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DECOMPOSITION METHOD OF NUCLEAR MAGNETIC
RESONANCE T2 SPECTRUM COMPONENTS BASED ON
RESIDUAL FULLY CONNECTED NEURAL NETWORK

Shuwang WU!, Gong ZHANG?**

The decomposition of nuclear magnetic resonance T2 spectrum components is
an important means of fluid identification. Based on the forward simulation, this
paper constructs a data set, transforms the problem into a nonlinear regression
problem, and proposes a residual fully connected neural network model. By
debugging the network structure and hyperparameters, the optimal model is
determined. The results show that the model has a better fitting effect than Gaussian
decomposition and Transformer model and has good stability and generalization
ability. Experimental data verification further illustrates its practical application
value in T2 spectrum component decomposition.
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1. Introduction

As the production of conventional oil and gas resources continues to decline
globally, the direction of oil and gas exploration is gradually changing and
innovating. Unconventional oil and gas resources have replaced traditional oil and
gas extraction fields, achieving a series of breakthroughs and becoming the
forefront of petroleum exploration and a hot research area in various oil fields.
However, unconventional reservoirs have complex pore structures and diverse fluid
occurrence states, making it difficult for conventional methods to accurately
evaluate reservoir fluid properties, posing significant challenges for fluid evaluation
in unconventional reservoirs [1,2].

Currently, nuclear magnetic resonance (NMR) logging is an important
research method for evaluating reservoir fluids, as it can directly measure the
hydrogen nuclear signals in pore fluids without considering the rock matrix. NMR
technology is widely used in petroleum logging to evaluate reservoir pore structures.

! Key Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education,
MRT&A Magnetic Resonance Technology and Application Laboratory, Yangtze University,
Wuhan, Hubei, China.

2* Key Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education,
Yangtze University, MRT&A Magnetic Resonance Technology and Application Laboratory,
Yangtze University, Wuhan, Hubei, China, *Corresponding author, e-mail:
gepaguasol92@163.com


mailto:gepaguaso192@163.com

310 Shuwang Wu, Gong Zhang

Using NMR T2 spectra, it can obtain abundant reservoir fluid information such as
porosity, permeability, and fluid saturation [3]. Traditional NMR logging methods
include the Twin Wait Time (TW) method and the Twin Echo Time (TE) method.
The TW method evaluates reservoir fluids based on the different polarization times
of fluids by comparing the measurements of long and short wait times, utilizing
techniques such as differential spectrum method and time-domain analysis. The TE
method determines reservoir fluid properties by comparing NMR T2 spectra at
different echo intervals, based on the differences in fluid diffusion coefficients,
using methods like shifted spectrum method, diffusion analysis, and enhanced
diffusion method. Among these, the differential spectrum method and time-domain
analysis have good theoretical support, but due to the combined effects of pore
structure and fluid properties, the fluid identification capability of these methods in
unconventional reservoirs is low [4,5].

To expand the application of NMR technology in reservoir evaluation, many
scholars have proposed new fluid identification methods based on NMR technology.
In 2015, Jiang T.M. [6] and others used the factor analysis method proposed by Jain
V. [7] to evaluate the producibility and reservoir quality of shale oil and gas
reservoirs, demonstrating the potential of this technology in fluid property
identification. In 2020, Zhong [8] and others proposed decomposing NMR T2
spectra into multiple normal distribution curves to identify fluid properties within
pores. Previous studies indicate that the decomposition method of NMR T2
spectrum components is significant for exploring the application value of NMR
technology.

Machine learning is an interdisciplinary field that uses models developed
with deep learning techniques to learn complex concepts using simple concepts.
Deep learning, a subclass of machine learning, sets many hidden layers between
input and output, with each layer undergoing multiple linear and nonlinear
transformations. By extracting multiple levels of features from raw data through
sequential or recurrent computational units, deep learning autonomously finds the
features that best describe the dataset, making it highly suitable for solving complex
nonlinear problems [9,10]. Over the past decade, machine learning has been
increasingly combined with NMR logging in various aspects. Zhang [11] and others
combined artificial neural networks (ANN) with dimensionality reduction methods
for reservoir parameter measurement, significantly improving the accuracy of
parameter predictions. Misra [12] and others used variational autoencoder neural
networks, generative adversarial networks, variational encoder-generative
adversarial networks, and long short-term memory networks to encode, decode, and
predict NMR T2 spectra.

Although the component decomposition problem of nuclear magnetic
resonance T2 spectra can be achieved through traditional methods such as Gaussian
mixture models or Gaussian process regression, the applicability of traditional
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methods is significantly limited for the non-ideal characteristics such as spectral
peak overlap and non-Gaussian peak shape existing in T2 spectra of unconventional
reservoirs. In contrast, deep learning can implicitly learn the complex mapping
relationships in the data through hierarchical feature extraction and nonlinear
transformation mechanisms. At the same time, it combines the physical constraints
in the training data set, thereby taking into account both the decomposition accuracy
and robustness of the model. Furthermore, the end-to-end training mechanism of
deep neural networks avoids subjective dependencies such as manually presetting
the number of components and iterative parameter adjustment in traditional
methods, significantly improving the generalization ability and computational
efficiency of the method in complex reservoir environments. Therefore, deep
learning models show better adaptability in the task of T2 spectrum decomposition.

In this paper, we apply a deep learning model to the problem of
decomposing NMR T2 spectrum components and propose a T2 spectrum
component decomposition method based on a residual fully connected neural
network. This method uses a theoretical dataset generated through forward
simulation as input data and the construction parameters corresponding to
individual T2 spectra in the dataset as label data. Through model training and
hyperparameter optimization, a stable and highly generalized model was obtained,
which directly decomposes NMR T2 spectra into component spectra representing
different components. The transverse relaxation characteristics of each component
spectrum can accurately identify fluid types, providing a new technical means for
evaluating unconventional reservoirs.

2. Objectives

This paper aims to solve the problem of NMR T2 spectrum component
decomposition with the following main objectives:

1. Based on the traditional residual network, modify the residual block structure
to build a residual fully connected neural network. Train the neural network
using a sufficiently large dataset constructed through forward simulation to
achieve the decomposition of NMR T2 spectrum components.

2. By adjusting the depth and width of the network structure, the model's
hyperparameter settings are optimized to improve the model's performance in
the theoretical T2 spectrum component decomposition task.

3. The actual measured NMR T2 spectrum was decomposed into components
through the final optimal model, and the results were compared with the real
results to verify the accuracy and reliability of the model in the actual NMR T2
spectrum component decomposition task.
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3. Methods
3.1 Decomposition of NMR T2 Spectrum Components

Nuclear Magnetic Resonance (NMR) logging measures the relaxation
signals of hydrogen atoms in reservoir pores using a spin-echo pulse sequence (Carr,
Purcell, Meiboom, Gill, CPMG) to represent echo train signals. The transverse
relaxation time (T2 time) is determined by the decay process, where the echo
amplitude decays exponentially at a rate of 1/T2. Since the storage space within the
rock is composed of pores of various sizes, and these pores contain different types
of fluid components, the echo signal is often represented by a multi-exponential
decay formula:

n
A@) = 3 Mi0) exp(———) (1)
i=0 T2

where A(t) represents the echo amplitude at time t; T,; represents the T2
time of the i-th fluid component; M;(0) represents the echo signal magnitude of the
i-th fluid component at t = 0.

By performing multi-exponential inversion fitting of the hydrogen nucleus
spin echo signals using Equation (1), the T2 distribution spectrum of the transverse
relaxation time can be obtained. The NMR T2 spectrum is typically considered to
be linearly superimposed by multiple Gaussian distribution curves and can thus be
accurately fitted with multiple independent Gaussian distribution curves (see Fig.
1). Conversely, decomposing the NMR T2 spectrum into multiple component
spectra allocates the corresponding reservoir pore fluid information to these
component spectra.

3.2 Residual Fully Connected Neural Network

In recent years, constructing deeper neural networks has become a popular
trend in machine learning, known as deep learning. From LeNet, AlexNet, to tens
of layers of VGG-Net, and to Google's Inception or hundreds of layers of Residual
Neural Network (ResNet), these networks have played key roles in the development
of machine learning and its applications [13]. The traditional ResNet introduces the
concept of residual learning based on Convolutional Neural Networks (CNN),
designing residual blocks with shortcut connections and using multiple such
residual blocks end-to-end to construct a residual neural network, as shown in Fig.
2(a). Traditional ResNet algorithms use local convolutional kernels and deep neural
networks, with input typically being multi-channel images, performing well in
image processing [14-16]. However, the input for nonlinear functions is usually a
one-dimensional vector, and convolution is a local operator. This means if the
vector is reconstructed into a matrix, the convolutional kernel can only affect part
of the sequence, not the entire sequence. Therefore, it is not suitable for complex
nonlinear function regression problems like NMR T2 spectrum component
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decomposition.

Based on the original structure of ResNet, the convolutional and pooling
layers in the residual block were replaced with fully connected layers while
retaining the batch normalization layers of the original model. This constructs a
nonlinear regression neural network more suited to solving nonlinear regression
problems, as shown in Fig. 2(b).
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Fig. 2. Traditional ResNet Residual Block Structure and Modified ResNet Structure

3.3 Construction of Forward Simulation Dataset

Deep learning can establish the relationship between input data and target
output based on a limited sample space by constructing and minimizing the loss
function. Deep learning networks can map input data to make predictions. If a high-
quality large dataset exists, the universality of deep neural networks can reveal
relationships of any complexity. Generating theoretical T2 spectra through forward
simulation ensures an accurate correspondence between data and labels.

The forward simulation model is based on Gaussian distribution, where the
distribution of each component can be represented by a Gaussian function,
including variance (0;) , expectation u(y;), and the relaxation time corresponding
to the spectrum peak (Tzipeak). The calculation expression for y;is as follows:
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where T,y represents the minimum relaxation time on the T2 spectrum
axis, and Ty, represents the maximum relaxation time on the T2 spectrum axis.
n=1,2..N,N, where N is the number of discrete relaxation times for T2, i.e., the
number of sampling points. The complete T2 spectrum is obtained by linear
superposition of each component.

When constructing the T2 spectrum model, the value range of the T2
spectrum's horizontal axis is crucial. The horizontal axis of the T2 spectrum
represents the transverse relaxation time, typically set between 0.3 to 3000 ms in
actual logging. Bound water and heavy oil are usually distributed in the range of
0.3 to 30 ms, while free water and light oil are distributed in the range greater than
30 ms, generally within hundreds of milliseconds. Gases are located on the far right
of the T2 spectrum, in the range of thousands of milliseconds. If the T2 value range
is set too small, important information may be missed. In this paper, the minimum
relaxation time for T2 is set to 0.01 ms, and the maximum relaxation time is 10,000
ms. A T2 spectrum with 64 discrete relaxation time points is constructed (N=64),
and these time points are selected within the preset T2 value range to ensure a
detailed description of the T2 spectrum.

During the construction of the dataset, the amplitude values of each
component in a single T2 spectrum are first normalized so that the sum of the
amplitude values is 1, facilitating subsequent neural network model training. T2
spectra with 2 to 5 components are generated randomly, based on the distribution
range of bound water, heavy oil, water, light oil, and gas components in the T2
spectrum. The random generation method helps improve the model's prediction and
analysis capabilities for actual NMR data. The amplitude at each sampling point of
the T2 spectrum is processed using a summation normalization method to facilitate
subsequent model training. The summation normalization formula is as follows:
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where & represents the peak value of each component's T2 spectrum, ¢
represents the peak center of each component's T2 spectrum, w represents the peak
width of each component's T2 spectrum, and N represents the number of sampling
points on the T2 spectrum.

For T2 spectra with fewer than 5 components, zero values are used to
supplement the data, ensuring that regardless of the number of components, the
amplitude information of a single T2 spectrum (1x64) corresponds to the one-
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dimensional Gaussian parameter information (1x15). The original dataset consists
of T2 spectra generated through forward simulation and the Gaussian parameters
corresponding to multiple components in a single T2 spectrum.

The original dataset constructed in this paper contains 200,000 theoretical
T2 spectrum data, including T2 spectra with 2 to 5 components (see Fig. 3), and it
preserves the Gaussian parameters corresponding to multiple components in a
single T2 spectrum. The objective of this research is to solve the component
decomposition problem of T2 spectra. Whether it is laboratory sample data or actual
logging data, the obtained T2 spectra are all the results of the original echo signals
processed by the inversion algorithm, and the noise has been preprocessed through
techniques such as smooth filtering and regularization constraints during the
inversion process. Therefore, no additional noise was introduced in the original
dataset constructed in this paper to match the input distribution characteristics of
the real data.
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Fig. 3. NMR T2 Spectra of Training Set Components

3.4 Construction and Hyperparameter Selection of Residual Fully
Connected Neural Network

The residual fully connected neural network is a modified version of the
traditional residual network (ResNet), where the convolutional and pooling layers
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in the ResNet residual blocks are replaced with fully connected layers, while
retaining the batch normalization layers of the original model. This modification
makes the residual blocks more suitable for solving complex nonlinear regression
problems and alleviates the vanishing gradient problem.

In the model used in this paper, each residual block consists of the following
structure: a fully connected layer using Rectified Linear Unit (ReLU) as the
activation function, another fully connected layer without an activation function,
followed by a shortcut connection that directly adds the input to the output of the
second fully connected layer, and finally another fully connected layer using ReLU
activation function. After the input layer, the model stacks different numbers of
fully connected layers and residual blocks, gradually reducing the number of
neurons in each layer to capture the complex features of the input data.

NMR T2 spectrum component decomposition is a regression problem,
where the component spectrum generated by the linear superposition of multiple
Gaussian parameters fits the T2 spectrum. Therefore, this experiment uses Root
Mean Square Error (RMSE) and R-squared (R?) as evaluation metrics for model
prediction results. The smaller the RMSE, the smaller the prediction error and the
higher the accuracy; the larger the R?, the higher the overall accuracy of the results.

ReLU is used as the activation function in this experiment because its
gradient is easy to compute and it effectively addresses the problem of getting stuck
at saddle points or local minima during training [17]. The ReLU expression is as
follows:

Re LU(x) = max(0, x) 4)

To minimize the loss function, the Adaptive Moment Estimation (Adam)
method is used. The Adam method combines the advantages of the Adaptive
Gradient Algorithm (AdaGrad) by calculating individual adaptive learning rates for
different parameters, allowing it to perform well even with sparse gradients.

To avoid overfitting, the early stopping strategy is employed. When training
large models, it is often observed that the training loss decreases over time while
the validation loss starts to increase. The early stopping strategy stops training at
the point of lowest validation loss, resulting in a model with better validation
performance. This strategy is widely used in deep learning due to its effectiveness
and simplicity. The algorithm stops training when no progress is made in the
validation loss within a pre-specified number of epochs.

The depth and width of ResNet affect its approximation ability. To evaluate
the effect, one factor is fixed while considering the impact of the other. Specifically,
when assessing the effect of depth, the width of each hidden layer is fixed, and the
depth is varied. Conversely, when considering the impact of width, the depth of
ResNet is fixed, and the width is varied.

3.4.1 Selection of the Number of Nodes in the First Layer
In this experiment, the input consists of 64 T2 spectrum amplitude
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information, and the output consists of 15 component parameter information. Since
the number of input features is greater than the number of output features, each new
hidden layer added to the network should have fewer nodes than the previous layer
to effectively extract detailed features from the data. Therefore, the width of the
first layer is crucial. In this paper, the number of nodes in the first hidden layer (m)
is set to 32, 64, 128, and 256, respectively, and a 5-layer network (excluding the
input layer) is constructed with the following structure: input layer, one fully
connected layer (number of nodes m), one modified residual block mentioned
earlier (Fig. 5(a), containing fully connected layer nodes m), and an output layer.
Fig. 4 shows the prediction results for different numbers of neurons in the first
hidden layer.

In Fig. 4, m represents the number of nodes in the first hidden layer. As
shown, as the number of nodes increases, the prediction accuracy gradually
improves, peaking at 128 nodes. However, when the number of nodes increases to
256, the prediction accuracy decreases. The input data used in this experiment is
the 1x64 T2 spectrum amplitude information, where each point is an amplitude
feature, and the entire input data represents the component information of the entire
T2 spectrum. Therefore, around 128 neurons can better fit the feature information
contained in the amplitude data. When the number of neurons continues to increase,
the feature information in the amplitude data is dispersed across more neurons,
leading to blurred features and decreased prediction accuracy. Thus, in this
experiment, using 128 as the number of nodes in the first hidden layer of the
network is the optimal structure.
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3.4.2 Selection of Network Layers

The number of hidden layers in a network significantly impacts the
component decomposition results. Typically, as network depth increases, the
model's predictive performance also improves. However, increasing the number of
layers can lead to gradient vanishing and exploding problems. Additionally, deep
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networks are prone to overfitting and network degradation. Therefore, finding the
appropriate number of network layers is crucial.

In the process of parameter transmission and error backpropagation in
neural networks, neurons in the earlier hidden layers can learn more generalized
features, while neurons in the higher hidden layers can learn more detailed features.
In this experiment, the input consists of 64 T2 spectrum amplitude information, and
the output consists of 15 component parameter information. Since the number of
input features is greater than the number of output features, each new hidden layer
added to the network should have fewer nodes than the previous layer to effectively
extract detailed features from the data. The residual structure used in this paper is
shown in Fig. 5(a), where each residual block includes: a fully connected layer
using ReLU activation function, another fully connected layer without an activation
function, a shortcut connection that directly adds the input to the output of the
second fully connected layer, and finally, a fully connected layer using ReLU
activation function. The number of nodes in the fully connected layers in the
residual block is the same as the number of nodes in the fully connected layer of
the preceding layer in the residual block.
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Fig. 5. Residual Block Structure and Residual Fully Connected Neural Network used in this paper

From the experiment in section 3.1.1, it was determined that 128 is the
optimal number of nodes for the first hidden layer for this task. Therefore, the
number of nodes in the second hidden layer is set to 64, and the third hidden layer
is set to 32. Each residual block is considered as a 3-layer network structure. One
or two residual blocks are added after each fully connected layer. Table 1 shows the
results of the number of nodes in the hidden layers of residual fully connected neural
networks with different layers (different numbers of residual blocks).

Table 1 provides the training information for residual regression models of
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different depths. As it can be seen, the optimal depth is approximately 17 layers.
Fig. 5(b) shows the corresponding network structure diagram. At this depth, the
model achieves the minimum loss function, the smallest RMSE value, and the
largest R? value.

Table 1
Training Metrics of Residual Fully Connected Neural Networks with Different Layers
Depth of Stopping Training Validation N
ResNet Epochs Loss(10%) Loss(10%) RMSE R
5 100 14.074 19.865 0.2647 0.6272
9 100 5.765 7.281 0.1241 0.7834
13 76 5.075 5.211 0.0852 0.873
17* 65 4.862 4.5221 0.0425 0.9531
21 59 4.273 5.376 0.0527 0.9104
25 100 6.683 5.872 0.1311 0.7653
29 78 7.993 10.869 0.1825 0.6977
33 100 36.554 39.897 0.3655 0.5924

3.4.3 Selection of Hyperparameters

Based on the experimental results in Sections 3.4.1 and 3.4.2, the
hyperparameters of the model were selected. The key hyperparameters for the
model include: Learning Rate, Epochs, and Batch Size. These three parameters have
a significant impact on the gradient calculation of the network's backpropagation
and the optimization of the total loss function. Improper settings can lead to model
overfitting or underfitting. Ultimately, a dynamic adjustment strategy for the
learning rate was adopted in this paper: when the model's loss function does not
significantly improve over a period of time, the learning rate is actively reduced to
help the model converge better in the later stages of training. Additionally, the early
stopping strategy is used to ensure the optimal model is obtained in a single training
session. After multiple adjustments, the batch size was set to 512. All subsequent
network models were trained and predicted using the above strategy and
hyperparameters.

After determining the above parameters, a 17-layer residual fully connected
neural network was constructed (as shown in Fig. 5(b)), and the constructed forward
simulation dataset was used for training. Out of 200,000 data points, 190,000 were
randomly selected as the training set, and 10,000 as the test set, for model training
and prediction, resulting in the outcomes shown in Fig. 6.

Fig. 6(a)-(d) respectively shows the comparison between the model’s
component decomposition results on the NMR T2 spectra of 2 to 5 components and
the real component spectra and compares the result of linear superposition of each
decomposed component with the real T2 spectrum. It can be seen from the figure
that the peak positions and peak amplitudes of different components in the predicted
results and the real results are basically consistent, and the similarity in spectral
morphology is also very high. The T2 spectrum after linear superposition almost
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completely overlaps with the real T2 spectrum, and the peak height, peak center and
peak width are basically the same. It can be seen that the final model has good
prediction effect and high generalization ability.

3.5 Decomposition Results and Comparative Analysis of Other Methods

Based on the experiments in Section 3.4, this section uses two methods to
perform the same T2 spectrum component decomposition task, including the
Gaussian decomposition method and the Transformer model. The following will
introduce these two methods and compare and analyze their decomposition results.
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3.5.1 Gaussian decomposition method

Gaussian decomposition method is a traditional spectral decomposition
technique. The nuclear magnetic resonance T2 spectrum is usually regarded as a
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linear superposition of multiple normal distribution curves, and the specific
expression is:

(log To—u;)?
267

k
f(T2) = §1 a;lexp(— ) (5)

1
Where a;, u;, ojrepresent the amplitude, center position and width of the i-
th component, respectively, and k is the number of components. In this experiment,
the nonlinear least squares fitting method is used to perform Gaussian fitting on the
T2 spectrum, with the goal of minimizing the error between the synthetic T2
spectrum and the actual T2 spectrum. Although this method is highly interpretable
and can give a clear spectral decomposition position, it relies on subjective factors
such as the number of components preset manually and iterative parameter
adjustment. It is easy to fall into a local optimal solution when dealing with non-
ideal factors such as spectral peak overlap and non-Gaussian peak shape in the T2
spectrum of unconventional reservoirs.

3.5.2 Transformer Model

The Transformer model is a non-convolutional architecture mainly used to
process sequence-to-sequence tasks. The model captures global dependencies
through the self-attention mechanism. The Transformer model uses the self-
attention mechanism to realize information interaction between any positions in the
input sequence. It is suitable for modeling global dependencies and complex
nonlinear mapping relationships. Its core idea can also be applied to various
sequence data processing tasks, including T2 spectral decomposition. In this
experiment, the Transformer architecture used includes: an input layer with a length
of 64, an input embedding dimension of 128, and 4 Transformer encoding layers
(the number of encoding layers is equal to the number of residual blocks in the
residual fully connected neural network). Each encoding layer includes multi-head
self-attention, residual connection, layer normalization and feedforward network.
The number of multi-head attention heads is 8, the dimension of the feedforward
network is 512, and the dimension is 15. The final output layer corresponds to the
decomposition of 5 groups of Gaussian function parameters. The Transformer
architecture used in this paper is shown in Fig. 7.
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The Transformer model can effectively handle complex features such as
overlapping peaks and non-Gaussian peaks without presetting the number or shape
of peaks.

3.5.3 Comparison of decomposition results of each model component

Table 2 compares the results of Gaussian decomposition method,
Transformer model and residual fully connected neural network proposed in this
paper on the test set. In the prediction results of 10,000 groups of data in the test
set, the residual fully connected neural network proposed in this paper has the
smallest RMSE value and the largest R2 value, indicating that its prediction error
is the smallest and its fitting degree is the highest. In terms of dynamic time warping
(DTW), the DTW value of this method is 0.0923, which is significantly lower than
that of Gaussian decomposition method and Transformer model. DTW is a method
to measure the similarity between two sequences. A lower DTW value indicates that
the proposed method can more accurately match the position of the spectral peak.
In terms of the peak position (F1-Score, F1), the minimum peak height ratio set
during calculation is 5%, and the position matching tolerance is 0.1, that is, the
logarithmic difference between the position of the predicted peak and the position
of the true peak must be less than or equal to the set 0.1. The proposed method is
significantly higher than the Gaussian decomposition method and the Transformer
model, indicating that the proposed method has significant advantages in
identifying and separating overlapping peaks and hidden peaks, and can more
accurately match the number and position of peaks. In terms of spectral overlap
coefficient (Spectral Overlap Cofficient, SOC), the SOC value of the proposed
method is 0.9573, which is higher than the results of the other two methods. The
higher SOC value further proves the superiority of the proposed method in spectral
morphology matching, which can be closer to the morphology of the true spectrum.
As can be seen from the scores, the Gaussian decomposition method and the
Transformer model are lacking in the recognition coefficients of overlapping peaks
and hidden peaks and are not as good as the model proposed in this paper. The same
is true for the spectral overlap coefficient.

Table 2

Processing results of three methods
Method RMSE R?> DTW Fl SOC
Gaussian decomposition  0.136  0.85 0.2089 0.86 0.9234
Transformer 0.092 0.89 0.1465 0.93 0.9352
Method of this paper 0.043 0.95 0.0923 0.96 0.9573

In summary, the residual fully connected neural network proposed in this
paper performs well in solving the complex nonlinear regression problem of nuclear
magnetic resonance T2 spectrum component decomposition, which is better than
the traditional Gaussian decomposition method and Transformer model. This
further verifies the advantages of the residual fully connected neural network in
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processing one-dimensional nonlinear regression tasks.
4. Results

After obtaining the NMR T2 spectrum results decomposed from the model
trained using the residual fully connected neural network in Section 3, this paper
verifies the above experimental results using the actual measured nuclear magnetic
resonance logging data. The model was used to test the measured T2 spectra of
multiple component manganese chloride samples and cores respectively.

4.1 Sample data of manganese chloride solution

Manganese chloride solution was chosen as the standard sample, and five
concentrations of manganese chloride solution were prepared for the experimental
data. After preparing the various concentrations of manganese chloride solution,
one-dimensional NMR measurements were performed using a 21MHz NMR core
analyzer. Additionally, one-dimensional NMR data were measured for the
combined three concentrations and all five concentrations of manganese chloride
solution. After obtaining the total raw echo train data, inversion was performed to
obtain an NMR T2 spectrum with 64 sampling points. The three peak centers of the
three concentrations of manganese chloride solutions were 0.292, 5.058, and 67.298
respectively, and the five peak centers of the five concentrations of manganese
chloride solutions were 0.369, 3.724, 26.791, 82.605, and 212.814 respectively.
Subsequently, the 64 amplitude values of the inverted T2 spectrum were normalized
and used as input data for the aforementioned model to obtain the predicted output
data. These predicted data were then compared with the component spectra of the
various concentrations of manganese chloride solution, as shown in Fig. 8. In the
figure, groups a and b respectively represent the true T2 spectra of each component
of three and five concentrations of manganese chloride solutions, the predicted T2
spectra of each component by the model, and the total T2 spectrum after the linear
superposition of each component. It can be seen from the results in the figure that
the peak positions and amplitudes of different components in the predicted results
and the true results are basically the same, and the spectral morphology similarity
is extremely high. The peak centers of the fitted component spectra of the three
concentrations of manganese chloride solutions were 0.318, 4.864, and 64.269, and
those of the five concentrations of manganese chloride solutions were 0.350, 3.945,
29.761, 84.140, and 218.829. Although there were slight changes compared with
the true peak centers of the spectra, the differences were extremely small.

Moreover, the fitting spectrum errors obtained by superimposing each
component spectrum are 1.5% and 3.2% respectively, indicating that the component
decomposition accuracy of the T2 spectrum obtained in this paper is relatively high.
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(a) Comparison of T2 spectrum decomposition results for 3 concentrations (b) Comparison of T2
spectrum decomposition results for 5 concentrations
Fig. 8. Comparison of True and Predicted T2 Spectrum Decomposition Results for 3 and 5
Concentrations of Manganese Chloride Solution

4.2 Core measurement data

The nuclear magnetic resonance T2 spectra measured under the saturated
water experiment of shale rock samples were processed by applying this model.
The saturation experiment used distilled water. The main measured parameters were:
magnetic field intensity of 21MHz, echo interval of 0.08ms, waiting time of 4000ms,
and the number of echoes of 10,000. After performing the addition and
normalization operation on the saturated T2 spectra, they were used as the input
data of the model obtained above to obtain the predicted output data. Then, these
predicted data were compared with the component spectra of manganese chloride
solutions of various concentrations, and the results are shown in Fig. 9. Fig. 9 shows
the true T2 spectra of each component of the shale rock sample after being saturated
with water, the T2 spectra of each component predicted by the model, and the total
T2 spectrum after the linear superposition of each component. It can be seen from
the results in the figure that the peak positions and amplitudes of different
components in the predicted results and the true results are basically the same, and
the spectral morphology similarity is extremely high. The three peak centers of the
T2 spectrum of the water-saturated rock sample are 0.105, 3.020, and 399.955. The
peak centers of each component spectrum after fitting are 0.112, 2.971, and 408.95
respectively. Although there is a slight change compared with the true peak centers
of the spectrum, the difference is extremely small. Moreover, the error of the fitting
spectrum obtained by superimposing each component spectrum is 1.9%. This
indicates that the residual fully connected neural network can accurately decompose
each component of the nuclear magnetic resonance T2 spectrum.
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Fig. 9 Comparison of the real and predicted results of the component decomposition in the
saturated T2 spectrum of shale rock samples

Therefore, it can be considered that the residual fully connected neural
network can be regarded as a component decomposition model of nuclear magnetic
resonance T2 spectra, successfully completing the component decomposition task
of nuclear magnetic resonance T2 spectra.

5. Conclusions

In this paper, a forward model dataset was first generated, and then a
residual fully connected neural network was established to solve the problem of
decomposing the components of the nuclear magnetic resonance T2 spectrum. By
adjusting the number of neurons in the first hidden layer of the model and the model
depth, adjusting the hyperparameter components, and comparing the processing
effects with the Gaussian decomposition method and the Transformer model.
Through this study, the following conclusions were drawn:

(1) For the complex nonlinear regression problem of NMR T2 spectrum
component decomposition, using a residual fully connected neural network
yields better results than convolutional neural networks and traditional residual
neural networks. The residual fully connected neural network is more suitable
for solving nonlinear regression problems.

(2) During the training of deep learning models, the depth and width of the
network have varying degrees of impact on the training results. An ultra-deep
or ultra-wide network does not necessarily produce better training results.
Therefore, it is essential to conduct experiments to determine the optimal
network width and depth for the specific problem at hand. The selection of
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hyperparameters is also crucial for the model.

(3) The results were verified using actual measured logging data to ensure the
accuracy of the experimental results. The findings indicate that the final model
obtained in this paper performs well with actual logging data. It can be
concluded that integrating deep learning methods with certain problems in the
field of NMR logging can also yield excellent results.
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