , the group algebra $L^1(G)$ or the generalized Fourier $A_p(G)$ ($1 < p < \infty$) are 3-homomorphism amenable if and only if G is amenable. We investigate the hereditary properties of 3-homomorphism amenability for Banach algebras. Among many other things, we also study the relations between 3-homomorphism amenability of a Banach algebra and its ideals. Finally, in section 3, we introduce and investigate 3-homomorphism contractibility of Banach algebras.

2. 3-homomorphism amenability

We first bring some definitions in the Banach algebras setting. Let A be a Banach algebra, and let X be a Banach A -bimodule. A bounded linear map $D : A \rightarrow X$ is called a *derivation* if

$$D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in A).$$

For each $x \in X$, we define a map $D_x : A \rightarrow X$ by

$$D_x(a) = a \cdot x - x \cdot a \quad (a \in A).$$

It is easily seen that D_x is a derivation. Derivations of this form are called *inner derivations*. $\mathcal{Z}^1(A, X)$ is the space of all continuous derivations from A into X , $\mathcal{N}^1(A, X)$ is the space of all inner derivations from A into X , and the first Hochschild cohomology group of A with coefficients in X is the quotient space

$$\mathcal{H}^1(A, X) = \mathcal{Z}^1(A, X) / \mathcal{N}^1(A, X).$$

Let X be a A -bimodule. Then the dual space X^* of X is also a Banach A -bimodule by the following module actions:

$$\langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle, \quad \langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle, \quad (a \in A, x \in X, f \in X^*).$$

With the above notations, a Banach algebra A is called *amenable (contractible)* if $\mathcal{H}^1(A, X^*) = \{0\}$ ($\mathcal{H}^1(A, X) = \{0\}$) for every Banach A -bimodule X .

Throughout this paper, A is a Banach algebra and $\sigma^{(3)}(A)$ is the set of all non-zero 3-homomorphisms from A to \mathbb{C} . We denote the set of all non-zero characters on A by $\sigma(A)$.

Let $\varphi \in \sigma^{(3)}(A)$ and choose $u \in A$ such that $\varphi(u) = 1$. If X is a Banach space, then X can be viewed as a Banach left A -module by the following action:

$$a \cdot x = \varphi(u^3 a)x, \quad (a \in A, x \in X). \tag{1}$$

In fact, for each $a, b \in A$, $x \in X$ we have

$$\begin{aligned}
a \cdot (b \cdot x) &= \varphi(u^3 a) \varphi(u^3 b) x = \varphi(u^2) \varphi(u) \varphi(a) \varphi(u^2) \varphi(u) \varphi(b) x \\
&= \varphi(u^2) \varphi(a) \varphi(u^2) \varphi(b) x = \varphi(u^2) \varphi(a u^2 b) x \\
&= \varphi(u^2) \varphi(a u) \varphi(u) \varphi(b) x = \varphi(u^2) \varphi(a u) \varphi(b) x \\
&= \varphi(a u) \varphi(u^2) \varphi(b) x = \varphi(a u^3 b) x \\
&= \varphi(u^3) \varphi(a) \varphi(b) x = \varphi(u^3 a b) x = ab \cdot x.
\end{aligned} \tag{2}$$

Note that $a \cdot (b \cdot x) = ab \cdot x = \varphi(a) \varphi(b) x$ which is independent from the choice of u . If the left action of A on X is given by (1), then it is easy to see that $a \cdot (x \cdot b) = (a \cdot x) \cdot b$ for all $a, b \in A$ and $x \in X$. Therefore, the Banach space X admits a A -bimodule structure dependent to an element $u \in A$ with $\varphi(u) = 1$. One can also verify that in this case the right action of A on the dual A -bimodule X^* will be $f \cdot a = \varphi(u^3 a) f$ for all $a \in A$ and $f \in X^*$.

Let A^{**} be the second dual of a Banach algebra A . For any m and n in A^{**} , we denote by mn , the first Arens product of m and n in A^{**} . This product is defined in stages as follows: For every $m, n \in A^{**}$, $f \in A^*$ and $a, b \in A$, we define $f \cdot a$ and $n \cdot f$ in A^* ; mn in A^{**} by

$$\begin{aligned}
\langle f \cdot a, b \rangle &= \langle f, ab \rangle \\
\langle n \cdot f, a \rangle &= \langle n, f \cdot a \rangle \\
\langle mn, f \rangle &= \langle m, n \cdot f \rangle.
\end{aligned}$$

With this multiplication, A^{**} is a Banach algebra and A is a subalgebra of A^{**} . The image of $a \in A$ in A^{**} under the canonical embedding is denoted by \widehat{a} . However, for each $m, n \in A^{**}$ we have

$$mn = w^* - \lim_{\alpha} w^* - \lim_{\beta} \widehat{a}_{\alpha} \widehat{b}_{\beta},$$

where (a_{α}) and (b_{β}) are bounded nets in A such that $m = w^* - \lim_{\alpha} \widehat{a}_{\alpha}$ and $n = w^* - \lim_{\beta} \widehat{b}_{\beta}$. For fixed $n \in A^{**}$, $m \mapsto mn$ is w^* - w^* -continuous on A^{**} , and for fixed $a \in A$, $m \mapsto am$ is w^* - w^* -continuous on A^{**} (for more details refer to [5]). Moreover, if $\varphi \in \sigma^{(3)}(A)$, then $mnp(\varphi) = m(\varphi)n(\varphi)p(\varphi)$. It follows from [3, Proposition 3.1] that $\varphi^{**} \in \sigma^{(3)}(A^{**})$, and so each $\varphi \in \sigma^{(3)}(A)$ extends uniquely to some elements $\tilde{\varphi} = \varphi^{**}$ of $\sigma^{(3)}(A^{**})$. Now, the theory of second dual shows that $\ker \varphi$ is weak*-dense in $\ker \varphi^{**}$ and that $\ker \varphi^{**} = (\ker \varphi)^{**}$. One should remember that the second dual space $\ker \varphi^{**}$ contains $\ker \varphi$ in the same sense that A^{**} naturally contains A .

Let A be Banach algebra, $m \in A^{**}$, and let $\varphi \in \sigma^{(3)}(A)$ such that $\varphi(u) = 1$ for some $u \in A$. Then m is said to be $3\text{-}\varphi\text{-mean}$ on A^* (at u) if $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(u^3 a)m(f)$ for all $f \in A^*$ and $a \in A$. Also, A is called $3\text{-}\varphi\text{-amenable}$ if there exists a $3\text{-}\varphi\text{-mean}$ m on A^* .

Note that if φ is a non-zero multiplicative linear functional on A , then the left module structure (1) and the definition of $3\text{-}\varphi\text{-mean}$ will absolutely overlap with φ -amenability of A (character amenability) which has been introduced in [12] ([14]).

In the next result, we characterize $3\text{-}\varphi\text{-amenability}$ of a Banach algebra in term of cohomology groups.

Theorem 2.1. *Let A be a Banach algebra and $\varphi \in \sigma^{(3)}(A)$ such that $\varphi(u) = 1$. Then the following are equivalent:*

- (i) A is 3- φ -amenable (at u);
- (ii) If X is a Banach A -bimodules X in which the left action is given by $a \cdot x = \varphi(u^3 a)x$, for all $a \in A$ and $x \in X$, then $\mathcal{H}^1(A, X^*) = \{0\}$;
- (iii) If A acts on $K = \ker \varphi^{**}$ from left as $a \cdot m = \varphi(u^3 a)m$ for all $m \in A^{**}$ and naturally from right, then every continuous derivation from A into K is inner.

Proof. (i) \Rightarrow (ii) Suppose that m is a 3- φ -mean on A^* and $D : A \rightarrow X^*$ is a module (3- φ -)derivation. Set $f = (D')^*(m) \in X^*$, where D' is the restriction of D^* to X . For each $x \in X, a, b \in A$

$$\begin{aligned} \langle D'(x \cdot a), b \rangle &= \langle D(b), x \cdot a \rangle = \langle a \cdot D(b), x \rangle \\ &= \langle D(ab), x \rangle - \langle D(a) \cdot b, x \rangle \\ &= \langle D'(x), ab \rangle - \langle D(a), b \cdot x \rangle \\ &= \langle D'(x) \cdot a, b \rangle - \varphi(u^3 b) \langle D(a), x \rangle. \end{aligned}$$

Hence

$$D'(x \cdot a) = D'(x) \cdot a - \varphi(u^2) \langle D(a), x \rangle \varphi \quad (3)$$

for all $x \in X, a \in A$. If $\varphi(u^2) = 0$, then $\varphi(u^3 a) = 0$ for all $a \in A$. This implies that left action A on X is zero which is a contradiction. Thus $\varphi(u^2) \neq 0$. Now, it follows from the definition of D' and (3) that

$$\begin{aligned} \langle a \cdot f, x \rangle &= \langle f, x \cdot a \rangle = \langle (D')^*(m), x \cdot a \rangle = \langle m, D'(x \cdot a) \rangle \\ &= \langle m, D'(x) \cdot a \rangle - \langle D(a), x \rangle m(\varphi) \varphi(u^2) \\ &= \langle m, D'(x) \rangle \varphi(u^3 a) - \langle D(a), x \rangle \varphi(u^2) \\ &= \langle f, x \rangle \varphi(u^3 a) - \langle D(a), x \rangle \varphi(u^2). \end{aligned}$$

Thus

$$D(a) \varphi(u^2) = \varphi(u^3 a) f - a \cdot f. \quad (4)$$

On the other hand, we have $D'(a \cdot x) = \varphi(u^3 a) D'(x)$ because

$$\langle D'(a \cdot x), b \rangle = \langle D(b), a \cdot x \rangle = \varphi(u^3 a) \langle D(b), x \rangle = \varphi(u^3 a) \langle D'(x), b \rangle,$$

for all $x \in X, a, b \in A$. This conclude that

$$\begin{aligned} \langle f \cdot a, x \rangle &= \langle f, a \cdot x \rangle = \langle (D')^*(m), a \cdot x \rangle \\ &= \langle m, D'(a \cdot x) \rangle = \varphi(u^3 a) \langle m, D'(x) \rangle \\ &= \varphi(u^3 a) \langle f, x \rangle, \end{aligned}$$

and so $f \cdot a = \varphi(u^3 a) f$. Combining this equality with (4), we get $D(a) = a \cdot g - g \cdot a$, where $g = -\frac{1}{\varphi(u^2)} f$. Therefore D is an inner derivation.

(ii) \Rightarrow (iii) That is trivial.

(iii) \Rightarrow (i) Take $b \in A$ such that $\varphi(b) = 1$. For each $a \in A$, we have

$$\varphi(ab^3 - b^3 a) = \varphi(a)\varphi(b)\varphi(b^2) - \varphi(b^2)\varphi(b)\varphi(a) = 0.$$

The above equality shows that the map $D : A \rightarrow K$ defined by $D(a) = ab^3 - b^3 a$ ($a \in A$) is a derivation, and so there exists $n \in K$ such that $D(a) = a \cdot n - n \cdot a$ for all

$a \in A$. Put $m = b^3 + n$. Then $a \cdot m = m \cdot a = \varphi(u^3 a)m$ for all $a \in A$. Also $m(\varphi) = \varphi(b^3) + n(\varphi) = \varphi(b)^3 = 1$. Consequently, m is a 3- φ -mean on A (at u). \square

The proving process of the above Theorem shows that if we replace u by another element v in A such that $\varphi(v) = 1$, although the left module structure on X will be different, still all assertions are equivalent. Hence 3- φ -amenability of A is independent from the choice of u . So if we put an element u with $\varphi(u) = 1$, there is no risk of confusion. Now, Theorem 2.1 leads us to the following definition:

Definition 2.1. *A Banach algebra A is said to be 3-homomorphism amenable if Theorem 2.1 holds for all $\varphi \in \sigma^{(3)}(A) \cup \{0\}$.*

Theorem 2.2. *Let A and B be Banach algebras and $\theta : A \rightarrow B$ be a continuous homomorphism with dense range. If $\varphi \in \sigma^{(3)}(A)$ and A is 3- $\varphi \circ \theta$ -amenable (at u), then B is 3- φ -amenable (at $\theta(u)$).*

Proof. Assume that $m \in A^{**}$ is 3- $\varphi \circ \theta$ -amenable (at u), and so $m(\varphi \circ \theta) = 1$ and $m(f \cdot a) = \varphi \circ \theta(u^3 a)m(f) = \varphi(\theta(u)^3 \theta(a))m(f)$ for all $a \in A$ and $f \in A^*$. Consider $n \in B^{**}$ defined by $n(g) = m(g \circ \theta)$ for each $g \in B^*$. Obviously, $n(\varphi) = 1$. It is easy to see that $(g \cdot \theta(a)) \circ \theta = (g \circ \theta) \cdot a$ for all $a \in A$. Hence, for each $a \in A$ and $g \in B^*$, we have

$$\begin{aligned} n(g \cdot \theta(a)) &= m((g \cdot \theta(a)) \circ \theta) = m((g \circ \theta) \cdot a) \\ &= \varphi \circ \theta(u^3 a)m(g \circ \theta) = \varphi(\theta(u)^3 \theta(a))n(g). \end{aligned}$$

By density of the range of θ and continuity of n , B is 3- φ -amenable at $\theta(u)$. \square

We need the following lemma to characterize 3-homomorphism amenable ideals of a 3-homomorphism amenable Banach algebra.

Lemma 2.1. *Let A be a Banach algebra and I be a closed ideal of A . If $\varphi \in \sigma^{(3)}(A)$ such that $\bar{\varphi} = \varphi|_I \neq 0$, then 3- φ -amenability of A implies 3- $\bar{\varphi}$ -amenability of I .*

Proof. Assume that $m \in A^{**}$ is a 3- φ -mean on A^* (at u). It is proved in [12, Lemma 3.1] that $m(f \cdot a) = 0$ for all $f \in I^\perp$ and $a \in I$. Since $\varphi(u^2) \neq 0$ (see the proof of Theorem 2.1), $m(f) = 0$ for all $f \in I^\perp$, and so $m \in I^{\perp\perp}$. Thus m gives rise to a bounded linear functional \tilde{m} on $A^*/I^\perp = I^*$ defined by $\tilde{m}(g) = m(f)$, (for $g \in I^*$), where f is an arbitrary element of A^* extending g . For any $g \in I^*$ and $a \in I$, we have $\tilde{m}(\bar{\varphi}) = m(\varphi) = 1$ and

$$\tilde{m}(g \cdot a) = m(f \cdot a) = \varphi(u^3 a)m(f) = \varphi(u^3 a)\tilde{m}(g).$$

Note that in the above inequalities, $(f \cdot a)|_I = g \cdot a$ and $u^3 a \in I$. \square

Recall that a left (right) bounded approximate identity for a normed algebra A is a bounded net $(e_j)_j$ in A such that $\lim_j e_j a = a$ ($\lim_j a e_j = a$) for each $a \in A$.

Theorem 2.3. *Suppose that A is a 3-homomorphism amenable Banach algebra and I is a closed ideal of A . Then, I is a 3-homomorphism amenable if and only if I has a bounded right approximate identity.*

Proof. It follows from [11, Proposition 1.5 and 1.6] that the existence of a bounded right approximate identity for A is equivalent to $\mathcal{H}^1(A, X^*) = 0$ for every Banach A -bimodule X for which that left module action of A is $a \cdot x = 0$.

For the converse, in view of Lemma 2.1 it is sufficient to show that every $\psi \in \sigma^3(I)$ extends to some $\tilde{\psi} \in \sigma^3(A)$. Suppose that (a_j) is a bounded right approximate identity for I . The kernel of ψ , say J , is a closed ideal in A . Indeed,

$$\|aa_j^2 - a\| \leq \|aa_j - a\| \|a_j\| + \|aa_j - a\|$$

for all $a \in I$. Thus $\psi(ab) = \lim_j \psi(aba_j^2) = \lim_j \psi(a_j)\psi(aa_j)\psi(b) = 0$ for all $a \in A$ and $b \in J$. Similarly, $\psi(ba) = 0$. Choose $v \in I$ such that $\psi(v) = 1$. Then v^2 is an identity of I modulo J and so $\tilde{\psi}(x) = \psi(xv^2)$ ($x \in A$) define an element of $\sigma^3(A)$ extending ψ . In fact, for each $x, y, z \in A$

$$\tilde{\psi}(xyz) = \psi(xyzv^2) = \psi(xv^2yv^2zv^2) = \psi(xv^2)\psi(yv^2)\psi(zv^2) = \tilde{\psi}(x)\tilde{\psi}(y)\tilde{\psi}(z).$$

In the above inequalities, we use from this fact that

$$xv^2yv^2zv^2 - xyzv^2 = x(v^2yv^2zv^2 - yv^2zv^2) + xy(v^2zv^2 - zv^2) \in J. \quad \square$$

Let A be a Banach algebra and let $\varphi \in \sigma^3(A)$. From now on, we denote the kernel of φ by $I(\varphi)$ which is a ideal of A . In other words, if $u_0 \in A$ such that $\varphi(u_0) = 1$, then

$$\varphi(ab) = \varphi(u_0)^3 \varphi(ab) = \varphi(u_0)\varphi(u_0^2ab) = \varphi(u_0^2)\varphi(a)\varphi(b) = 0,$$

for all $a \in A$ and $b \in I(\varphi)$. Hence, $I(\varphi)$ is a left ideal of A . Similarly, $I(\varphi)$ is a right ideal of A .

Proposition 2.1. *Suppose that A is a 3- φ -amenable Banach algebra and that A has a bounded right approximate identity. Then $I(\varphi)$ has a bounded right approximate identity.*

Proof. Let $\varphi(u) = 1$ and let $J(\varphi) = \{n \in A^{**} : \langle n, \varphi \rangle = 0\}$. Take $p \in A^{**}$ and $n \in J(\varphi)$, then $\langle np, \varphi \rangle = \lim_\alpha \lim_\beta \langle \varphi, a_\alpha b_\beta \rangle$, where (a_α) and (b_β) are bounded nets in A such that $\hat{a}_\alpha \xrightarrow{w^*} n, \hat{b}_\beta \xrightarrow{w^*} p$. So,

$$np(\varphi) = \lim_\alpha \lim_\beta \varphi(u^3)\varphi(a_\alpha b_\beta) = \lim_\alpha \lim_\beta \varphi(u^2)\varphi(a_\alpha)\varphi(b_\beta) = \varphi(u^3)n(\varphi)p(\varphi).$$

Hence, $J(\varphi)$ is w^* -closed ideal of A^{**} and it can be canonically identified with the second dual $I(\varphi)^{**}$. Now, suppose that $m_\varphi \in A^{**}$ such that $m_\varphi(\varphi) = 1$ and $m_\varphi(f \cdot a) = \varphi(u^3a)m_\varphi(f)$ for all $f \in A^*$ and $a \in A$. Putting $N = \{f \in A^* : f|_{I(\varphi)} = 0\}$, we have

$$I(\varphi)^* = A^*/N = (\mathbb{C}\varphi + N)/N \text{ and } I(\varphi)^{**} = \{n \in A^{**} : n|_N = 0\}.$$

Let (e_α) be a bounded right approximate identity of A . Since $\lim_\alpha \varphi(xe_\alpha^3) = \lim_\alpha \varphi(xe_\alpha) = \varphi(x)$ for all $x \in A$, we get

$$\lim_\alpha \varphi(x)\varphi(e_\alpha)^2 = \lim_\alpha \varphi(xe_\alpha)\varphi(e_\alpha)^2 = \lim_\alpha \varphi(xe_\alpha^3) = \varphi(x),$$

and so $\lim_\alpha \varphi(e_\alpha)^2 = 1$ or equivalently, $\lim_\alpha (\hat{e}_\alpha(\varphi))^2 = 1$. This shows that $\lim_\alpha (\varphi(e_\alpha^2)) = 1$. Now, let E be a w^* -limit point of (e_α^2) in A^{**} and $m = E - m_\varphi$. Then $\langle m, \varphi \rangle = \lim_\alpha \varphi(e_\alpha^2) - m_\varphi(\varphi) = 0$, and thus $m \in J(\varphi)$. We next claim m is right identity for $J(\varphi)$. Indeed, for $a \in I(\varphi)$ and $f \in A^*$

$$\begin{aligned} \langle a \cdot m, f \rangle &= \langle m, f \cdot a \rangle = \lim_\alpha \langle e_\alpha^2, f \cdot a \rangle - m_\varphi(f \cdot a) \\ &= \lim_\alpha \langle f, ae_\alpha^2 \rangle - \varphi(u^3a)m_\varphi(f) = \langle f, a \rangle \end{aligned}$$

The rest of the proof is similar to [12, Proposition 2.2]. \square

Proposition 2.2. *Let A be a Banach algebra and let $\varphi \in \sigma^3(A)$. If the ideal $I(\varphi)$ has a bounded right approximate identity, then A is 3- φ -amenable.*

Proof. Suppose that $I = I(\varphi)$ has a bounded right approximate identity $(s_\beta)_\beta$. Since I is an ideal of codimension one in A (refer also to the proof of Theorem 2.3), A also has a bounded right approximate identity $(e_\alpha)_\alpha$ [6, Proposition 7.1]. Cohen factorization theorem shows that $A^* \cdot A$ and $A^* \cdot I$ are closed linear subspaces of A^* . Let $u \in A$ such that $\varphi(u) = 1$. Then $au^2 - a \in I$, for all $a \in A$ and $a = au^2 + i$ for some $i \in I$. Hence, $A = A \cdot u^2 + I$ and

$$A^* \cdot A = A^* \cdot (A \cdot u^2) + A^* \cdot I \subseteq A^* \cdot u^2 + A^* \cdot I$$

However, $A^* \cdot u^2$ and $A^* \cdot I$ are linear subspaces of $A^* \cdot A$, and so $A^* \cdot u^2 + A^* \cdot I \subseteq A^* \cdot A$. Thus $A^* \cdot u^2 + A^* \cdot I = A^* \cdot A$. Also, we have $\varphi \cdot u^2(a) = \varphi(u^2 a) = \varphi(u)^2 \varphi(a) = \varphi(a)$ for all $a \in A$, and thus $\varphi \cdot u^2 = \varphi$. Note that $\varphi \cdot u^2 \notin A^* \cdot I$. To see this, assume that $\varphi \cdot u^2 = f \cdot b$ for some $b \in I$ and $f \in A^*$. Then

$$\langle f, b \rangle = \lim_{\beta} \langle f, b s_\beta \rangle = \lim_{\beta} \langle f \cdot b, s_\beta \rangle = \lim_{\beta} \varphi(s_\beta) = 0.$$

On the other hand,

$$\langle f, b \rangle = \lim_{\alpha} \langle f, b e_\alpha \rangle = \lim_{\alpha} \varphi(e_\alpha) \neq 0,$$

If $\lim_{\alpha} \varphi(e_\alpha) = 0$, then for all $x \in A$ we have

$$\varphi(x) = \lim_{\alpha} \varphi(e_\alpha^2 x) = \lim_{\alpha} \varphi(e_\alpha) \varphi(e_\alpha) \varphi(x) = 0$$

Since $\varphi \cdot u^2 \notin A^* \cdot I$, by Hahn-Banach theorem there exists $p \in (A^* \cdot A)^*$ such that $p(A^* \cdot I) = \{0\}$ and $p(\varphi \cdot u^2) = 1$. Now, we define $m(f) = p(f \cdot u^2)$ for all $f \in A^*$. Then m is a bounded linear functional on A^* and $m(\varphi) = 1$. Let $a = b + \mu u^2$, $b \in I$, $\mu \in \mathbb{C}$ and $\varphi(v) = 1$ for some $v \in A$. Clearly, $u^4 - u^2 \in I$, and so

$$\begin{aligned} m(f \cdot a) &= p((f \cdot a) \cdot u^2) = p(f \cdot b u^2) + \mu p(f \cdot u^4) \\ &= p(f \cdot b u^2) + \mu p(f \cdot (u^4 - u^2)) + \mu p(f \cdot u^2) \\ &= \varphi(\mu v^3 u^2) m(f) = \varphi(b v^3 + \mu v^3 u^2) m(f) \\ &= \varphi(v^3 a) m(f) \end{aligned}$$

for all $f \in A^*$ and $a \in A$. Therefore, A is a 3- φ amenable (at v). \square

According to Propositions 2.1 and 2.2 and this fact that 3-0-amenability of a Banach algebra A is equivalent to having a bounded right approximate identity, we have the following corollary.

Corollary 2.1. *A Banach algebra A is 3-homomorphism amenable if and only if for all $\varphi \in \sigma^3(A)$, $I(\varphi)$ has a bounded right approximate identity.*

Example 2.1. (i) Let A be a C^* -algebra. Then, by Corollary 2.1 we can observe that every C^* -algebra is 3-homomorphism amenable. This arises from the fact that every closed ideal of a C^* -algebra has a bounded approximate identity. On the other hand, a C^* -algebra is amenable if and only if it is nuclear ([4] and [9]).

(ii) Let A be a (commutative) Banach algebra and let $\varphi \in \sigma^{(3)}(A)$ be such that

$\varphi(z_0) = 1$ for some $z_0 \in A$. Consider actions A on \mathbb{C} by $a \cdot z = z \cdot a = \varphi(z_0^3 a)z; a \in A, z_0 \in \mathbb{C}$. If the non-trivial map $d : A \longrightarrow \mathbb{C}^* = \mathbb{C}$ is a continuous 3- φ -derivation, then it can not be inner because all inner derivation from A into \mathbb{C} are zero. This example portrays that there exist semisimple commutative Banach algebras A which fail to be 3-homomorphism amenable.

Recall that a Banach algebra A is right (left) character amenable if for all $\varphi \in \sigma(A) \cup \{0\}$ and all Banach A -bimodule X for which the left (right) module action is given by $a \cdot x = \varphi(a)x$ ($x \cdot a = \varphi(a)x$); $a \in A, x \in X$, every continuous derivation $D : A \longrightarrow X^*$ is inner.

Theorem 2.4. *Let A be a Banach algebra. Then A is a right character amenable if and only if it is 3-homomorphism amenable.*

Proof. Let A be 3-homomorphism amenable and φ be a character on A . Then φ is a 3-homomorphism on A . Assume that A is 3- φ -amenable (at u). We consider A -bimodules structure on a Banach space X by taking the left action to be $a \cdot x = \varphi(a)x; a \in A, x \in X$ and taking the right action to be the natural one. Define a left action A on X as $a \bullet x = u^3 a \cdot x$. Since φ is a character, $a \bullet x = \varphi(u^3 a)x = \varphi(u)^3 \varphi(a)x = \varphi(a)x$. These equalities show that two left actions over X are equal. Thus A is φ -amenable, and so it is right character amenable.

Conversely, suppose that A is a right character amenable and φ belongs to $\sigma^{(3)}(A) \cup \{0\}$. Define $\tilde{\varphi}(a) := \varphi(u^3 a); a \in A$ with $\varphi(u) = 1$. It follows from (2) that $\tilde{\varphi}$ is a character on A . Since A is $\tilde{\varphi}$ -amenable, every derivation $D : A \longrightarrow X^*$ in which $a \cdot x = \tilde{\varphi}(a)x$ is inner. Therefore, A is 3- φ -amenable. \square

Let A be a non-unital Banach algebra. Then $A^\# = A \oplus \mathbb{C}$, the unitization of A , is a unital Banach algebra which contains A as a closed ideal. We denote the identity of $A^\#$ by e . For any $\varphi \in \sigma^3(A^\#)$, $\varphi(e) = 1$ or $\varphi(e) = -1$. If $\varphi(e) = 1$ then φ is a character, and if $\varphi(e) = -1$ then φ is a anti-character of A , that is $\varphi(xy) = -\varphi(x)\varphi(y)$ for all $x, y \in A$. So $\sigma^3(A^\#) = \sigma(A^\#) \cup -\sigma(A^\#)$. Using the fact that $A^\#$ is right (left) character amenable if and only if A is right (left) character amenable [14, Theorem 2.6] and since anti character amenability of A is equivalent to its character amenability (one can verify easily) we get to the following result.

Proposition 2.3. *The unitization algebra $A^\#$ is a 3-homomorphism amenable if and only if A is a right character amenable Banach algebra.*

Using Theorem 2.4 and Proposition 2.3 we have the following corollary. The corresponding result for character amenability has been obtained in [14, Theroen 2.6].

Corollary 2.2. *The unitization algebra $A^\#$ is 3-homomorphism amenable if and only if A is 3-homomorphism amenable.*

Let G be locally compact group. The Fourier algebra $A(G)$ and the generalized Fourier algebra $A_p(G)$ ($p \in (1, +\infty)$) which were introduced in [7] and [8], respectively, are commutative Banach algebras with pointwise operations of addition and multiplication. It is proved in [14, Corollary 2.4] that $A_p(G)$ is character amenable if and only if G is an amenable locally compact group; by Theorem 2.4 we have the following consequence.

Corollary 2.3. *Let $1 < p < \infty$, G be a locally compact group, and A be either of the Banach algebras $L^1(G)$ or $A_p(G)$. Then the following are equivalent:*

- (i) A is right character amenable;
- (ii) A is 3-homomorphism amenable;
- (iii) G is amenable

Proof. The equivalence of (i) and (ii) follows from Theorem 2.4 and the equivalence of (i) and (iii) has been shown in [14, Corollary 2.4]. \square

Let G be locally compact group. The measure algebra on G is denoted by $M(G)$. Thus $M(G)$ is the Banach algebra of complex-valued, regular Borel measures on G ; the total variation of $\mu \in M(G)$ is denoted by $|\mu|$, and $\|\mu\| = |\mu|(G)$. Also, the convolution multiplication \star on $M(G)$ is defined by setting

$$\langle \mu \star \nu, f \rangle = \int_G \int_G f(st) d\mu(s) d\nu(t) \quad (\mu, \nu \in M(G), f \in C_0(G))$$

where $C_0(G)$ is the Banach algebra of all continuous linear functionals on G vanishing at infinity.

Corollary 2.4. *The measure algebra $M(G)$ is 3-homomorphism amenable if and only if G is a discrete amenable group.*

Proof. The result follows immediately from Theorem 2.4 and [14, Corollary 2.5]. \square

Proposition 2.4. *Let A be a Banach algebras and $\varphi \in \sigma^{(3)}(A) \cup \{0\}$. Then A is 3- φ -amenable if and only if A^{**} is 3- $\tilde{\varphi}$ -amenable.*

Proof. Let m be a 3- φ -mean on A^* (at u). For each $n \in A^{**}$ and $\lambda \in A^{***}$, take bounded nets $(a_j) \in A$ and $(f_k) \in A^*$ with $\hat{a}_j \xrightarrow{w^*} n$ and $\hat{f}_k \xrightarrow{w^*} \lambda$. We identify m as an element \hat{m} of A^{***} . Thus $\hat{m}(\varphi) = 1$ and

$$\begin{aligned} \langle \hat{m}, \lambda \cdot n \rangle &= \langle \lambda, n \cdot m \rangle = \lim_k \langle n \cdot m, f_k \rangle \\ &= \lim_k \langle n, m \cdot f_k \rangle = \lim_k \lim_j \langle m \cdot f_k, a_j \rangle \\ &= \lim_k \lim_j \langle m, f_k \cdot a_j \rangle = \lim_k \lim_j \varphi(u^3 a_j) \langle m, f_k \rangle \\ &= \lim_j \varphi(u^3 a_j) \lim_k \langle m, f_k \rangle = \tilde{\varphi}(u^3 n) \langle \hat{m}, \lambda \rangle. \end{aligned}$$

Consequently, A^{**} is 3- $\tilde{\varphi}$ -amenable.

Conversely, suppose that $\Phi \in A^{****}$ satisfies $\Phi(\tilde{\varphi}) = \Phi(\varphi) = 1$ and $\Phi(\lambda \cdot n) = \tilde{\varphi}(u^3 n) \Phi(\lambda)$ for all $n \in A^{**}$ and $\lambda \in A^{***}$. Then, the restriction of Φ to A^* is a 3- φ -mean on A^* . \square

Let A and B be Banach algebras and $A \widehat{\otimes} B$ be the projective tensor product of A and B . For $\varphi \in \sigma^{(3)}(A)$ and $\psi \in \sigma^{(3)}(B)$, consider $\varphi \otimes \psi$ by $(\varphi \otimes \psi)(a \otimes b) = \varphi(a)\psi(b)$ for all $a \in A$ and $b \in B$. This clearly forces that $\varphi \otimes \psi \in \sigma^{(3)}(A \widehat{\otimes} B)$.

Theorem 2.5. *Let A and B be Banach algebras, let $\varphi \in \sigma^{(3)}(A)$ and $\psi \in \sigma^{(3)}(B)$ such that $\varphi(u) = 1$ and $\psi(v) = 1$ for some $u \in A$ and $v \in B$. If $A \widehat{\otimes} B$ is 3- $\varphi \otimes \psi$ -amenable (at $u \otimes v$), then A is 3- φ -amenable (at u) and B is 3- ψ -amenable (at v).*

Proof. Assume that there exists $m \in (A \widehat{\otimes} B)^{**}$ such that

$$m((f \otimes \psi) \cdot (a \otimes b)) = (\varphi \otimes \psi)(u^3 a \otimes v^3 b) m(f \otimes \psi)$$

for all $a \in A, b \in B$ and $f \in A^*$. Take $a_0, a_1 \in A$ and $b_0, b_1 \in B$ such that $\varphi(a_0) = \varphi(a_1) = \psi(b_0) = \psi(b_1) = 1$. Define $\overline{m} \in A^{**}$ by $\overline{m}(f) = m(f \otimes \psi)$, where $f \in A^*$. It is easy to check that $(\varphi \otimes \psi)(u^3 a_0 a_1 \otimes v^3 b_0 b_1) = 1$. Now, for any $a \in A$ and $f \in A^*$, we have

$$\begin{aligned} \langle \overline{m}, f \cdot a \rangle &= (\varphi \otimes \psi)(u^3 a_0 a_1 \otimes v^3 b_0 b_1) \langle m, (f \cdot a) \otimes \psi \rangle \\ &= \langle m, (f \cdot a) \otimes \psi \rangle \cdot (a_0 a_1 \otimes b_0 b_1) \\ &= \langle m, (f \cdot (a a_0 a_1)) \otimes (\psi \cdot b_0 b_1) \rangle \\ &= \langle m, ((f \otimes \psi) \cdot (a a_0 a_1 \otimes b_0 b_1)) \rangle \\ &= (\varphi \otimes \psi)(u^3 a a_0 a_1 \otimes v^3 b_0 b_1) \langle m, f \otimes \psi \rangle \\ &= \varphi(u^3 a) \langle \overline{m}, f \rangle. \end{aligned}$$

Also $\overline{m}(\varphi) = m(\varphi \otimes \psi) = 1$. Therefore A is 3- φ -amenable. Similarly, B is 3- ψ -amenable. \square

3. 3-homomorphism contractibility

We start this section with a definition.

Definition 3.1. Let A be a Banach algebra and $\varphi \in \sigma^{(3)}(A) \cup \{0\}$. Then A is said to be 3- φ -contractible, if every continuous derivation $D : A \rightarrow X$ is inner, whenever left action A over X is given by $a \cdot x = \varphi(u^3 a)x$ with $\varphi(u) = 1$.

Theorem 3.1. Let A be a Banach algebra and $\varphi \in \sigma^{(3)}(A) \cup \{0\}$ such that $\varphi(u) = 1$ for some $u \in A$. Then the following are equivalent:

- (i) A is 3- φ -contractible (at u);
- (ii) There exists $m \in A$ such that $\varphi(m) = 1$ and $ma = \varphi(u^3 a)m$ for all $a \in A$.

Proof. (i) \Rightarrow (ii) Take $b_0 \in A$ such that $\varphi(b_0) = 1$. Define a A -bimodule structure on $X = A$ by $a \cdot x = \varphi(u^3 a)x, x \cdot a = xa$ for all $a \in A$ and $x \in X$. Then $D(a) = \varphi(u^3 a)b_0^3 - b_0^3 a, a \in A$ defines a continuous derivation from A into $I(\varphi)$ since

$$\begin{aligned} \varphi(D(a)) &= \varphi(u^3 a)\varphi(b_0^3) - \varphi(b_0^3 a) \\ &= \varphi(u^2)\varphi(u)\varphi(a)\varphi(b_0^3) - \varphi(b_0^3 a) \\ &= \varphi(u^3 b_0^3)\varphi(a) - \varphi(b_0^3 a) \\ &= \varphi(u^3)\varphi(b_0)\varphi(b_0^2)\varphi(a) - \varphi(u^3)\varphi(b_0)\varphi(b_0^2)\varphi(a) \\ &= 0. \end{aligned}$$

Due to 3- φ -contractibility of A , there exists $n \in I(\varphi)$ such that $D(a) = a \cdot n - n \cdot a$ for all $a \in A$, hence, the element $m = b_0^3 - n \in A$, as required.

(ii) \Rightarrow (i) Suppose that $m \in A$ with $\varphi(m) = 1$ and $ma = \varphi(u^3 a)m$ for all $a \in A$. Let X be an A -bimodule with actions $a \cdot x = \varphi(u^3 a)x, x \cdot a = xa$ for all $a \in A$ and $x \in X$. Put $x_0 = D(m)$. Then

$$x_0 \cdot a = D(ma) - m \cdot D(a) = D(ma) - \varphi(u^3 m)D(a) = \varphi(u^3 m)D(m) - \varphi(u^2)D(a).$$

Hence $D(a) = a \cdot x - x \cdot a$, where $x = \frac{1}{\varphi(u^2)}x_0$. Therefore, A is 3- φ -contractible. \square

Now, our remark following Theorem 2.1 leads to the next definition.

Definition 3.2. A Banach algebra A is called 3-homomorphism contractible, if it is 3- φ -contractible for every $\varphi \in \sigma^{(3)}(A) \cup \{0\}$.

Proposition 3.1. Let A be a Banach algebra and $\varphi \in \sigma^{(3)}(A)$ such that $\varphi(u) = 1$ for some $u \in A$. If $I(\varphi)$ has a left identity, then A is 3- φ -contractible (at u).

Proof. Choose $v_0 \in A$ such that $\varphi(v_0) = 1$. Put $a_0 = v_0^4 - \varphi(u^3 v_0) v_0^3$. Then

$$\begin{aligned}\varphi(a_0) &= \varphi(v_0^4) - \varphi(u^3 v_0) \varphi(v_0^3) \\ &= \varphi(v_0^4) - \varphi(u^2) \varphi(v_0) \varphi(v_0^3) \\ &= \varphi(v_0^4) - \varphi(u^2 v_0^4) \\ &= \varphi(v_0^4) - \varphi(u) \varphi(u) \varphi(v_0^4) = 0.\end{aligned}$$

Thus $a_0 \in I(\varphi) = \ker \varphi$. Let $m = v_0^3 - b_0 v_0^3$, where b_0 is a left identity for $I(\varphi)$. Obviously, $\varphi(m) = 1$. Now, if $a \in \ker \varphi$, then

$$ma = (v_0^3 - b_0 v_0^3)a = v_0^3 a - b_0 v_0^3 a = 0 = \varphi(u^3 a)m.$$

Moreover,

$$\begin{aligned}mv_0 - \varphi(u^3 v_0)m &= (v_0^3 - b_0 v_0^3)v_0 - \varphi(u^3 v_0)(v_0^3 - b_0 v_0^3) \\ &= v_0^4 - b_0 v_0^4 - \varphi(u^3 v_0)v_0^3 + \varphi(u^3 v_0)b_0 v_0^3 \\ &= v_0^4 - \varphi(u^3 v_0)v_0^3 - b_0(v_0^4 - \varphi(u^3 v_0)v_0^3) \\ &= a_0 - b_0 a_0 = 0.\end{aligned}$$

It follows from the equality $A = \mathbb{C}v_0 \oplus I(\varphi)$ and from Theorem 3.1 that A is 3- φ -contractible. \square

Proposition 3.2. Let A be a Banach algebra and $\varphi \in \sigma^{(3)}(A)$ such that $\varphi(u) = 1$ for some $u \in A$. If A 3- φ -contractible and has a left identity, then $I(\varphi)$ has a left identity.

Proof. Since $A = \mathbb{C}v_0 \oplus I(\varphi)$ for some $v_0 \in A$, it follows from Theorem 3.1 that there exist a $m_1 = v_0 + a_1$ such that $m_1 a = \varphi(u^3 a)m_1$ for all $a \in A$, where $a_1 \in I(\varphi)$. Set $m_2 = v_0 + a_2$ be a left identity for A , where $a_2 \in I(\varphi)$. Put $e = a_2 - a_1$. Since $m_1 a = \varphi(u^2) \varphi(u) \varphi(a)m_1 = 0$ and $m_2 a = a$ for all $a \in I(\varphi)$, we have

$$ea = a_2 a - a_1 a = (m_2 - v_0)a - (m_1 - v_0)a = a.$$

So e is a left identity for $I(\varphi)$. \square

Obviously, a Banach algebra A is 3-0-contractible if and only if it has a left identity. Thus, Propositions 3.1 and 3.2 display the following result and we omit its proof.

Corollary 3.1. Let A be a Banach algebra and $\varphi \in \sigma^{(3)}(A)$. Then A is 3-homomorphism contractible if and only if $I(\varphi)$ has a left identity.

Acknowledgement

The authors sincerely thank the anonymous reviewers for their careful reading, constructive comments and fruitful suggestions to improve the quality of the first draft.

REFERENCES

- [1] *A. Bodaghi*, n -homomorphism amenability, Proc. Rom. Aca., Series A, **14**, No.2 (2013), 101-105.
- [2] *A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi*, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal. **3** (2009) no. 1, 131-142.
- [3] *J. Bracic and M. S. Moslehian*, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. **30(2)** (2007), 195-200.
- [4] *A. Connes*, On the cohomology of operator algebras, J. Funct. Anal. **28** (1978), 243-253.
- [5] *H. G. Dales*, Banach Algebras and automatic continuity, Oxford University Press. 2000.
- [6] *R. S. Doran and J. Wichmann*, Approximate identities and factorization in Banach modules, Lecture Note in Math. **768**. (Springer- Verlag, 1979).
- [7] *P. Eymard*, Lalgèbre de Fourier dun groupe localement compact. Bull. Soc. Math. France. **92** (1964), 181-236.
- [8] *A. Figà-Talamanca*, Translation invariant operators in L^p . Duke Math. J. **32** (1965), 459-501.
- [9] *U. Haagerup*, All nuclear C^* -algebras are amenable, Invent. math. **74** (1983), 305-319.
- [10] *Z. Hu, M. S. Monfared and T. Traynor*, On character amenable Banach algebras, Studia Math. **193** (2009), 53-78.
- [11] *B. E. Johnson*, Cohomology in Banach algebras, Mem. Amer. Math. Soc. **127** (Providence, 1972).
- [12] *E. Kaniuth, A. T. Lau and J. Pym*, On φ -amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. **144** (2008), 85-96.
- [13] *E. Kaniuth, A. T. Lau and J. Pym*, On character amenability of Banach algebras, J. Math. Anal. Appl. **344** (2008), 942-955.
- [14] *M. S. Monfared*, Character amenability of Banach algebras. Math. Proc. Camb. Phil. Soc. **144** (2008), 697-706.
- [15] *M. S. Moslehian and A. N. Motlagh*, Some notes on (σ, τ) -amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math. **53** (2008), no. 3, 57-68.
- [16] *H. Pourmahmood Aghababa, L. Y. Shi and Y. J. Wu*, Generalized notions of character amenability. Acta Math. Sinica, English Series. **29**, Iss. 7 (2013), 1329-1350.