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DECOMPOSITION METHOD OF NUCLEAR MAGNETIC 

RESONANCE T2 SPECTRUM COMPONENTS BASED ON 

RESIDUAL FULLY CONNECTED NEURAL NETWORK 

Shuwang WU1, Gong ZHANG2* 

The decomposition of nuclear magnetic resonance T2 spectrum components is 

an important means of fluid identification. Based on the forward simulation, this 

paper constructs a data set, transforms the problem into a nonlinear regression 

problem, and proposes a residual fully connected neural network model. By 

debugging the network structure and hyperparameters, the optimal model is 

determined. The results show that the model has a better fitting effect than Gaussian 

decomposition and Transformer model and has good stability and generalization 

ability. Experimental data verification further illustrates its practical application 

value in T2 spectrum component decomposition. 
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1. Introduction 

As the production of conventional oil and gas resources continues to decline 

globally, the direction of oil and gas exploration is gradually changing and 

innovating. Unconventional oil and gas resources have replaced traditional oil and 

gas extraction fields, achieving a series of breakthroughs and becoming the 

forefront of petroleum exploration and a hot research area in various oil fields. 

However, unconventional reservoirs have complex pore structures and diverse fluid 

occurrence states, making it difficult for conventional methods to accurately 

evaluate reservoir fluid properties, posing significant challenges for fluid evaluation 

in unconventional reservoirs [1,2]. 

Currently, nuclear magnetic resonance (NMR) logging is an important 

research method for evaluating reservoir fluids, as it can directly measure the 

hydrogen nuclear signals in pore fluids without considering the rock matrix. NMR 

technology is widely used in petroleum logging to evaluate reservoir pore structures. 
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Using NMR T2 spectra, it can obtain abundant reservoir fluid information such as 

porosity, permeability, and fluid saturation [3]. Traditional NMR logging methods 

include the Twin Wait Time (TW) method and the Twin Echo Time (TE) method. 

The TW method evaluates reservoir fluids based on the different polarization times 

of fluids by comparing the measurements of long and short wait times, utilizing 

techniques such as differential spectrum method and time-domain analysis. The TE 

method determines reservoir fluid properties by comparing NMR T2 spectra at 

different echo intervals, based on the differences in fluid diffusion coefficients, 

using methods like shifted spectrum method, diffusion analysis, and enhanced 

diffusion method. Among these, the differential spectrum method and time-domain 

analysis have good theoretical support, but due to the combined effects of pore 

structure and fluid properties, the fluid identification capability of these methods in 

unconventional reservoirs is low [4,5]. 

To expand the application of NMR technology in reservoir evaluation, many 

scholars have proposed new fluid identification methods based on NMR technology. 

In 2015, Jiang T.M. [6] and others used the factor analysis method proposed by Jain 

V. [7] to evaluate the producibility and reservoir quality of shale oil and gas 

reservoirs, demonstrating the potential of this technology in fluid property 

identification. In 2020, Zhong [8] and others proposed decomposing NMR T2 

spectra into multiple normal distribution curves to identify fluid properties within 

pores. Previous studies indicate that the decomposition method of NMR T2 

spectrum components is significant for exploring the application value of NMR 

technology. 

Machine learning is an interdisciplinary field that uses models developed 

with deep learning techniques to learn complex concepts using simple concepts. 

Deep learning, a subclass of machine learning, sets many hidden layers between 

input and output, with each layer undergoing multiple linear and nonlinear 

transformations. By extracting multiple levels of features from raw data through 

sequential or recurrent computational units, deep learning autonomously finds the 

features that best describe the dataset, making it highly suitable for solving complex 

nonlinear problems [9,10]. Over the past decade, machine learning has been 

increasingly combined with NMR logging in various aspects. Zhang [11] and others 

combined artificial neural networks (ANN) with dimensionality reduction methods 

for reservoir parameter measurement, significantly improving the accuracy of 

parameter predictions. Misra [12] and others used variational autoencoder neural 

networks, generative adversarial networks, variational encoder-generative 

adversarial networks, and long short-term memory networks to encode, decode, and 

predict NMR T2 spectra. 

Although the component decomposition problem of nuclear magnetic 

resonance T2 spectra can be achieved through traditional methods such as Gaussian 

mixture models or Gaussian process regression, the applicability of traditional 
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methods is significantly limited for the non-ideal characteristics such as spectral 

peak overlap and non-Gaussian peak shape existing in T2 spectra of unconventional 

reservoirs. In contrast, deep learning can implicitly learn the complex mapping 

relationships in the data through hierarchical feature extraction and nonlinear 

transformation mechanisms. At the same time, it combines the physical constraints 

in the training data set, thereby taking into account both the decomposition accuracy 

and robustness of the model. Furthermore, the end-to-end training mechanism of 

deep neural networks avoids subjective dependencies such as manually presetting 

the number of components and iterative parameter adjustment in traditional 

methods, significantly improving the generalization ability and computational 

efficiency of the method in complex reservoir environments. Therefore, deep 

learning models show better adaptability in the task of T2 spectrum decomposition. 

In this paper, we apply a deep learning model to the problem of 

decomposing NMR T2 spectrum components and propose a T2 spectrum 

component decomposition method based on a residual fully connected neural 

network. This method uses a theoretical dataset generated through forward 

simulation as input data and the construction parameters corresponding to 

individual T2 spectra in the dataset as label data. Through model training and 

hyperparameter optimization, a stable and highly generalized model was obtained, 

which directly decomposes NMR T2 spectra into component spectra representing 

different components. The transverse relaxation characteristics of each component 

spectrum can accurately identify fluid types, providing a new technical means for 

evaluating unconventional reservoirs. 

2. Objectives 

This paper aims to solve the problem of NMR T2 spectrum component 

decomposition with the following main objectives: 

1. Based on the traditional residual network, modify the residual block structure 

to build a residual fully connected neural network. Train the neural network 

using a sufficiently large dataset constructed through forward simulation to 

achieve the decomposition of NMR T2 spectrum components. 

2. By adjusting the depth and width of the network structure, the model's 

hyperparameter settings are optimized to improve the model's performance in 

the theoretical T2 spectrum component decomposition task. 

3. The actual measured NMR T2 spectrum was decomposed into components 

through the final optimal model, and the results were compared with the real 

results to verify the accuracy and reliability of the model in the actual NMR T2 

spectrum component decomposition task. 
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3. Methods 

3.1 Decomposition of NMR T2 Spectrum Components 

Nuclear Magnetic Resonance (NMR) logging measures the relaxation 

signals of hydrogen atoms in reservoir pores using a spin-echo pulse sequence (Carr, 

Purcell, Meiboom, Gill, CPMG) to represent echo train signals. The transverse 

relaxation time (T2 time) is determined by the decay process, where the echo 

amplitude decays exponentially at a rate of 1/T2. Since the storage space within the 

rock is composed of pores of various sizes, and these pores contain different types 

of fluid components, the echo signal is often represented by a multi-exponential 

decay formula: 
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where 𝐴(t) represents the echo amplitude at time 𝑡; 𝑇2𝑖 represents the T2 

time of the 𝑖-th fluid component; 𝑀𝑖(0) represents the echo signal magnitude of the 

𝑖-th fluid component at 𝑡 = 0. 

By performing multi-exponential inversion fitting of the hydrogen nucleus 

spin echo signals using Equation (1), the T2 distribution spectrum of the transverse 

relaxation time can be obtained. The NMR T2 spectrum is typically considered to 

be linearly superimposed by multiple Gaussian distribution curves and can thus be 

accurately fitted with multiple independent Gaussian distribution curves (see Fig. 

1). Conversely, decomposing the NMR T2 spectrum into multiple component 

spectra allocates the corresponding reservoir pore fluid information to these 

component spectra. 

3.2 Residual Fully Connected Neural Network 

In recent years, constructing deeper neural networks has become a popular 

trend in machine learning, known as deep learning. From LeNet, AlexNet, to tens 

of layers of VGG-Net, and to Google's Inception or hundreds of layers of Residual 

Neural Network (ResNet), these networks have played key roles in the development 

of machine learning and its applications [13]. The traditional ResNet introduces the 

concept of residual learning based on Convolutional Neural Networks (CNN), 

designing residual blocks with shortcut connections and using multiple such 

residual blocks end-to-end to construct a residual neural network, as shown in Fig. 

2(a). Traditional ResNet algorithms use local convolutional kernels and deep neural 

networks, with input typically being multi-channel images, performing well in 

image processing [14-16]. However, the input for nonlinear functions is usually a 

one-dimensional vector, and convolution is a local operator. This means if the 

vector is reconstructed into a matrix, the convolutional kernel can only affect part 

of the sequence, not the entire sequence. Therefore, it is not suitable for complex 

nonlinear function regression problems like NMR T2 spectrum component 
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decomposition. 

Based on the original structure of ResNet, the convolutional and pooling 

layers in the residual block were replaced with fully connected layers while 

retaining the batch normalization layers of the original model. This constructs a 

nonlinear regression neural network more suited to solving nonlinear regression 

problems, as shown in Fig. 2(b).  

 
Fig. 1. NMR T2 Spectrum and Component Signals 

 

(a) Traditional ResNet Residual Block Structure (b) Modified Residual Block Structure 

Fig. 2. Traditional ResNet Residual Block Structure and Modified ResNet Structure 

 

3.3 Construction of Forward Simulation Dataset 

Deep learning can establish the relationship between input data and target 

output based on a limited sample space by constructing and minimizing the loss 

function. Deep learning networks can map input data to make predictions. If a high-

quality large dataset exists, the universality of deep neural networks can reveal 

relationships of any complexity. Generating theoretical T2 spectra through forward 

simulation ensures an accurate correspondence between data and labels. 

The forward simulation model is based on Gaussian distribution, where the 

distribution of each component can be represented by a Gaussian function, 

including variance (𝜎𝑖) , expectation 𝜇(𝜇𝑖), and the relaxation time corresponding 

to the spectrum peak (𝑇2𝑝𝑒𝑎𝑘
𝑖 ). The calculation expression for 𝜇𝑖is as follows: 
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where 𝑇2𝑚𝑖𝑛 represents the minimum relaxation time on the T2 spectrum 

axis, and 𝑇2𝑚𝑎𝑥 represents the maximum relaxation time on the T2 spectrum axis. 

𝑛 = 1,2…𝑁,𝑁, where 𝑁 is the number of discrete relaxation times for T2, i.e., the 

number of sampling points. The complete T2 spectrum is obtained by linear 

superposition of each component. 

When constructing the T2 spectrum model, the value range of the T2 

spectrum's horizontal axis is crucial. The horizontal axis of the T2 spectrum 

represents the transverse relaxation time, typically set between 0.3 to 3000 ms in 

actual logging. Bound water and heavy oil are usually distributed in the range of 

0.3 to 30 ms, while free water and light oil are distributed in the range greater than 

30 ms, generally within hundreds of milliseconds. Gases are located on the far right 

of the T2 spectrum, in the range of thousands of milliseconds. If the T2 value range 

is set too small, important information may be missed. In this paper, the minimum 

relaxation time for T2 is set to 0.01 ms, and the maximum relaxation time is 10,000 

ms. A T2 spectrum with 64 discrete relaxation time points is constructed (N=64), 

and these time points are selected within the preset T2 value range to ensure a 

detailed description of the T2 spectrum. 

During the construction of the dataset, the amplitude values of each 

component in a single T2 spectrum are first normalized so that the sum of the 

amplitude values is 1, facilitating subsequent neural network model training. T2 

spectra with 2 to 5 components are generated randomly, based on the distribution 

range of bound water, heavy oil, water, light oil, and gas components in the T2 

spectrum. The random generation method helps improve the model's prediction and 

analysis capabilities for actual NMR data. The amplitude at each sampling point of 

the T2 spectrum is processed using a summation normalization method to facilitate 

subsequent model training. The summation normalization formula is as follows: 
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where ℎ represents the peak value of each component's T2 spectrum, 𝑐 

represents the peak center of each component's T2 spectrum, 𝑤 represents the peak 

width of each component's T2 spectrum, and 𝑁 represents the number of sampling 

points on the T2 spectrum. 

For T2 spectra with fewer than 5 components, zero values are used to 

supplement the data, ensuring that regardless of the number of components, the 

amplitude information of a single T2 spectrum (1×64) corresponds to the one-
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dimensional Gaussian parameter information (1×15). The original dataset consists 

of T2 spectra generated through forward simulation and the Gaussian parameters 

corresponding to multiple components in a single T2 spectrum. 

The original dataset constructed in this paper contains 200,000 theoretical 

T2 spectrum data, including T2 spectra with 2 to 5 components (see Fig. 3), and it 

preserves the Gaussian parameters corresponding to multiple components in a 

single T2 spectrum. The objective of this research is to solve the component 

decomposition problem of T2 spectra. Whether it is laboratory sample data or actual 

logging data, the obtained T2 spectra are all the results of the original echo signals 

processed by the inversion algorithm, and the noise has been preprocessed through 

techniques such as smooth filtering and regularization constraints during the 

inversion process. Therefore, no additional noise was introduced in the original 

dataset constructed in this paper to match the input distribution characteristics of 

the real data. 

 
      (a) 2 components                (b) 3 components 

 
  (c) 2 components              (d) 4 components 

Fig. 3. NMR T2 Spectra of Training Set Components 

 

3.4 Construction and Hyperparameter Selection of Residual Fully 

Connected Neural Network 

The residual fully connected neural network is a modified version of the 

traditional residual network (ResNet), where the convolutional and pooling layers 
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in the ResNet residual blocks are replaced with fully connected layers, while 

retaining the batch normalization layers of the original model. This modification 

makes the residual blocks more suitable for solving complex nonlinear regression 

problems and alleviates the vanishing gradient problem. 

In the model used in this paper, each residual block consists of the following 

structure: a fully connected layer using Rectified Linear Unit (ReLU) as the 

activation function, another fully connected layer without an activation function, 

followed by a shortcut connection that directly adds the input to the output of the 

second fully connected layer, and finally another fully connected layer using ReLU 

activation function. After the input layer, the model stacks different numbers of 

fully connected layers and residual blocks, gradually reducing the number of 

neurons in each layer to capture the complex features of the input data. 

NMR T2 spectrum component decomposition is a regression problem, 

where the component spectrum generated by the linear superposition of multiple 

Gaussian parameters fits the T2 spectrum. Therefore, this experiment uses Root 

Mean Square Error (RMSE) and R-squared (R2) as evaluation metrics for model 

prediction results. The smaller the RMSE, the smaller the prediction error and the 

higher the accuracy; the larger the R2, the higher the overall accuracy of the results. 

ReLU is used as the activation function in this experiment because its 

gradient is easy to compute and it effectively addresses the problem of getting stuck 

at saddle points or local minima during training [17]. The ReLU expression is as 

follows: 

Re ( ) max(0, )LU x x=                                   (4) 

To minimize the loss function, the Adaptive Moment Estimation (Adam) 

method is used. The Adam method combines the advantages of the Adaptive 

Gradient Algorithm (AdaGrad) by calculating individual adaptive learning rates for 

different parameters, allowing it to perform well even with sparse gradients. 

To avoid overfitting, the early stopping strategy is employed. When training 

large models, it is often observed that the training loss decreases over time while 

the validation loss starts to increase. The early stopping strategy stops training at 

the point of lowest validation loss, resulting in a model with better validation 

performance. This strategy is widely used in deep learning due to its effectiveness 

and simplicity. The algorithm stops training when no progress is made in the 

validation loss within a pre-specified number of epochs. 

The depth and width of ResNet affect its approximation ability. To evaluate 

the effect, one factor is fixed while considering the impact of the other. Specifically, 

when assessing the effect of depth, the width of each hidden layer is fixed, and the 

depth is varied. Conversely, when considering the impact of width, the depth of 

ResNet is fixed, and the width is varied. 

3.4.1 Selection of the Number of Nodes in the First Layer 

In this experiment, the input consists of 64 T2 spectrum amplitude 
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information, and the output consists of 15 component parameter information. Since 

the number of input features is greater than the number of output features, each new 

hidden layer added to the network should have fewer nodes than the previous layer 

to effectively extract detailed features from the data. Therefore, the width of the 

first layer is crucial. In this paper, the number of nodes in the first hidden layer (m) 

is set to 32, 64, 128, and 256, respectively, and a 5-layer network (excluding the 

input layer) is constructed with the following structure: input layer, one fully 

connected layer (number of nodes m), one modified residual block mentioned 

earlier (Fig. 5(a), containing fully connected layer nodes m), and an output layer. 

Fig. 4 shows the prediction results for different numbers of neurons in the first 

hidden layer. 

In Fig. 4, m represents the number of nodes in the first hidden layer. As 

shown, as the number of nodes increases, the prediction accuracy gradually 

improves, peaking at 128 nodes. However, when the number of nodes increases to 

256, the prediction accuracy decreases. The input data used in this experiment is 

the 1×64 T2 spectrum amplitude information, where each point is an amplitude 

feature, and the entire input data represents the component information of the entire 

T2 spectrum. Therefore, around 128 neurons can better fit the feature information 

contained in the amplitude data. When the number of neurons continues to increase, 

the feature information in the amplitude data is dispersed across more neurons, 

leading to blurred features and decreased prediction accuracy. Thus, in this 

experiment, using 128 as the number of nodes in the first hidden layer of the 

network is the optimal structure. 

 
Fig. 4. Training Results with Different Numbers of Neurons in the First Hidden Layer 

 

3.4.2 Selection of Network Layers 

The number of hidden layers in a network significantly impacts the 

component decomposition results. Typically, as network depth increases, the 

model's predictive performance also improves. However, increasing the number of 

layers can lead to gradient vanishing and exploding problems. Additionally, deep 
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networks are prone to overfitting and network degradation. Therefore, finding the 

appropriate number of network layers is crucial. 

In the process of parameter transmission and error backpropagation in 

neural networks, neurons in the earlier hidden layers can learn more generalized 

features, while neurons in the higher hidden layers can learn more detailed features. 

In this experiment, the input consists of 64 T2 spectrum amplitude information, and 

the output consists of 15 component parameter information. Since the number of 

input features is greater than the number of output features, each new hidden layer 

added to the network should have fewer nodes than the previous layer to effectively 

extract detailed features from the data. The residual structure used in this paper is 

shown in Fig. 5(a), where each residual block includes: a fully connected layer 

using ReLU activation function, another fully connected layer without an activation 

function, a shortcut connection that directly adds the input to the output of the 

second fully connected layer, and finally, a fully connected layer using ReLU 

activation function. The number of nodes in the fully connected layers in the 

residual block is the same as the number of nodes in the fully connected layer of 

the preceding layer in the residual block. 

 
(a) Residual Block (b) Residual Fully Connected Neural Network 

Fig. 5. Residual Block Structure and Residual Fully Connected Neural Network used in this paper 

 

From the experiment in section 3.1.1, it was determined that 128 is the 

optimal number of nodes for the first hidden layer for this task. Therefore, the 

number of nodes in the second hidden layer is set to 64, and the third hidden layer 

is set to 32. Each residual block is considered as a 3-layer network structure. One 

or two residual blocks are added after each fully connected layer. Table 1 shows the 

results of the number of nodes in the hidden layers of residual fully connected neural 

networks with different layers (different numbers of residual blocks). 

Table 1 provides the training information for residual regression models of 
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different depths. As it can be seen, the optimal depth is approximately 17 layers. 

Fig. 5(b) shows the corresponding network structure diagram. At this depth, the 

model achieves the minimum loss function, the smallest RMSE value, and the 

largest R2 value. 
 

Table 1 

Training Metrics of Residual Fully Connected Neural Networks with Different Layers 

Depth of 

ResNet 

Stopping 

Epochs 

Training 

Loss(10-4) 

Validation 

Loss(10-4) 
RMSE R2 

5 100 14.074 19.865 0.2647 0.6272 

9 100 5.765 7.281 0.1241 0.7834 

13 76 5.075 5.211 0.0852 0.873 

17* 65 4.862 4.5221 0.0425 0.9531 

21 59 4.273 5.376 0.0527 0.9104 

25 100 6.683 5.872 0.1311 0.7653 

29 78 7.993 10.869 0.1825 0.6977 

33 100 36.554 39.897 0.3655 0.5924 

3.4.3 Selection of Hyperparameters 

Based on the experimental results in Sections 3.4.1 and 3.4.2, the 

hyperparameters of the model were selected. The key hyperparameters for the 

model include: Learning Rate, Epochs, and Batch Size. These three parameters have 

a significant impact on the gradient calculation of the network's backpropagation 

and the optimization of the total loss function. Improper settings can lead to model 

overfitting or underfitting. Ultimately, a dynamic adjustment strategy for the 

learning rate was adopted in this paper: when the model's loss function does not 

significantly improve over a period of time, the learning rate is actively reduced to 

help the model converge better in the later stages of training. Additionally, the early 

stopping strategy is used to ensure the optimal model is obtained in a single training 

session. After multiple adjustments, the batch size was set to 512. All subsequent 

network models were trained and predicted using the above strategy and 

hyperparameters. 

After determining the above parameters, a 17-layer residual fully connected 

neural network was constructed (as shown in Fig. 5(b)), and the constructed forward 

simulation dataset was used for training. Out of 200,000 data points, 190,000 were 

randomly selected as the training set, and 10,000 as the test set, for model training 

and prediction, resulting in the outcomes shown in Fig. 6. 

Fig. 6(a)-(d) respectively shows the comparison between the model’s 

component decomposition results on the NMR T2 spectra of 2 to 5 components and 

the real component spectra and compares the result of linear superposition of each 

decomposed component with the real T2 spectrum. It can be seen from the figure 

that the peak positions and peak amplitudes of different components in the predicted 

results and the real results are basically consistent, and the similarity in spectral 

morphology is also very high. The T2 spectrum after linear superposition almost 
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completely overlaps with the real T2 spectrum, and the peak height, peak center and 

peak width are basically the same. It can be seen that the final model has good 

prediction effect and high generalization ability. 

3.5 Decomposition Results and Comparative Analysis of Other Methods 

Based on the experiments in Section 3.4, this section uses two methods to 

perform the same T2 spectrum component decomposition task, including the 

Gaussian decomposition method and the Transformer model. The following will 

introduce these two methods and compare and analyze their decomposition results. 

 
(a) Decomposition Results for 2 Components (b) Decomposition Results for 3 Components 

 
(c) Decomposition Results for 4 Components (d) Decomposition Results for 5 Components 

Fig. 6. Decomposition Results of Residual Fully Connected Neural Network Components 

 

3.5.1 Gaussian decomposition method 

Gaussian decomposition method is a traditional spectral decomposition 

technique. The nuclear magnetic resonance T2 spectrum is usually regarded as a 
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linear superposition of multiple normal distribution curves, and the specific 

expression is: 

2
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Where 𝒂𝒊, 𝝁𝒊, 𝝈𝒊represent the amplitude, center position and width of the i-

th component, respectively, and k is the number of components. In this experiment, 

the nonlinear least squares fitting method is used to perform Gaussian fitting on the 

T2 spectrum, with the goal of minimizing the error between the synthetic T2 

spectrum and the actual T2 spectrum. Although this method is highly interpretable 

and can give a clear spectral decomposition position, it relies on subjective factors 

such as the number of components preset manually and iterative parameter 

adjustment. It is easy to fall into a local optimal solution when dealing with non-

ideal factors such as spectral peak overlap and non-Gaussian peak shape in the T2 

spectrum of unconventional reservoirs. 

3.5.2 Transformer Model 

The Transformer model is a non-convolutional architecture mainly used to 

process sequence-to-sequence tasks. The model captures global dependencies 

through the self-attention mechanism. The Transformer model uses the self-

attention mechanism to realize information interaction between any positions in the 

input sequence. It is suitable for modeling global dependencies and complex 

nonlinear mapping relationships. Its core idea can also be applied to various 

sequence data processing tasks, including T2 spectral decomposition. In this 

experiment, the Transformer architecture used includes: an input layer with a length 

of 64, an input embedding dimension of 128, and 4 Transformer encoding layers 

(the number of encoding layers is equal to the number of residual blocks in the 

residual fully connected neural network). Each encoding layer includes multi-head 

self-attention, residual connection, layer normalization and feedforward network. 

The number of multi-head attention heads is 8, the dimension of the feedforward 

network is 512, and the dimension is 15. The final output layer corresponds to the 

decomposition of 5 groups of Gaussian function parameters. The Transformer 

architecture used in this paper is shown in Fig. 7.  

 
Fig. 7. Tranformer Model Used in this Paper 
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The Transformer model can effectively handle complex features such as 

overlapping peaks and non-Gaussian peaks without presetting the number or shape 

of peaks. 

3.5.3 Comparison of decomposition results of each model component 
Table 2 compares the results of Gaussian decomposition method, 

Transformer model and residual fully connected neural network proposed in this 
paper on the test set. In the prediction results of 10,000 groups of data in the test 
set, the residual fully connected neural network proposed in this paper has the 
smallest RMSE value and the largest R2 value, indicating that its prediction error 
is the smallest and its fitting degree is the highest. In terms of dynamic time warping 
(DTW), the DTW value of this method is 0.0923, which is significantly lower than 

that of Gaussian decomposition method and Transformer model. DTW is a method 

to measure the similarity between two sequences. A lower DTW value indicates that 

the proposed method can more accurately match the position of the spectral peak. 

In terms of the peak position (F1-Score, F1), the minimum peak height ratio set 

during calculation is 5%, and the position matching tolerance is 0.1, that is, the 

logarithmic difference between the position of the predicted peak and the position 

of the true peak must be less than or equal to the set 0.1. The proposed method is 

significantly higher than the Gaussian decomposition method and the Transformer 

model, indicating that the proposed method has significant advantages in 

identifying and separating overlapping peaks and hidden peaks, and can more 

accurately match the number and position of peaks. In terms of spectral overlap 

coefficient (Spectral Overlap Cofficient, SOC), the SOC value of the proposed 

method is 0.9573, which is higher than the results of the other two methods. The 

higher SOC value further proves the superiority of the proposed method in spectral 

morphology matching, which can be closer to the morphology of the true spectrum. 

As can be seen from the scores, the Gaussian decomposition method and the 

Transformer model are lacking in the recognition coefficients of overlapping peaks 

and hidden peaks and are not as good as the model proposed in this paper. The same 

is true for the spectral overlap coefficient. 

Table 2 

Processing results of three methods 

Method RMSE R2 DTW F1 SOC 

Gaussian decomposition 0.136 0.85 0.2089 0.86 0.9234 

Transformer 0.092 0.89 0.1465 0.93 0.9352 

Method of this paper 0.043 0.95 0.0923 0.96 0.9573 

 

In summary, the residual fully connected neural network proposed in this 

paper performs well in solving the complex nonlinear regression problem of nuclear 

magnetic resonance T2 spectrum component decomposition, which is better than 

the traditional Gaussian decomposition method and Transformer model. This 

further verifies the advantages of the residual fully connected neural network in 
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processing one-dimensional nonlinear regression tasks. 

4. Results 

After obtaining the NMR T2 spectrum results decomposed from the model 

trained using the residual fully connected neural network in Section 3, this paper 

verifies the above experimental results using the actual measured nuclear magnetic 

resonance logging data. The model was used to test the measured T2 spectra of 

multiple component manganese chloride samples and cores respectively. 

4.1 Sample data of manganese chloride solution 

Manganese chloride solution was chosen as the standard sample, and five 

concentrations of manganese chloride solution were prepared for the experimental 

data. After preparing the various concentrations of manganese chloride solution, 

one-dimensional NMR measurements were performed using a 21MHz NMR core 

analyzer. Additionally, one-dimensional NMR data were measured for the 

combined three concentrations and all five concentrations of manganese chloride 

solution. After obtaining the total raw echo train data, inversion was performed to 

obtain an NMR T2 spectrum with 64 sampling points. The three peak centers of the 

three concentrations of manganese chloride solutions were 0.292, 5.058, and 67.298 

respectively, and the five peak centers of the five concentrations of manganese 

chloride solutions were 0.369, 3.724, 26.791, 82.605, and 212.814 respectively. 

Subsequently, the 64 amplitude values of the inverted T2 spectrum were normalized 

and used as input data for the aforementioned model to obtain the predicted output 

data. These predicted data were then compared with the component spectra of the 

various concentrations of manganese chloride solution, as shown in Fig. 8. In the 

figure, groups a and b respectively represent the true T2 spectra of each component 

of three and five concentrations of manganese chloride solutions, the predicted T2 

spectra of each component by the model, and the total T2 spectrum after the linear 

superposition of each component. It can be seen from the results in the figure that 

the peak positions and amplitudes of different components in the predicted results 

and the true results are basically the same, and the spectral morphology similarity 

is extremely high. The peak centers of the fitted component spectra of the three 

concentrations of manganese chloride solutions were 0.318, 4.864, and 64.269, and 

those of the five concentrations of manganese chloride solutions were 0.350, 3.945, 

29.761, 84.140, and 218.829. Although there were slight changes compared with 

the true peak centers of the spectra, the differences were extremely small.  

Moreover, the fitting spectrum errors obtained by superimposing each 

component spectrum are 1.5% and 3.2% respectively, indicating that the component 

decomposition accuracy of the T2 spectrum obtained in this paper is relatively high. 
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(a) Comparison of T2 spectrum decomposition results for 3 concentrations (b) Comparison of T2 

spectrum decomposition results for 5 concentrations 

Fig. 8. Comparison of True and Predicted T2 Spectrum Decomposition Results for 3 and 5 

Concentrations of Manganese Chloride Solution 

4.2 Core measurement data 

The nuclear magnetic resonance T2 spectra measured under the saturated 

water experiment of shale rock samples were processed by applying this model. 

The saturation experiment used distilled water. The main measured parameters were: 

magnetic field intensity of 21MHz, echo interval of 0.08ms, waiting time of 4000ms, 

and the number of echoes of 10,000. After performing the addition and 

normalization operation on the saturated T2 spectra, they were used as the input 

data of the model obtained above to obtain the predicted output data. Then, these 

predicted data were compared with the component spectra of manganese chloride 

solutions of various concentrations, and the results are shown in Fig. 9. Fig. 9 shows 

the true T2 spectra of each component of the shale rock sample after being saturated 

with water, the T2 spectra of each component predicted by the model, and the total 

T2 spectrum after the linear superposition of each component. It can be seen from 

the results in the figure that the peak positions and amplitudes of different 

components in the predicted results and the true results are basically the same, and 

the spectral morphology similarity is extremely high. The three peak centers of the 

T2 spectrum of the water-saturated rock sample are 0.105, 3.020, and 399.955. The 

peak centers of each component spectrum after fitting are 0.112, 2.971, and 408.95 

respectively. Although there is a slight change compared with the true peak centers 

of the spectrum, the difference is extremely small. Moreover, the error of the fitting 

spectrum obtained by superimposing each component spectrum is 1.9%. This 

indicates that the residual fully connected neural network can accurately decompose 

each component of the nuclear magnetic resonance T2 spectrum. 
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Fig. 9 Comparison of the real and predicted results of the component decomposition in the 

saturated T2 spectrum of shale rock samples 
 

Therefore, it can be considered that the residual fully connected neural 

network can be regarded as a component decomposition model of nuclear magnetic 

resonance T2 spectra, successfully completing the component decomposition task 

of nuclear magnetic resonance T2 spectra. 

5. Conclusions 

In this paper, a forward model dataset was first generated, and then a 

residual fully connected neural network was established to solve the problem of 

decomposing the components of the nuclear magnetic resonance T2 spectrum. By 

adjusting the number of neurons in the first hidden layer of the model and the model 

depth, adjusting the hyperparameter components, and comparing the processing 

effects with the Gaussian decomposition method and the Transformer model. 

Through this study, the following conclusions were drawn: 

(1)  For the complex nonlinear regression problem of NMR T2 spectrum 

component decomposition, using a residual fully connected neural network 

yields better results than convolutional neural networks and traditional residual 

neural networks. The residual fully connected neural network is more suitable 

for solving nonlinear regression problems. 

(2) During the training of deep learning models, the depth and width of the 

network have varying degrees of impact on the training results. An ultra-deep 

or ultra-wide network does not necessarily produce better training results. 

Therefore, it is essential to conduct experiments to determine the optimal 

network width and depth for the specific problem at hand. The selection of 



326                                                        Shuwang Wu, Gong Zhang 

hyperparameters is also crucial for the model. 

(3) The results were verified using actual measured logging data to ensure the 

accuracy of the experimental results. The findings indicate that the final model 

obtained in this paper performs well with actual logging data. It can be 

concluded that integrating deep learning methods with certain problems in the 

field of NMR logging can also yield excellent results. 
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