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GLOBAL DYNAMIC OF A HEROIN EPIDEMIC 
MODEL

Reza Memarbashi1 and Malek Pourhosseini2

In this paper, we propose and study an epidemic model consider-ing the 
effect of educational/prevention programs on the control of illicit drug uses. We 
compute the threshold quantity R0 and show the occurrence
of backward bifurcation leading to bistability, both directly and by Castillo-Chavez 
and Song theorem. Furthermore, the global stability of the equi-librium points 
of the model is investigated using Lyapunov functions and compound matrices, 
i.e., geometric stability method.
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1. Introduction

As far as usage of illicit drugs damages the physical, mental and social
well being of individuals, their families and societies, the widespread, pervasive
concerns about illicit drug usage and its controlling strategies, significantly re-
flected on health, educational and political programs.
In general, there exist three main strategies to restrict and delimitate illicit
drug consumption in all countries: legal strategies, educational-training strate-
gies, and treatment strategies. The most important educational-training activ-
ities are the increasing of awareness among peoples about the physical, mental
and social dangers of drug use. There is evidence that education/prevention
programs can mitigate chronic drug addiction, [6], demonstrates the significant,
long-term benefits to programmes that reduce or delay first use or prevent the
transition from experimental use to addiction. Furthermore, as indicated in
[13], school-age and teenage years are critical in terms of experimentation with
drugs and the development of behaviors that can lead to dependence and abuse
in adulthood. The earlier young people start to use psychoactive substances,
the more likely they are to develop drug abuse disorders in later life, [14].
Among various drug users, heroin users are at high risk of addiction and crim-
inal actions. The heroin was first considered as an epidemic problem in 1981-
1983 in Ireland. White and Comiskey, have introduced the first model for the
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dynamics of heroin users, see [17]. Their model was revisited by Mulone and
Straughan, [10]. After White and Comiskey’s work, the epidemiology of drugs
has been studied by several authors. We propose and study a modified form
of White-Comiskey’s model by considering the effect of education/prevention
activities on the drug users. For this aim, we split the susceptible populations
into three compartments, noneducated susceptibles, educated susceptibles and
individuals who are completely aware of drug harms, so that they will not use
drugs forever.
We will investigate the dynamical behaviors of the model such as steady states,
backward bifurcation, and local and global stability. The paper is organized
as follows. In section 2, we present the model and some preliminaries such as
boundedness and the basic reproduction number of the system. In section 3,
we study the existence of endemic equilibrium points and show that backward
bifurcation leading to bistability occurs. We prove the occurrence of backward
bifurcation, both directly and by the theorem of Castillo-Chavez and Song.
In section 4, we obtain sufficient conditions for the local and global stability
of both drug-free and endemic equilibrium points by Lyapunov functions and
compound matrices, i.e., geometric stability method.

2. Model formulation and basic properties

Sne Se

I

M

R

↓Λ

←−−−
µSne

εSne −−→
µM

↑µSe

λSe
N

←−
µI δ2R

νI

θSe

↓µR

λδ1R
N

Our proposed model is based on subdividing the given community into
five compartments: Sne, noneducated susceptibles, Se, educated susceptibles,
M , the susceptible individuals who are completely aware from drug harms and
will not use drugs forever, I, infective individuals, i.e., drug users and R drug
users in treatment and rehabilitation. We denote the number of this com-
partments by Sne(t), Se(t),M(t), I(t) and R(t), respectively. We assume that,
recruits (including travelers, newborns,...) enter the susceptible population at
a constant rate Λ, noneducated susceptibles become under educational pro-
grams with constant rate ε, and educated susceptible individuals to become
infected, i.e., drug use at rate βI

N
. We also assume that infected individuals,

i.e., drug users, become under treatment/rehabilitation at rate ν, and drug
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users under treatment/rehabilitation relapse to the class of untreated drug
users at rate δ1βI

N
. On the other hand, educated susceptibles and drug users

in treatment/rehabilitation, become completely aware of drugs at rate θ and
δ2, respectively. Furthermore all individuals suffer from natural death rate µ,
while α is drug-related death rate. Because of the importance of early ages, i.e.
school and teenage years, indicated in [13] and mentioned above, we suppose
that almost all of the population goes under educational programs, mostly at
school age and teenage years. Furthermore all recruited populations take the
educational programs. Therefore we can neglect the flow from Sne to I. The
evolution of the life of an individual in various stages can be represented by
the above diagram, and the parameters are defined as in Table 1. Based on the
flow diagram of the model depicted in the above figure, we obtain the following
ODE system: 

dSne
dt

= Λ− εSne − µSne

dSe
dt

= εSne −
λSe
N
− θSe − µSe

dM

dt
= θSe + δ2R− µM

dI

dt
=
λSe
N

+
λδ1R

N
− νI − µI

dR

dt
= νI − λδ1R

N
− δ2R− µR

(1)

In which λ = βI is the force of infection. On the positivity of solutions of (1),
we have the following result.

Theorem 2.1. If initial data Sne(0) > 0, Se(0) > 0, M(0) > 0, I(0) > 0 and
R(0) > 0, then the solution (Sne(t), Se(t),M(t), I(t), R(t)) of (1) is positive for
all t ≥ 0.

Proof: Let (Sne(t), Se(t),M(t), I(t), R(t)) be the solution of the system
(1) with initial data Sne(0) > 0, Se(0) > 0, M(0) > 0, I(0) > 0 and R(0) > 0.
Suppose that the conclusion is not true, then there is a t∗ > 0 such that,

min{Sne(t∗), Se(t∗),M(t∗), I(t∗), R(t∗)} = 0

and
min{Sne(t), Se(t),M(t), I(t), R(t)} > 0

for all t ∈ [0, t∗). If min{Sne(t∗), Se(t∗),M(t∗), I(t∗), R(t∗)} = Sne(t
∗), then

we have,
dSne
dt
≥ −εSne − µSne, for all t ∈ [0, t∗). Hence, 0 = Sne(t

∗) ≥

Sne(0)exp(−
∫ t∗

0
(ε+µ)dt) > 0, which leads to a contradiction. Similarly, we can

obtain contradictions when, min{Sne(t∗), Se(t∗),M(t∗), I(t∗), R(t∗)}, is equal
to other variables of the system. This completes the proof.
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We consider the total population of the community, i.e., N , to be constant.
Hence Λ = µSne + µSe + µM + µI + µR. Now we replace Λ in (1), and then

use the substitutions sne =
Sne
N

, se =
Se
N

, m =
M

N
, i =

I

N
and r =

R

N
=

1− sne − se −m− i, which yields the following final form of our system:

dsne
dt

= µ− εsne − µsne

dse
dt

= εsne − βise − θse − µse

dm

dt
= θse + δ2 − δ2sne − δ2se − δ2m− δ2i− µm

di

dt
= βise + βδ1i− βδ1isne − βδ1ise − βδ1im− βδ1i

2 − νi− µi

(2)

We study (2) in the following feasible region:

Ω = {(sne, se,m, i) ∈ R4
+ : sne ≥ 0, se ≥ 0,m ≥ 0, i ≥ 0, sne + se +m+ i ≤ 1}

Which is positively invariant with respect to (2). This system has a unique
drug-free equilibrium,

P0 = (s∗ne, s
∗
e,m

∗, i∗) = (
µ

ε+ µ
,

εµ

(ε+ µ)(θ + µ)
,

θε

(ε+ µ)(θ + µ)
, 0),

and the Jacobian matrix of P0 has the following form:

J(P0) =


−ε− µ 0 0 0

ε −θ − µ 0 −βs∗e
−δ2 θ − δ2 −δ2 − µ −δ2

0 0 0 βs∗e − ν − µ

 .

Which has the eigenvalues −ε−µ,−θ−µ,−δ2−µ, βs∗e−ν−µ. Now we define

the basic reproduction number by R0 = βs∗e
µ+ν

= βεµ
(ε+µ)(θ+µ)(ν+µ)

. See [9], for the

definition and properties of the basic reproduction number.
It is clear that βs∗e − ν − µ < 0 if and only if R0 < 1, and we obtain the
following result on the local stability of the drug-free equilibrium.

Theorem 2.2. The drug-free equilibrium point P0 of 2 has asymptotic stability
when R0 < 1 and instability when R0 > 1.
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3. Endemic equilibrium points and backward bifurcation

The endemic equilibrium points of 2 satisfy the following system,

µ− εs∗ne − µs∗ne = 0

εs∗ne − βi∗s∗e − θs∗e − µs∗e = 0

θs∗e + δ2 − δ2s
∗
ne − δ2s

∗
e − δ2m

∗ − δ2i
∗ − µm∗ = 0

βi∗s∗e + βδ1i
∗ − βδ1i

∗s∗ne − βδ1i
∗s∗e − βδ1i

∗m∗ − βδ1(i2)∗ − νi∗ − µi∗ = 0

which yields that, i∗ is the positive root of

A(i∗)3 +B(i∗)2 + Ci∗ +D = 0 (3)

where A = −β2δ1µ, B = β(δ1µ(β(1 − q1) − (θ + µ)) − (δ2 + µ)(ν + µ)),
C = β(µ(1− q1)(µ+ δ2 + δ1(θ+ µ))− δ1εq1(µ+ θ))− (δ2 + µ)(θ+ µ)(ν + µ) =
(µ+ δ2)(θ + µ)(ν + µ)(R0 − 1), and
D = µθδ2+µ2θ+µ2δ2+µ3−µq1θδ2−µ2q1θ−µ2q1δ2−µ3q1−µεq1δ2−µ2εq1+δ2

2θ+
δ2θµ+δ2

2µ+δ2µ
2−δ2

2q1θ−δ2q1θµ−δ2
2q1µ−δ2q1µ

2−δ2
2εq1−δ2εq1µ−δ2θεq1−δ2

2θ−
δ2

2µ+δ2
2q1θ+δ2

2q1µ+δ2
2εq1−µθεq1−µδ2θ−µ2δ2 +µδ2q1θ+δ2q1µ

2 +µδ2εq1 = 0,

in which q1 =
µ

ε+ µ
. Since D = 0, i∗ is the root of the following quadratic

equation, F (i∗) = A(i∗)2 +Bi∗ + C = 0.
Now F ′′(i∗) = 2A < 0, hence the quadratic polynomial F (i∗) is a concave

parabola and has a maximum point i∗max = − B
2A

with F (i∗max) = 4AC−B2

4A
. If

R0 > 1, since F (0) = C > 0, ∆ = B2 − 4AC > 0 and A < 0, the equation
F (i∗) = 0 has exactly one positive solution (an endemic equilibrium).
In most epidemic models, at the critical value of the reproduction number
R0 = 1, an endemic equilibrium bifurcates and exists when R0 > 1. However,
there are epidemic models in which the bifurcating endemic equilibrium exists
for R0 < 1. In such cases, it is said that backward bifurcation occurs, and
there is a range of the reproduction number Rc

0 < R0 < 1, where there are at
least two endemic equilibria. See [9] for more details.
For the occurrence of backward bifurcation, we must have i∗max > 0 and
F (i∗max) ≥ 0, which are equivalent to B > 0 and ∆ ≥ 0. For the computation

of Rc
0 we solve ∆ = 0, which yields, Rc

0 = 1 − B2

4β2δ1µ(µ+ δ2)(θ + µ)(ν + µ)
.

The above arguments imply the following theorem.

Theorem 3.1. If R0 > 1, system (2) has a unique endemic equilibrium point,
and when Rc

0 < R0 < 1 and B > 0, it has two endemic equilibrium points.

Now we study the bifurcation of drug-free equilibrium point P0 when
R0 = 1, by using the Castillo-Chavez and Song theorem (theorem 4.1. in [4]),
which is proved by center manifold theory. See [2, 3, 11, 12, 18] for applications
of this theorem. The relation R0 = 1 can be interpreted in term of parameter



120 Reza Memarbashi, Malek Pourhosseini

β as β = β∗ =
ν + µ

s∗e
. The eigenvalues of the Jacobian matrix, J(P0, β

∗) are

λ1 = −θ−µ, λ2 = −ε−µ, λ3 = −δ2−µ and λ4 = 0. Now since 0 is simple and
nonzero eigenvalues are nonnegative real numbers, when β = β∗ (or R0 = 1)
the assumption (A1) of the Castillo-Chavez and Song theorem, is verified. Let
w = (w1, w2, w3, w4, w5)T , be the right eigenvector of J(P0, β

∗) associated with
eigenvalue λ4 = 0, and founded by:

(−ε− µ)w1 = 0

εw1 − (θ + µ)w2 − β∗s∗ew4 = 0

−δ2w1 + (θ − δ2)w2 − (δ2 + µ)w3 − δ2w4 = 0

A simple computation implies, w1 = 0, w3 = −θ(ν + µ) + δ2(ν + θ)

δ2 + µ
, w4 =

θ + µ and w2 = −(ν + µ). On the other hand, v = (v1, v2, v3, v4, v5), the left
eigenvector associated with zero eigenvalue which is founded by vA = 0 and
has the following form, v = (0, 0, 0, 1). Now we compute the quantities a and
b of theorem 3.2., that is,

a =
4∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(P0, β
∗) = 2βv4w4(−δ1(w2 + w3 + w4) + w2)

and b =
∑4

k,i=1 vkwi
∂2fk
∂xi∂φ

(P0, β
∗) = v4w4s

∗
e. We observe that b is positive, so

that, it is the sign of a which determines the behavior of the system around

β = β∗. We consider A1 = ν+µ and A2 =
δ1ν(2δ2 + µ+ θ)

δ2 + µ
. Hence if A2 > A1,

a > 0 and a < 0 if A2 < A1. Now part (4) in the theorem of Castillo-Chavez
and Song implies the following result.

Theorem 3.2. If A2 < A1, in the ODE system (2), backward bifurcation oc-
curs when R0 = 1. Furthermore, endemic equilibrium has asymptotic stability
when R0 > 1 and close to one.

4. Global stability of equilibrium points

In this section, we discuss the global stability of steady states. At first,
we consider the drug-free equilibrium point.

Proposition 4.1. The drug-free equilibrium point, P0, is globally asymptoti-

cally stable in Ω, if, R0 ≤ R∗0 =
εµ

(ε+ µ)(θ + µ)(1 + δ1)
.

Proof. Define V : {(sne, se,m, i) ∈ Ω : sne > 0, se > 0,m > 0} → R by

V (sne, se,m, i) = i
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The time derivative of V along the solution curves of (2) is,

dV

dt
=
di

dt
≤ (β(1 + δ1)− (ν + µ))i = (ν + µ)(

R0(1 + δ1)

s∗e
− 1)i

Therefore,
dV

dt
≤ 0 when R0 ≤ R∗0 =

s∗e
1 + δ1

=
εµ

(ε+ µ)(θ + µ)(1 + δ1)
. Fur-

thermore,
dV

dt
= 0 if and only if i = 0. Hence Lasalle invariance principle

shows the global asymptotic stability of P0 with respect to the invariant set Ω.
See [7, 16] for the proofs and applications of the notion of asymptotic stability
with respect to invariant sets.
Now we present the geometric method for the global stability problem, proved
in [8], see [1, 3, 8] for applications of the method. Let us denote unit ball of R2

and its boundary and closure by, B, ∂B, and B̄ respectively. We also denote
the collection of all Lipschitzian functions from X to Y , by Lip(X → Y ).
We consider a function φ ∈ Lip(B̄ → Ω) as a simply connected and recti-
fiable surface in Ω ⊆ Rn. A closed and rectifiable curve in Ω, can be de-
scribed as a function φ ∈ Lip(∂B → Ω) and called simple if it is one to
one. Suppose Σ(ψ,Ω) = {ψ ∈ Lip(B̄ → Ω) : φ|∂B = ψ}. Let Ω be an
open domain which is simply connected, then Σ(ψ,Ω) is a nonvoid set, for
any simple, closed and rectifiable curve in Ω. Consider a norm ‖.‖ on

R(n2). We define a functional S on the surfaces in Ω by the following rela-
tion: Sφ =

∫
B̄
‖P (φ)( ∂φ

∂u1
∧ ∂φ

∂u2
)‖du, in which the mapping u 7→ φ(u) is Lips-

chitzian on B̄, and ∂φ
∂u1
∧ ∂φ

∂u2
is the wedge product in R(n2). Furthermore, the(

n
2

)
×
(
n
2

)
matrix function P , is invertible and ‖P−1‖ is a bounded function

on φ(B̄). Consider the vector field x 7→ f(x) ∈ Rn, which is a C1 function
on the set Ω ⊂ Rn, and the following ODE system, dx

dt
= f(x). We consider

the function φt(u) = x(t, φ(u)) as the solution of the system passing through
(0, φ(u)), for any φ. We define the right-hand derivative of Sφt, by the fol-
lowing relation, D+Sφt =

∫
B̄

limh→0+
1
h
(‖z + hQ(φt(u))z‖ − ‖z‖)du, in which

Q = PfP
−1 + P ∂f [2]

∂x
P−1, where Pf is the matrix obtained by replacing each

entry pij of P by its directional derivative in the direction of f , i.e.,
∂pij
∂x
· f ,

and ∂f [2]

∂x
denotes the second additive compound matrix of ∂f

∂x
, see [8]. Fur-

thermore, we consider the following differential equation, dz
dt

= Q(φt(u))z for

which the solution is of the form z = P (φ)( ∂φ
∂u1
∧ ∂φ
∂u2

). The formula D+Sφt can

be expressed as, D+Sφt =
∫
B̄
D+‖z‖du. The Jacobian matrix of (2) is given

by,
∂f

∂x
= [aij], in which,

a11 = −ε− µ, a12 = 0, a13 = 0, a14 = 0, a21 = ε, a22 = −βi− θ − µ
a23 = 0, a24 = −βse, a31 = −δ2, a32 = θ − δ2, a33 = −δ2 − µ, a34 = −δ2

a41 = −βδ1i, a42 = βi− βδ1i, a43 = −βδ1i
a44 = βse + βδ1 − βδ1sne − βδ1se − βδ1m− 2βδ1i− ν − µ
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And the second additive compound matrix of ∂f
∂x

has the following form:

M =
∂f [2]

∂x
= [Mij], with the following components:

M11 = −ε− 2µ− βi− θ,M12 = 0,M13 = −βse,M14 = 0,M15 = 0
M16 = 0,M21 = θ − δ2,M22 = −ε− 2µ− δ2,M23 = −δ2,M24 = 0,M25 = 0
M26 = 0,M31 = βi− βδ1i,M32 = −βδ1i
M33 = −ε− 2µ+ βse + βδ1 − βδ1sne − βδ1se − βδ1m− 2βδ1i− ν,M34 = 0
M35 = 0,M36 = 0,M41 = δ2,M42 = ε,M43 = 0
M44 = −βi− θ − 2µ− δ2,M45 = −δ2,M46 = βse,M51 = βδ1i,M52 = 0
M53 = ε,M54 = −βδ1i
M55 = −βi− θ − 2µ+ βse + βδ1 − βδ1sne − βδ1se − βδ1m− 2βδ1i− ν
M56 = 0,M61 = 0,M62 = βδ1i,M63 = −δ2,M64 = −βi+ βδ1i,M65 = θ − δ2

M66 = −δ2 − 2µ+ βse + βδ1 − βδ1sne − βδ1se − βδ1m− 2βδ1i− ν

Let P = [pij] be the matrix with, p11 = p22 = p34 = p43 = p55 = p66 = 1
i
,

in which other arrays are zero. The inverse of P is P−1 = [qij] with the
q11 = q22 = q34 = q43 = q55 = q66 = i, in which other arrays are zero. Fur-
thermore, Pf = [lij] with l11 = l22 = l34 = l43 = l55 = l66 = − i′

i2
and other

arrays are zero. Hence we have the relation, PfP
−1 = −diag(

i′

i
,
i′

i
,
i′

i
,
i′

i
,
i′

i
,
i′

i
),

therefore the matrix Q has the following form, Q = PfP
−1 + PMP−1 = [Aij]

in which,
A11 = −ε− µ− βi− θ − βse − βδ1 + βδ1sne + βδ1se + βδ1m+ βδ1i+ ν
A14 = −βse, A21 = θ − δ2

A22 = −ε− µ− δ2 − βse − βδ1 + βδ1sne + βδ1se + βδ1m+ βδ1i+ ν,A24 = −δ2

A31 = δ2, A32 = ε
A33 = −βi− θ − µ− δ2 − βse − βδ1 + βδ1sne + βδ1se + βδ1m+ βδ1i+ ν
A35 = −δ2, A36 = βse, A41 = βi− βδ1i, A42 = −βδ1i
A44 = −ε− µ− βδ1i, A51 = βδ1i, A53 = −βδ1i, A54 = ε
A55 = −βi−θ−µ−βδ1i, A62 = βδ1i, A63 = −βi+βδ1i, A64 = −δ2, A65 = θ−δ2

A66 = −δ2 − µ− βδ1i

Now we use the norm introduced in [5], for R6.

Lemma 4.1. There is a constant τ > 0, for which D+‖z‖ ≤ −τ‖z‖ for all
z ∈ R6 and sne, se,m, i > 0, where z is the solution of dz

dt
= Q(φt(u))z, provided

that,

µ+ 2β > ν + θ + δ2, µ+ ε > 2β + 2βδ1 + δ2 + θ, 2β < µ+min{δ2, θ}. (4)

Proof. We prove the existence of a τ > 0 for which D+‖z‖ ≤ −τ‖z‖.
The full calculation to demonstrate this relation contains sixteen cases related
to the different orthants and the above norm, see [2]. We present the argu-
mentation of one case; all the others are treated in the same way.
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Case 1: U1 < U2 and z4, z5, z6 > 0. In this case ||z|| = |z4|+ |z5|+ |z6| and

D+||z|| =z′4 + z′5 + z′6 = A41z1 + A42z2 + A44z4 + A51z1 + A53z3 + A54z4

+ A55z5 + A62z2 + A63z3 + A64z4 + A65z5 + A66z6 ≤ (βi+ βδ1i)|z1|
+ (βδ1i)|z2|+ (−ε− µ− βδ1i)|z4|+ (βδ1i)|z1|+ (βδ1i)|z3|+ (ε)|z4|
+ (−βi− θ − µ− βδ1i)|z5|+ (βδ1i)|z2|+ (βi+ βδ1i)|z3|+ (−δ2)|z4|
+ (θ − δ2)|z5|+ (−δ2 − µ− βδ1i)|z6|

thus D+||z|| < (−3µ − 3δ2 + 3βδ1i + βi)||z||, and βi + 3βδ1i ≤ β + 3βδ1 <
5
2
(µ+ δ2), hence −3µ− 3δ2 + 3βδ1i+ βi < 0.

In [8], the geometric method is applied to investigate the global stability of a
unique steady state. In such cases, there exists a compact absorbing set. Hence
surfaces remain in Ω for all time. But in models with backward bifurcation,
such as model 1, such a set will not exist. Hence as in [1], we prove the
existence of the following sequence ϕk of surfaces in the next lemma.

Lemma 4.2. For an arbitrary simple and closed curve ψ in Ω, there is ε > 0
and surfaces ϕk which minimizes S with respect to Σ(ψ,Ω), in such a way that,
for all k = 2, 3, ... and t ∈ [0, ε], ϕkt ⊆ Ω.

Proof. Let ξ =
1

2
min{i : (sne, se,m, i) ∈ ψ}, in which i is the infective

variable of system (2). It is easy to see that ψ > 0. From (2) and positivity of
solutions, we have,

di

dt
≥ −βδ1i(sne+se+m+i)−(ν+µ)i = −βδ1i(1−r)−(ν+µ)i ≥ −(βδ1+ν+µ)i

which holds in Ω. Hence there exists ε > 0 such that, the solutions with i(0) ≥
ξ, remains in Ω, for t ∈ [0, ε]. Hence we must show the existence of a sequence

{ϕk} which minimizes S with respect to Σ(ψ, Ω̃), in which Ω̃ = {(sne, se,m, i) ∈
Ω : i ≥ ξ}. Now for ϕ(u) = (sne(u), se(u),m(u), i(u)) ∈ Σ(ψ,Ω), we define

another surface ϕ̃(u) = (s̃ne(u), s̃e(u), m̃(u), ĩ(u)) by,
ϕ(u) if i(u) ≥ ξ

(sne, se,m, ξ) if i(u) < ξ, sne + se +m+ ξ ≤ 1

A if i(u) < ξ, sne + se +m+ ξ > 1

in which,

A = (
sne√

3(sne + se +m)
(1−ξ), se√

3(sne + se +m)
(1−ξ), m√

3(sne + se +m)
(1−ξ), ξ)

It is easy to see that ϕ̃(u) ∈ Σ(ψ, Ω̃). We will prove Sϕ̃ ≤ Sφ. We denote
∂ϕ̃

∂u1

∧ ∂ϕ̃

∂u2

= (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6)T and
∂ϕ

∂u1

∧ ∂ϕ

∂u2

= (x1, x2, x3, x4, x5, x6)T ,

and prove ‖ ∂φ̃
∂u1
∧ ∂φ̃

∂u2
‖ ≤ ‖ ∂φ

∂u1
∧ ∂φ

∂u2
‖.
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Case 1. If i(u) ≥ ξ then ϕ̃ = ϕ and therefore, |x̃j| = |xj|, (j = 1, 2, · · · , 6).
Case 2. If i(u) < ξ and sne+se+m+ξ ≤ 1, then ϕ̃(u) = (sne(u), se(u),m(u), ξ).
Therefore it follows x̃j = xj(j = 1, 2, 4) and x̃j = 0(j = 3, 5, 6). Thus |x̃j| ≤
|xj|.
Case 3. If i(u) < ξ and sne+se+m+ξ > 1, then ϕ̃(u) = (

sne√
3(sne + se +m)

(1−

ξ),
se√

3(sne + se +m)
(1 − ξ), m√

3(sne + se +m)
(1 − ξ), ξ). In this case, using

∂s̃ne
∂uj

+
∂s̃e
∂uj

+
∂m̃

∂uj
= 0, we can obtain,

∂ϕ̃

∂u1

= z1(u1)f1 + z2(u1)f2 and
∂ϕ̃

∂u2

=

z1(u2)f1 + z2(u2)f2 in which, f1 = [−1, 1, 0, 0]T and f2 = [−1, 0, 1, 0]T and

z1(uj) =
1− ξ√

3

(sne +m)
∂se
∂uj
− se(

∂sne
∂uj

+
∂m

∂uj
)

(sne + se +m)2

z2(uj) =
1− ξ√

3

(sne + se)
∂m

∂uj
−m(

∂sne
∂uj

+
∂se
∂uj

)

(sne + se +m)2

for j = 1, 2. Therefore,

∂ϕ̃

∂u1

∧ ∂ϕ̃

∂u2

= (z1(u1)z2(u2)− z2(u1)z1(u2))f1 ∧ f2 =

(1− ξ)2

3(sne + se +m)4
K [1,−1, 0, 1, 0, 0]T

in which, K = sne(sne + se +m)x1 −m(sne + se +m)x2 + se(sne + se +m)x4,

which yields, || ∂φ̃
∂u1

∧ ∂φ̃

∂u2

|| ≤ |x1| + |x2| + |x4| ≤ ||
∂φ

∂u1

∧ ∂φ

∂u2

||. Furthermore

ĩ(u) = max{i(u), ξ}, hence
1

ĩ
≤ 1

i
. Now let P̃ = [p̃ij], with p̃11 = p̃22 =

p̃34 = p̃43 = p̃55 = p̃66 = 1

ĩ
, in which other arrays are zero. Since |1

ĩ
x̃j| ≤

|1
i
xj| (j = 1, 2, 4) and |1

ĩ
x̃j| ≤ |

1

i
xj| (j = 3, 5, 6), by an easy computation

Sφ̃ =
∫
B̄
‖P̃ (φ̃)( ∂φ̃

∂u1
∧ ∂φ̃

∂u2
)‖du ≤

∫
B̄
‖P (φ)( ∂φ

∂u1
∧ ∂φ

∂u2
)‖du = Sφ. Using lemma,

we can choose δ = inf{Sφ : φ ∈ Σ(ψ,Ω)}. Suppose that {φk}, minimizes S

with respect to Σ(ψ,Ω), then limk→∞ Sφk = δ. Now consider the sequence

{φ̃k} ⊂ Σ(ψ, Ω̃) as in the above definition, from the boundedness of {Sφ̃k}
and Sφ̃k ≤ Sφk, we have limk→∞ Sφ̃k ≤ δ. Furthermore φ̃k ∈ Σ(ψ,Ω), hence

Sφ̃k ≥ δ, and limk→∞ Sφ̃k ≥ δ, which implies limk→∞ Sφ̃k = δ. Now

inf{Sφ̃ : φ̃ ∈ Σ(ψ, Ω̃)} ≤ inf{Sφ : φ ∈ Σ(ψ,Ω)} = δ

and from φ̃ ∈ Σ(ψ,Ω) we have inf{Sφ̃ : φ̃ ∈ Σ(ψ, Ω̃)} ≥ δ, which implies

inf{Sφ̃ : φ̃ ∈ Σ(ψ, Ω̃)} = δ. At the final we can show that limk→∞ Sφ̃k = δ =
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inf{Sφ̃ : φ̃ ∈ Σ(ψ, Ω̃)}, i.e., {φ̃k} minimizes S relative to Σ(ψ, Ω̃).

From lemmas 4.1 and 4.2, we have the following result.

Theorem 4.1. Any ω-limit point of 1 in Ω◦ is an equilibrium point, and
therefore each positive semi-trajectory of system converges to an equilibrium
point.

Finally, from the above theorem, we obtain the following result.

Theorem 4.2. Assume that inequality (4) is satisfied, then:
(1) If there is no endemic equilibrium, then all solutions of (1), tend to the
drug-free equilibrium P0;
(2) If R0 > 1, then all solutions of (1), converge to the unique endemic equi-
librium;
(3) If there are two endemic equilibrium points, which occurs when Rc

0 < R0 <
1, solutions of the system either go to the drug-free equilibrium P0 or tend to
the upper equilibrium point.

5. Conclusions

The White and Comiskey’s model of heroin epidemics is extended in
this paper. This extension includes the split of the susceptible populations
into three compartments, noneducated susceptibles, educated susceptibles and
individuals who are completely aware of drug harms so that they will not
use drugs forever. A complete qualitative study of the model including the
existence and local and global stability of the equilibrium points are carried
out. The drug-free equilibrium P0, is shown to be locally and globally stable
under suitable conditions. Using compound matrices the sufficient conditions
for the local and global stability of the endemic equilibrium points is obtained.
The occurrence of backward bifurcation is also proved for the model which
shows under some conditions, it is not enough to reduce R0 to the region
R0 < 1, to control the drug epidemic. In fact when R0 < 1, the drug problem
may be persistent. Hence we compute another threshold, Rc

0 < 1, and show
that for the control of drug epidemic, R0 should be reduced to below Rc

0.
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