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AN ALTERNATIVE WAY TO PREDICT THE PRESENCE OF 

CRACKS IN A ROTOR BY STUDYING ITS VIBRATIONAL 

BEHAVIOUR 

Brahim BAKHALED1, Abdelhamid HADJOUI2, Ahmed FELLAH3 

The present paper aims to study the effects of cracks on the vibratory 

response of rotors. A new method, based on the theory of local stiffness decrease in 

a cracked element as compared to that of an uncracked element, is proposed here in 

order to predict the presence of a crack in a rotor. The classical version of the finite 

element method (FEM) is used for modeling the cracked rotor. In addition, a 

computer program was successfully developed using MATLAB in order to determine 

the critical frequencies of cracked and uncracked rotors. The variation of the 

critical frequencies as a function of stiffness reduction was examined, in the cases of 

open and breathing cracks, with the intention of predicting the presence, nature, and 

severity level of a crack in the rotor. 
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1. Introduction 

Rotating machines play an essential role in industry. Cracks are among the 

most common defects encountered in rotating equipment due to its extensive use. 

Cracking in rotors may cause serious damage to rotating machines. During the last 

decades, several works have been conducted to study the dynamic behaviour of 

cracked rotors and to ultimately detect the presence of cracks in rotating shafts for 

preventing damage that can ultimately lead to system failure. The early detection 

of cracks in a rotor could potentially avoid serious problems, in addition to the 

costly repairs of the consequential damages; it also minimizes the risks and 

dangers employees might be exposed to and ensures their protection and safety. 

The presence of cracks in rotational shafts reduces their stiffness, which in 

turn decreases their natural and critical frequencies. Various theoretical and 

experimental works have shown that the variation of the eigenfrequencies can be 

used for the detection of the depth and position of the crack in the rotating shaft. 

Kirmsher [1] and Thomson [2] were the first to examine the effect of 
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discontinuities on the natural frequency of beams and bars. Irwin [3] analyzed the 

stresses and strains in the fractured region of a structure. 

The transverse open and breathing crack models are the most common 

approaches used to simulate the behaviour of a rotating shaft with a crack. Wauer 

[4] conducted a literature review on the state of the art of cracked rotor dynamics. 

For instance, some studies were carried out on cracked rotors by the researchers 

Davies and Mayes [5]; they investigated the vibrational behaviour of a multi-

shaft, multi-bearing system in the presence of a propagating transverse crack and 

indicated that the opening and closing of the crack in a rotor during rotation had a 

significant effect on its natural frequencies. Moreover, Chasalevris and 

Papadopoulos [6], on one side, and Sekhar [7], on the other, investigated the 

influence of two cracks on the rotating system. Furthermore, Sekhar and Prabhu 

[8] studied a cracked rotor passing through its critical speeds. Similarly, Sinou [9] 

conducted a study on the effects of a crack on the stability of a non-linear rotor 

system. 

The most common techniques employed to formulate the stiffness of the 

cracked element using the FEM are the flexibility matrix method [6-8] and the 

time-varying stiffness method [9-14]. Based on the time-varying stiffness 

approach, Sinou and Lees [10] inquired into the influence of the position and 

depth of a crack on the eigenfrequencies of the system. Al-Shudeifat et al. [11-14] 

carried out experimental and theoretical studies on the influence of open and 

breathing cracks on the vibrational behaviour of symmetric and asymmetric 

rotors, in the case of critical and subcritical harmonics. 

The present work attempts, first, to use the classical version of the FEM 

and the time-varying stiffness method for modeling the cracked rotor. Using a 

program developed under the software MATLAB, one can easily determine the 

critical frequencies of cracked and uncracked rotors. The mesh convergence test 

allows us to fix the number of elements. Then, the results obtained from the 

previously developed computer program are validated by comparing them with 

the theoretical and experimental ones reported by Al-Shudeifat [14]; this 

validation operation is performed in order to evidence the efficiency of our model 

and the reliability of the developed program. Next, a new method is suggested to 

predict the presence of cracks in the rotating shaft. This method is based on the 

concept of stiffness reduction of the cracked element as compared to that of the 

uncracked element. This stiffness decrease may be expressed by means of a 

relationship between the cracked element stiffness Kcrack and the uncracked 

element stiffness Knocrack. This method is intended to study the open and breathing 

cracks in rotors. From the results obtained by this method, one can create a 

database that allows predicting the presence of a crack, its nature and its degree of 

severity. 
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2. Equation of motion 

The rotor consists of a shaft supported by bearings and comprising one or 

more disks. It may also be subjected to other stresses (loads) such as unbalance or 

external forces. The equation of motion is obtained from the kinetic and 

deformation energies of the rotor components and by the application of the 

Lagrange equation below:  
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where T and U are respectively the kinetic and potential energies of the 

system and q represents the generalized coordinates; F represents all external 

forces. 

2.1. Kinetic energy of the disk 

The disk is considered as rigid; it is characterized by the kinetic energy 

that is expressed as:  
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where md is the mass of the disk, u and w are the horizontal and vertical 

displacements, respectively, ψ and θ are the angles of rotation around the axes x 

and z (fixed coordinates), respectively (Figure 1), Ω is the rotational speed, Idx’ 

and Idy’ are the moments of inertia of the disk along the axes x’ and y’ (Figure 1). 

These may be written as: 
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Fig.1. Fixed and rotational coordinates of the disk 
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2.2. Kinetic and deformation energy of the shaft 

The rotating shaft is represented by a beam with a circular cross section. 

The expression of the kinetic energy of an element of length L is given by: 
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where ρ is the density of shaft material, S and I are the area and moment of 

inertia of the shaft’s cross section, respectively. 

In the case of a symmetric shaft’s cross section, where Ix= Iz = I, the 

deformation energy may be expressed as: 
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The expressions of Ix and Iz were developed by Al-Shudeifat and Butcher 

[12] for the case of a cracked element whose shaft’s cross section is not circular 

(asymmetric cross section). 

3. Modeling of the cracked rotor 

The cracked rotor was modeled by means of the classical version of the 

Finite element method (FEM). 

The shaft was discretized in N Euler-Bernoulli beams (Figure 2); each 

node in the element had four degrees of freedom (two displacements and two 

rotations). The disk, which was placed between two elements, at a given node, 

also had four degrees of freedom (DOFs). The unbalance mass me could be placed 

on one or more disks. This mass was located at the distance d from the rotor 

center. The bearings which were located at specific nodes were characterized by 

their virtual works. 

The different steps used in modeling, the elementary matrix for each 

component of the rotor, as well as the matrix of the cracked element, have been 

clearly presented by Al-Shudeifat et al. [11]. These authors established the 

equation of motion for the global system as given below: 

Balpcrackp FxKKKxGCxM =+−+++ )()( 
 (6) 

 

where M represents the global mass matrix which comprises the mass 

matrices of the shaft and disk, Cp is the damping matrix of bearings, and G the 

global gyroscopic matrix of the shaft and disk. Moreover, K is the global stiffness 

matrix of the shaft and Kcrack the stiffness matrix of the cracked element, Kp the 

stiffness matrix of bearings, and FBal is the vector of unbalance forces.  
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The natural and critical backward and forward whirling speeds may be 

determined from the eigensolutions of the matrix S for each value of Ω: 
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4. Results and discussion  

4.1. Convergence study 

In this section, the convergence of the first backward and forward critical 

frequency of the uncracked rotor is presented; it is obtained by increasing the 

number of elements N (convergence in the classical version of FEM). The 

physical parameters of the studied rotor were given by Al-Shudeifat [14] and are 

summarized in table 1.  

Figures 2 and 3 present the convergence curve of the first backward and 

forward critical frequency of the uncracked rotor under study. These figures 

indicate that the first backward and forward critical frequency converges starting 

from 6 elements, in which case the two disks are fixed at nodes 2 and 6, and the 

unbalance mass is placed on the second disk at node 6. The finite element model 

(FEM) of the rotor under study is illustrated in figure 4. 

 
Table 1:  

Physical parameters of the studied rotor. 

Description Value Description Value 

Length of the rotor shaft 0.65 m Number of disks 2 

Outer radius of the shaft (R) 0.0795 m Position of disk 1 from the left bearing 0.108 m 

Density of the shaft (ρ) 7800 kg /m3  Position of disk 2 from the left bearing 0.542 m 

Young's modulus (E) 2.1e11 N/m2 Outer radius of the disks (R) 0.0762 m 

Bearing stiffness  (Kxx, Kzz) 7e7 N/m Inner radius of the disk (r) 0.0795 m 

Bearing damping (Cxx,Czz) 5e2 Ns/m Density of the disks (ρd) 2700 kg /m3 

Unbalance mass( me) 6.3e-4 kg.m Mass of the disks 0 .571 kg 

Unbalance Angle (β)   π/2 rad Thickness of the disks   0.01172 m 
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Fig. 2. Convergence curve of the first critical backward frequency (ωb1) 

 

 
Fig. 3. Convergence curve of the first critical forward frequency (ωf1) 

 

           
Fig. 4. Finite element model of the studied rotor.    

4. 2. Validation 

The validation is carried out to confirm the efficiency of our modelling 

and the reliability of our program. Tables 2 and 3 show the deviation (ε) between 

the values of the first three backward and forward critical frequencies of 

uncracked and cracked rotors obtained by the program developed in this study and 

the theoretical and experimental results reported by AL-Shudeifat [14], where the 
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crack is located in the second element (Figure 4). The deviations between our 

results and those of Al-Shudeifat [14] do not exceed 2%. 
 

Table 2:  

Validation of the critical frequencies obtained by our program after comparison 

with the theoretical and experimental results of Al-Shudeifat, in the case of an uncracked 

rotor [14]. 

Reference 
Critical frequencies (Hz) 

𝜔b1 𝜔f1 𝜔b2 𝜔f2 𝜔b3 𝜔f3 

Our results 57.64 61.94 175.79 184.47 413.32 438.99 

Al-Shudeifat’s experimental results [14] 56.6 - - - - - 

Al-Shudeifat’s theoretical results [14] 57.8 62 176.4 184.9 414.8 438.6 

Deviation ε1 (between our results and Al-

Shudeifat’s theoretical results [14]) 
0.28 0.1 0.34 0.23 0.36 0.09 

Deviation ε2 (between our results and Al-

Shudeifat’s experimental results [14]) 
1.83 - - - - - 

 

Table 3:  

Validation of the critical frequencies obtained by our program after comparison 

with the theoretical and experimental results of Al-Shudeifat [14], in the case of a cracked 

rotor. 

Reference 
Critical frequency (Hz) 

𝜔b1 𝜔b1 𝜔b1 𝜔b1 𝜔b1 𝜔b1 

Our results 56.31 60.64 169.22 178.96 410.4 431.4 

Al-Shudeifat’s experimental results 14] 55.7 59.9 166.6 176 410 427 

Al-Shudeifat’s theoretical results [14] - 60.7 - - - - 

Deviation ε1 (between our results and Al-

Shudeifat’s theoretical results [14]) 
1.09 1.24 1.57 1.68 0.1 1.03 

Deviation ε2 (between our results and Al-

Shudeifat’s experimental results [14]) 
- 0.01 - - - - 

 

4.3. Description of the new method  

The proposed new method is based on the theory of reduction in the 

stiffness of the cracked element (Kcrack) as compared to that of the uncracked 

element (Knocrack). This decrease may be expressed as a relation that links the two 

stiffnesses. The proposed method gives a set of results that allow building a 

database that helps to predict the presence of a crack as well as its level of 

severity. 

The new method proposed in the present work is used to study the two 

most common crack models reported in the literature, namely the open and 

breathing cracks. 
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4. 3. 1.  Study of the open crack model 

In the case of a rotor with an open crack, the stiffness of the cracked 

element does not change while the rotor is rotating, which means that the system 

is linear. 

Concerning a rotor with an open crack, the linear relation (8) is proposed; 

it relates the stiffness of the cracked element Kcrack and that of the uncracked 

element Knocrack by a factor α that represents the percentage of stiffness reduction 

due to the crack. This linear relation is given as: 

nocrackcrack KK =  (8) 

where: 0 < α ≤ 1. If α = 0, then there is total fracture of the cracked 

element; if α = 1, there are no cracks in the element (uncracked). 

The present method is based on the study of the variation of the critical 

frequencies of the rotor as a function of the factor α. This variation allows 

predicting the presence of a crack in the rotor and its level of severity.  

Figure 5 displays the variation of the first backward and forward critical 

frequency with respect to the factor α, when the crack is located in the third 

element. This figure also indicates that when the factor α (the stiffness of the 

cracked element) decreases, the critical frequencies decrease. This decrease in 

stiffness is related with the crack depth. 

 
Fig.5. Variation of the first critical backward ωb1 and forward ωf1 frequencies as a function of 

factor α when the crack is located in the third element. 

 

 The previously stored database of critical frequencies for each value of α 

and each position of the crack allows us to predict the presence and the position of 

the crack and to estimate the crack’s level of severity associated with the vibratory 

behaviour of the rotor, using the relative variation of the critical frequencies (9), 

which is defined as 
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If Ci = 0 %, then there is no crack in the shaft and the rotor is stable; if Ci > 

0%, a crack is present in the shaft. The increase in Ci is attributed to the decrease 

in the critical frequencies of the rotor, which means that the stiffness of the 

cracked element diminishes, and the level of severity of the crack becomes very 

important. The rotor can break and cause irreversible damage to the system. 

 Figures 6 and 7 display the variations of the percentages Cωf1 and Cωb1 of 

the first critical frequencies as a function of the factor α. These two figures show 

that when the stiffness of the cracked element decreases, and the crack approaches 

the middle of the shaft, the crack severity level becomes very important. 

 
Fig. 6. Variation of the percentage Cωb1 of the first backward critical frequency as a function of the 

factor α. 

 
Fig. 7. Variation of the percentage Cωf1 of the first forward critical frequency as a function of the 

factor α. 

4.3.2. Study of the breathing crack model 

The breathing crack model is closest to the reality as compared to the other 

models. The crack breathing phenomenon is due to the weight of the rotor.  

In the case of a rotor with a breathing crack, the stiffness of the cracked 

element varies during the rotation of the rotor, which means that the system is 

non-linear. This stiffness variation is due to the opening and closing of the crack. 
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To represent the variation of the stiffness of the cracked element as a 

function of the angle of rotation (Ωt), Al-Shudeifat et al. [11] used the function 

ƒ(Ωt) which is written as: 

( ) ( ))cos(1
2

1
ttf −=  (9) 

The critical frequencies are related to the rotational angle (Ωt) as well as to 

the percentage of stiffness reduction α, which means that the relative variation of 

the critical frequencies Ci, as defined by equation (8), is also related to the 

rotational angle (Ωt) and the stiffness factor α. 

Fig. 8 illustrates the variation of Cωb1 with respect to the rotational angle 

(Ωt), for different values of α when the crack is located in the third element. This 

figure indicates that, in the case of a breathing crack, Ci reaches its maximum 

value for the angle Ωt = π rad when the crack is completely open. Also Ci = 0 for 

the angle Ωt = 0 rad or Ωt = 2π rad when the crack is completely closed. 

Moreover, this same figure shows that when the stiffness of the cracked element 

decreases, the relative variation of the critical frequencies Ci increases. 

In order to check the results presented on this figure, an example is taken 

for the value Cωb1 corresponding to the case where α = 0.6 and Ωt = π rad, when 

the crack is completely open. That value is then compared with that of a rotor with 

an open crack for α = 0.6 and when the crack is located in the third element, as 

shown in figure 6. The two values are found practically equal on the two figures 

(Cωb1 ≈ 8%). 

 
Fig. 8. Variation of Cωb1 with respect to the rotational angle (Ωt) for a given value of α, when the 

crack is located in the third element. 

 

The curve representing the variation of the percentage Ci of the forward 

mode as a function of the rotational angle (Ωt) is similar to that of the backward 

mode. 
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4.3.4. Relation between the crack depth and the percentage of stiffness 

reduction  

An attempt is made in this section to compare the variation of the critical 

frequencies with respect to the percentage of stiffness reduction α, and the 

variation of the critical frequencies with respect to the crack depth ratio μ, which 

is given as μ=h/R, where h is the crack depth and R is the radius of the shaft; the 

ratio μ varies from 0 to 1. However, the opposite occurs for α varying from 1 to 0. 

If μ = 0, then there is no crack; if μ = 1, the crack depth may reach the center of 

the shaft. 

The curves in figures 9 and 10 represent the variation of the first backward 

and forward critical frequency of a cracked rotor system with an open and 

breathing crack as a function of H, which is related to α and μ through the 

relations α = H and μ = 1-H. This factor is proposed just to find similar variation 

curves of the frequencies.   

These figures depict the graphical variation of the results obtained by the 

method suggested in this paper, in the case of an open cracked rotor and a 

breathing cracked rotor, with Ωt = π/2 rad, and the theoretical results of Al-

Shudeifat [14], knowing that this researcher [14] validated his theoretical results 

based on the experimental ones. 

The graphical variation of the critical frequencies found by the suggested 

method is slightly similar to that obtained from Al-Shudeifat’s theoretical results 

[14]; this researcher used the time-varying stiffness method for that purpose. It is 

possible to narrow the gap between our results and those of Al-Shudeifat by 

varying the length of the cracked element. The variation of the length has an 

impact on the stiffness of the cracked element as compared to that of the 

uncracked element. 

 
Fig. 9. Variation of the first backward critical frequency ωb1 as a function of the factor H, when the 

crack is located in the second element. 
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Fig. 10. Variation of the first forward critical frequency ωf1 as a function of the factor H, when the 

crack is located in the second element. 

4.3.5. Influence of the variation of stiffness on the vibration amplitude 

of rotors  

The influence of stiffness variation due to the crack on the critical 

frequencies of rotors has been previously studied in this work. It is not the only 

way to detect the presence of cracks. In this section, the effect of stiffness 

variation of the cracked element on the vibration amplitude of rotors is presented. 

Figure 11 shows the graphical variation of the vertical amplitude with 

respect to the rotational speed Ω of cracked and uncracked rotors. This figure 

shows that the amplitude increases when the rotor approaches its critical speeds. 

The vibration amplitudes of cracked and uncracked rotors are different. Moreover, 

it is noted that the critical frequencies decrease.  

 
Fig. 11. Vertical amplitudes at node 6 for α=0.5 and for mass unbalance me =6.3e-4kg.m. 

5. Conclusions 

This paper attempts to propose a new method to predict the presence of 

cracks in the rotor’s shaft. This novel method is based on the theory of stiffness 
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reduction in a cracked element. It is found that the crack decreases the stiffness of 

the cracked element as compared to the uncracked element. The cracked rotor was 

modeled using the classical version of the finite element method (FEM), and a 

program was developed under MATLAB in order to determine the critical 

frequencies of a cracked rotor and an uncracked rotor.  

The suggested method allowed us to note that a relationship exists 

between the stiffness Kcrack   of a cracked element and Knocrack  of an uncracked 

element. These two quantities are related by a factor α that represents the 

percentage of stiffness reduction. This new method can be used to study the effect 

of open and breathing cracks on the variation of the critical frequencies of the 

rotor. Based on the fluctuation of the critical frequencies, one can define the 

percentage Ci that represents the crack severity level. 

From the results obtained by this method, it is possible to build a database 

that allows predicting the presence of a crack and its nature, as well as the extent 

of damage the crack may have on the rotor. 

The findings obtained with this new method were compared with 

previously reported theoretical results, using the time-varying stiffness method, in 

order to model the crack, as given by Al-Shudeifat [14]. The results found 

allowed confirming the efficiency of our method in the study of cracked rotors.  
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