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EXTREMAL FIRST AND SECOND ZAGREB INDICES OF APEX 

TREES 

Naveed AKHTER1, Muhammad Kamran JAMIL2, Ioan TOMESCU3 

Let G be a simple connected graph with edge set ( )E G and vertex set ( )V G . 

The first and the second Zagreb indices of the graph G  are defined as 

2
1

( )

( ) = ( ( ))

v v G

M G d v



  and 2
( )

( ) = ( ) ( )

uv E G

M G d u d v



 , respectively, where 

( )d v  is the degree of the vertex v . A graph G  is called an apex tree [8] if it contains 

a vertex x  such that G x  is a tree. For any integer 1k   the graph G  is called   

k-apex tree if there exists a subset X  of ( )V G  of cardinality k  such that G X  is 

a tree and for any ( )Y V G  and | |<Y k , G Y  is not a tree. In this work we have 

determined upper and lower bounds of 1( )M G  and an upper bound of 2( )M G  in k-

apex trees. The corresponding extremal k-apex trees are also characterized in each case. 
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1. Introduction 

Let G  be a simple graph with vertex set ( )V G  and edge set ( )E G . The first 

and second Zagreb indices of G  are defined as 
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                2
( )

( ) = ( ) ( ),

uv V G

M G d u d v



  

where ( )d v  is the degree of the vertex v . In the last decade a lot of work was done 

on these two indices. In [4] a history of these graph parameters as well as their 

mathematical properties are presented. 

All graphs considered in this paper are simple, finite and connected. For a 

vertex ( )v V G , its degree is denoted by ( )Gd v  and if G  is clear from the context 

we simplify the notation to ( )d v . The minimum degree of G  is denoted by ( )G . A 

vertex in G  of degree one is called pendant vertex. For ( )X V G , G X  is the 

subgraph of G  obtained from G  by removing the vertices of X  and edges incident 

with them, in particular { }G v  is denoted by G v . The complete bipartite graph 

1, 1nK   is known as n -star and is denoted by nS . The integers 1 2, , , ni i i  are called 

almost equal if    1 2 1 2, , , , , , 1n nmax i i i min i i i  . The join of two vertex-disjoint 

graphs G  and H  is the graph G H  with ( ) = ( ) ( )V G H V G V H   and the 

edges of G H  are all edges of graphs G  and H  and the edges obtained by joining 

each vertex of G  with each vertex of H . 

In topological graph theory, graphs that contain a vertex whose removal yields 

a planar graph play an important role and are called apex graphs [1, 6]. Along these 

lines a graph G  is called an apex tree [8] if it contains a vertex x  such that G x  is 

a tree. The vertex x  is called apex vertex of G . Note that a tree is always an apex 

tree, hence a non-trivial apex tree is an apex tree which itself is not a tree. For any 

integer 1k   the graph G  is called k-apex tree if there exists a subset X  of ( )V G  

of cardinality k  such that G X  is a tree and for any ( )Y V G  and | |<Y k , 

G Y  is not a tree. A vertex in X  is called k-apex vertex. Clearly, 1-apex trees are 

precisely non-trivial apex trees. Apex trees and k-apex trees were introduced in [7] 

under the name quasi-tree graphs and k-generalized quasi-tree graphs, respectively. 

Recently in [9] Kinkar Ch. Das et al. determined upper and lower bounds on weighted 

Harary indices for apex trees and k-apex trees. 

For any 3n   and 1k  , let 

(a) ( )T n  denotes the set of all non-trivial apex trees of order n . 

(b) ( )kT n  denotes the set of all k-apex trees of order n . 

Note that 1( ) = ( )T n T n . 

We need the following upper bounds on Zagreb indices: 
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Lemma 1.1  [2, 3] If T  is a tree of order n , then 

(a) 1( ) ( 1)M T n n     ;    (b) 2
2( ) ( 1)M T n 

 
 

and in both cases equality holds if and only if = nT S , the star graph of order n . 

The following Lemma easily follows from definitions.  

Lemma 1.2  If , ( )u v V G  are not adjacent, then 

(a) 1 1( ) > ( )M G uv M G   ;     (b) 2 2( ) > ( ).M G uv M G   

Lemma 1.3  If ( )G T n , 1( )M G  and 2( )M G  are as large as possible and x  is 

an apex vertex of G , then:  

(a) ( ) = 2G  ; (b) ( ) = 1.d x n    

Proof. (a) Suppose that ( ) = 1G  and ( )y V G  is a pendant vertex, then ( )xy E G  

and ( )G xy T n  . By Lemma 1.2, 1 1( ) > ( )M G xy M G , which contradicts our 

hypothesis. Now we will show that ( ) 2G  . Suppose that all vertices have degree 

greater or equal to three. Now for any vertex v G , each vertex in G v  has degree 

greater or equal to two, which implies that G v  is not a tree for any ( )v V G . Hence 

( ) = 2G . The conclusion similarly holds for 2( )M G . 

(b) Let ( )G T n , 1( )M G  is as large as possible and x  be an apex vertex of 

G . Suppose to the contrary that ( ) < 1d x n  , then there is a vertex ( )y V G  such 

that ( )xy E G . Now G xy  is also in ( )T n  and 1 1( ) > ( )M G xy M G , a 

contradiction, hence ( ) = 1d x n  . The conclusion similarly holds for 2( )M G .  

2. Extremal k-Apex Trees for 1( )M G  

In this section we will find upper and lower bounds of 1( )M G  for k-apex trees. 

Lemma 2.1 [5] For any two vertex-disjoint graphs G  and H , we have:  

 

      

      

      

      

2

1 1 1

2

( ) = ( ) ( )

| | | |

4

4 | | .

M G H M G M H V G V G H V G

V H V G H V H

E G V G H V G

E H V G H V H

    

  

  

  
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Theorem 2.2 If ( )G T n  and 5n  , then  

 2
1( ) 2 6M G n   

and equality holds if and only if 1 1= .nG K S    

Proof. If ( )G T n  and 1( )M G  is as large as possible, then by Lemma 1.3 we have 

1 1= nG K T  , where 1nT   is a tree of order 1n , therefore by using Lemma 2.1, we 

obtain 

 

 

          
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| ( ) | (| ( ) | | ( ) |)

4 | ( ) | (| ( ) | | ( ) |)

4 | ( ) | (| ( ) | | ( ) |).

n

n n

n n n

n

n n n

M G M K T

M K M T V K V K T V K

V T V K T V T

E K V K T V K

E T V K T V T



 

  



  



    

  

  

  

 

Using Lemma 1.1 yields  

 

         
    

22
1

2

( ) 1 2 1 1 1

4 2 1

= 2 6.

M G n n n n n n

n n n

n

        

   



 

Lemma 1.1 guaranties that equality holds if and only if 1 1= nG K S  . 

Theorem 2.3  If 2k  , 5n   and ( )kG T n , then  

 2 2
1( ) ( 1)( 1) ( 1)( 1)M G k n n k k        

and equality holds if and only if = .k n kG K S    

Proof. We will prove it by induction on k . We have already proved this property for 

=1k  in Theorem 2.2. Now suppose that the result is true for (k -1)-apex trees. Let 

( )kG T n  has the maximum 1( )M G . Let ( )kV V G  be the set of k-apex vertices. 

As 1 1( ) > ( )M G uv M G  for any ( )uv E G  this implies that kV  forms a complete 

graph and for any ku V , ( ) = 1d u n  . So the number m  of edges of the graph G  

is 

  = 1
2

k
m k n k n k

 
     

 
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 

  
1

= 1 1 .
2

k k
k n k


     (2.1) 

Let kx V  and 1 =k kV V x  . Note that ( ) = 1d x n  , G x  is a  

(k-1)-apex tree and 

                 
 

  
2

1 1G
v V G x

M G x d v

 

      

            
 

 
 

 
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2
1 2 1G G

v V G x v V G x v V G x

M G x d v d v

     

        

  
 

 
       

 

22

2
1

2 1 1 2 1

4 5 4,or

G G
v V G v V G

d v d v n n n

M G m n n

 

       

    

 
 

          2
1 1= 4 5 4.M G M G x m n n      

By equation (2.1) we have  

    
 

   2
1 1

1
= 4 1 1 5 4.

2

k k
M G M G x k n k n n

 
         

 
 

As we have supposed that the result is true for (k-1)-apex trees, we deduce  

 

   
 

  

     

2 2
1

2

2 2

1
( ) 2 1 4 1 1

2

5 4

= 1 1 1 1 .

k k
M G k n n k k k n k

n n

k n n k k

 
          

 

  

     

 

 

Equality holds if and only if = k n kG K S  . 

Theorem 2.4 If ( )kG T n , 1k   and 3n k , then  

 1( ) 4 10 10M G n k    

and equality holds if and only if G  has 2 2n k   vertices of degree 2  and 2 2k   

vertices of degree 3 .  

Proof. By definition of a k-apex tree, there exists a subset X  of ( )V G  of cardinality 

k  such that G X  is a tree and for any ( )Y V G  and | |<Y k , G Y  is not a tree. 

It follows that ( ) 2d v   for any vertex v X . If m  denotes the number of edges of 
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G , it follows that 2 1= 1m k n k n k      . For given natural numbers n  and p

, denote 2
1 =1

( , , ; ) =
n

n ii
f x x p x , where 

=1
=

n
ii

x p . If 
=1

=
n

ii
x p  and p  is 

fixed, it is well known that 1( , , ; )nf x x p  is minimum if and only if 1, , nx x  are 

almost equal, or 1 1i jx x     for every , = 1, ,i j n . Denote this minimum by 

( , )f n p . It is clear that the function ( , )f n p  is strictly increasing in p . We have 

1( ) ( ,2 ) ( ,2 2 2)M G f n m f n n k     since 1m n k   . Equality holds if and only 

if the degrees of G  are almost equal and all vertices in X  have the degree equal to 

two. Suppose that G  has exactly the minimum number of edges, equal to 1n k   

and denote by tn  and 1tn   the number of vertices of G  having the degree equal to 

t  and 1t  , respectively, where 1 tn n  . It follows that 1 =t tn n n   and 

( 1)( ) = 2 2 2t ttn t n n n k     , or  

 ( 1) = 2 2 2.tt n n n k     (2.2) 

If = 1t  then (2.2) becomes 2 = 2 2 2tn n n k   , which is not possible since 

2 2 1tn n n    and 2 2 2 2n k n   . Also, if 3t   we have  

 
Fig. 1. k-apex tree with almost equal degrees 

( 1) 4 3t tt n n n n n      but 
8

2 2 2 2
3

n
n k     since 

3

n
k  . Consequently, we 

have = 2t . From (2.2) we get 2 = 2 2n n k  , hence the minimum of 1( )M G  is 

reached if and only if there exist 2 2n k   vertices of degree 2  and 2 2k   vertices 

of degree 3 . Such a graph is illustrated in Fig. 1.  

  

3.  Upper Bound of 2( )M G  for k-Apex Trees 

In this section we will find a sharp upper bound of 2( )M G  for k-apex trees. 

Lemma 3.1 [5] For any two vertex-disjoint graphs G  and H , we have:  
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        

        
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        

        

        

2 2 1

2

1

2

2

2

( ) =

12[2 ]

12[2 ]

21
.

2 2

M G H M G V G H V G M G

V G H V G E G M H

V G H V H M H V G H V H E H

E G V G V G H V G

E H V H V G H V H

E G V G V G H V G

E H V H V G H V H

   

   

     

   

   

   
 
    
 

 

Theorem 3.2  If ( )G T n  and 3n  , then  

 2( ) ( 1)(5 9)M G n n    

and equality holds if and only if 1 1= nG K S  .  

Proof. If ( )G T n  and 2( )M G  is as large as possible then by Lemma 1.3 

1 1= nG K T  , where 1nT   is a tree of order 1n . Therefore  

            2 2 1 1( ) = ( )nM G M K T   

and by using Lemma 3.1, we have  
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      
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      
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2 1 1 2 1 1 1 1 1 1

1 1 1 1

2 1 1 1 1 1 1

1 1 1 1

2

1 1 1 1 1

2

1 1 1 1 1

( ) = ( )

12 2

12 2

n n

n

n n n n

n n n

n

n n n n

M K T M K V K T V K M K

V K T V K E K

M T V K T V T M T

V K T V T E T

E K V K V K T V K

E T V T V K T V T
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
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  



   

   

  

   

  

    
 

    
 
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        

      
 

2

1 1 1 1 1

1 1 1 1

1

2

1

2
2

n

n n n

n

E K V K V K T V K

V T V K T V T

E T


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

   
 
    
 
 
 

  

Using Lemma 1.1 yields 

2( ) ( 1)(5 9).M G n n    

Lemma 1.1 guaranties that equality holds if and only if 1 1= nG K S  . 

Theorem 3.3 If 2k  , 5n   and ( )kG T n , then 

 
2

2
( 1)( 1)(3 2 5 2 2)

( )
2

n k nk n k k
M G

     
  

and equality holds if and only if = .k n kG K S    

Proof. We will prove this theorem by induction on k . We have already proved this 

property for =1k  in Theorem 3.2. Now suppose that the result is true for (k-1)-apex 

trees. Let ( )kG T n  has the maximum 2( )M G . Let ( )kV V G  be the set of k-apex 

vertices. As 2 2( ) ( )M G uv M G   for any ( )uv E G  this property implies that kV  

forms a complete graph and for any ku V , ( ) = 1d u n  . So the number m  of edges 

of graph G  is  

  = 1
2

k
m k n k n k

 
     

 
 

   
 

  
1

= 1 1 .
2

k k
k n k


     (3.1) 

Let kx V  and 1 =k kV V x  . Note that ( ) = 1d x n  , G x  is a  

(k-1)-apex tree and 

   

    
 

     2 1 1G G

uv E G x

M G x d u d v
 

      

            

 
   

 
    

 

1G G G G
uv E G x uv E G x uv E G x

d u d v d u d v

     

        
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 
   

 
   

 
   

 
    

 
    

 
    

 
    

 
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2 1
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1

1

1 1
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( 1) ( ) ( 1) ( ) 1

= ( ) ( ) ( 1)(2 1) (

G G G
uv E G x xu E G

G G G
xu E G uv E G x

G
xu E G

G
xu E G

G G G G
uv E G uv E G

G G
xu E G xu E G

d u d v n d u

n d u d u d v

n d u

n d u m n

d u d v d u d v

n d u n d u m n

M G M G n m n n
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  





 

 

 
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   
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 
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By equation (3.1) and Theorem 2.3, we have 

      
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2 2
2 2
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As we have supposed that the result is true for (k-1)-apex trees, we get 
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M G
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    

              

      

2 2

2

( 1)( 1) ( 1)( 1)

3 1 2 1 1 2 2

( 1) 2 1 2 1 1 1 ( 1)

k n n k k

k k k n k n
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       

        

          

  

            

2 2 2 2 3 2 2

3

1
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2

2 7 4 2)

n k n k nk nk nk n k

k k n

       

   
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            21
( 1)(2 3 5 2 2)

2
nk n k n nk k k          

            
2( 1)( 1)(3 2 5 2 2)

.
2

n k nk n k k     
   

Equality holds if and only if = k n kG K S  .  

4. Conclusion 

The Zagreb indices have been successfully used in many QSAR/QSPR studies. 

A study of weighted Harary indices of apex trees and k-apex trees has been done in [9]. 

In this paper we determined the upper and lower bounds for Zagreb indices of k-apex 

trees. We also characterized the extremal graphs for these indices. It would be 

interesting to derive similar results for other famous indices for example Randić index, 

sum connectivity index, eccentric connectivity index etc. of k-apex trees. 
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