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A SEQUENTIAL TWO-STAGE METHOD FOR SOLVING
GENERALIZED SADDLE POINT PROBLEMS

Davod Khojasteh Salkuyeh!, Fatemeh Panjeh Ali Beik?, Davod Hezari3

In [Appl. Math. Comput. 217 (2011) 5596-5602], Li et al. sug-
gested an effective iterative method for solving large sparse saddle point
problems with symmetric positive definite (1,1)-block. Recently, Zhu et
al. [Appl. Math. Comput. 242 (2014) 907-916] developed the method
for the saddle point problems with (1,1)-block being non-symmetric posi-
tive definite. This paper deals with extending their idea to obtain a new
iterative scheme for solving the generalized saddle point problems with non-
symmetric positive definite (1,1)-block and symmetric positive semidefinite
(2,2)-block. To this end, the original linear system is split into two smaller
subsystems. One of them is solved directly by the Cholesky factorization and
the other by an iterative method. The convergence analysis of the method is
investigated and some numerical experiments are reported to demonstrate
the effectiveness of the proposed approach.

Keywords: Iterative method, generalized saddle point, positive definite,
convergence.
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1. Introduction

Let us first introduce some symbols exploited throughout this paper. The
real and imaginary parts of a complex number z are respectively represented
by R(z) and J(z). The notation R™*™ (C™*™ ) stands for the set of all m x n
real (complex) matrices. The transpose and conjugate transpose of a given
matrix A are respectively denoted by AT and A¥. The identity matrix of
order m is denoted by I,,. For a given square matrix A, the spectral radius of
A is signified by p(A). For two given arbitrary symmetric square real matrices
A and B, A > B means A — B is symmetric positive definite.
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In this paper, we are concerned with the solution of the following large
and sparse generalized saddle point problem

(B )()-(4) o

where A € R™" is non-symmetric positive definite, i.e., A + AT is symmetric
positive definite, C' € R™*™ is symmetric positive semidefinite, B € R™*" has
full row rank, x, f € R", y,g € R™ and m < n. These assumptions guarantee
the existence and uniqueness of the solution of the linear systems (1)(see |8,
Lemma 1.1]).

In practice, systems of the form (1) appear in a variety of computational
sciences and engineering applications such as constrained optimization, com-
putational fluid dynamics, mixed finite element discretization of the Navier-
Stokes equations, the linear elasticity problem, elliptic and parabolic interface
problems, constrained least-squares problem and so on; for more details see
9, 13, 17, 18, 21] and references therein.

In the literature there has been a considerable expansion in the field of
solution techniques for solving systems of the form (1), recently. More precisely,
several researches were devoted to studying the performance of different kinds
of iterative methods including, for instance, the Uzawa-type methods [6, 7, 12],
HSS-based methods [2, 3, 4, 8], as well as preconditioned Krylov subspace
methods such as MINRES and GMRES together with suitable preconditioners
[1, 5, 10, 11, 14, 20, 23, 24]. For a comprehensive review on iterative methods
for large and sparse linear systems in saddle point form, one may refer to [9].

In the case that the (2,2)-block C' in (1) is zero and the matrix A is
symmetric positive definite, Li et al. [25] have proposed an efficient split-
ting iterative method. In fact the original system is transformed into two
sub-systems with smaller sizes by premultiplying both sides of (1) with the
following matrix

I, —BT(BBT)™! I, 0

g)C“:(o (Im ) )(B —aBBT>‘ @)
Afterward, the conjugate gradient (CG) method and a splitting iteration method
are respectively used to solve the linear system with a SPD coefficient matrix
and the other sub-system. By making use of the same technique and a new
matrix splitting based on the Hermitian and skew-Hermitian splitting (HSS) of
the (1, 1)-block, Zhu et al. [27] have presented an efficient sequential two-stage
method for solving saddle point problems when the (1,1)-block and (2,2)-
block are non-symmetric positive definite and zero matrices, respectively. In
this paper, we develop the idea of the technique presented in ([25, 27]) for the
generalized saddle point problem (1) with C' # 0 and split the original system
into two smaller subsystems. One of the obtained subsystems is directly solved
by the Cholesky factorization and the other one by an iterative method. Con-
vergence properties of the proposed approach are investigated and numerical



A sequential two-stage method for solving generalized saddle point problems 133

experiments are reported to confirm the validity of the established results and
reveal the efficiency of the proposed method.

The remainder of the paper is organized as follows. In Section 2, we
present a generalization of the methods presented in [25, 27] and investigate
its properties. Section 3 is devoted to examining some numerical experiments
to illustrate the effectiveness of the proposed method. Finally the paper is
ended with a brief conclusion in Section 4.

2. Main results

This section deals with applying a new iterative scheme to solve the gen-
eralized saddle point problem (1) whose (2, 2)-block may be a nonzero matrix.
To this end, let us first consider the following generalized preconditioner which
incorporates (2) as its special case,

o _ (I =B (Iu+aC) (BBT)! L, 0 )
T 0 I, ~vB —aBBT )

where o and v are two given positive constants.
Premultiplying both sides of Eq. (1) by P, yields

T
’Paﬁﬂu( y ) = Pob. (4)

By some straightforward calculations, the system (4) can be rewritten as fol-
lows: B .
A 0 x f
ol =( <), 5
(5 e)(0)-(3) <>
where

A=A+ aB"(yI,, +aC) B —~yBT(y1,, + aC) Y (BBT) ' BA,
B = B(yA—aB"B), C=BB"(yl, +aC),
f=f-B"(vIn+aC) " [¥(BB")'Bf —ag], §=B(vf—aB"g).
Both of the matrices P, and A are nonsingular. Hence, we conclude that
Po~A, as well as A and C' are nonsingular. System (5) is equivalent to
Ac=f
z ) 6
{ Bx + Cy=g. (6)
Then, the vector x can be obtained fr~0m the first equation of (6) by solving a
linear system with coefficient matrix A. Upon substituting this into the second
equation, the vector y is obtained by solving the linear system Cy = g — Bx.
Note that both of the matrices BBT € C™™ and (yI,, + aC) € C™™ are
symmetric positive definite and of small size. Hence, we can use the Cholesky

factorization of these matrices to compute y. However, the coefficient matrix
A of the first equation in (6) is generally large and dense, so for this system,
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direct computations are very costly and impractical in actual implementations.
Therefore, we consider the splitting A = M, , — N, for the matrix A, where

M,., = A+aB"(yl,,+aC)'B=A+rB"(I,,+rC)'B = M,,
Non = vB (vL, + aC)"Y(BB")"'BA = B"(I,,, + rC)"(BB") 'BA =: N,,

in which » = a/v. Using A = M, — N,, we then propose the following
stationary iterative method

M,z®+) = N2® 4 f) (7)

where 2(® is an initial guess. Since A is positive definite and the matrix
rBT(I,,+rC)~' B is symmetric positive semidefinite, it follows that the matrix
M, is positive definite. Hence, one may use a direct method such as the LU
factorization or an iterative method such as the restarted GMRES(m) to solve
the system with the coefficient matrix M,. Here, we mention that for real
positive definite matrices the GMRES(m) converges for any m > 1 (see [26,
Theorem 6.30]).

As known, the necessary and sufficient condition for the convergence of
the iterative method (7) for all initial vectors #(*) and right-hand side f is that
p(M,7'N,) < 1. In order to demonstrate the convergence behaviour of the
proposed iterative manner, we present the following two theorems. The first
theorem reveals that the spectral radius of the iteration matrix corresponding
to (7) tends to zero as r — 0o. The second theorem gives a sufficient condition
for the constant r (o and ) which guarantees the convergence of the iterative
method (7) for any initial guess.

Theorem 2.1. Let A € R™™ be positive definite, C € R™*™ be symmetric
positive semidefinite and B € R™™ be of full row rank. Then, p(M*N,) — 0
as r — 0.

Proof. Let (A, z) be an eigenpair of G, = M, ' N, with ||z = 1. Hence,
G,z =\t = N,o = \M,z = 29N,z = \e'' M, .

If Bz = 0, then 2 N,x = 0, which implies that A\ = 0, and there is nothing to
prove. Therefore, without loss of generality, it is assumed that Bx # 0. Since
the matrix (7,, + rC)~! is symmetric positive definite, it follows that

"B (I, + rC) ' Bz = (Bx)"(I,, +rC)""(Bz) > 0.

Therefore, we have
2

| "M,z |* = (R(2" Az) + rz" BT (I, + rC) "' Bz)” + (2" Az)?
> (R(z" Az) + ra” BT (I, + TC)_le)2 :

Hence,

2Nz | < | 22 BT(I,,, + rC)"*(BBT)"'BAz |

A= :
[A] | 8 M,z | — R(z” Az) + raf BT(I,,, + rC)~' Bz
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Let py = -+ = . = 0 < pgy1 < -+ < iy, be the eigenvalues of C. Since
C is symmetric, there is an orthogonal matrix U (i.e., UTU = I) such that
C =UTDU, where D = diag(yy,- .., ftm). Now, we have

| 22 BT (I, + rC)"Y(BBT) ' BAx |?

[ A (5| B* (BB") ™! (1 + rC) ' Bzl

A3 (" BT (I,, + rC)""(BB") "' (I,, + rC) ' Bx)

IAI3
O-Ierin(B)
IA]I3
Ormin (B)

min

IAIA

IN

(z"" B (I, + rC)*Bux)

(wH(]m +rD)*w),

where w = UBx # 0 and o,,(B) is the smallest singular value of B. On the
other hand, we see that

ra BT (1, + rC) ' Bz = rw" (I, + rD) " w.

Consequently,
lim w? (1, + rD)'w = lim w? (1, + rD)*w = ||w||3, (8)
r—00 r—00

where @ = (w1, ..., wy,0,...,0)T € C™. Therefore,

| All2 Vwi (I, +rD) 2w
Omin(B) R(zH Az) + rwf (I, + rD) 1w’
From Eq. (8) we deduce that the right-hand side of the latter inequality tends
to zero as r — oo and this completes the proof. O

Remark 2.1. From Theorem 2.1 and that r = /7, it follows that for fixed
value of o, we have p(MojéNow) — 0 as v — 0. In addition, we deduce that
for fized o and a sufficiently small value of v, we have p(M(;ﬁNa,y) < 1 which
guarantees the convergence of the method.

[ A<

Proposition 2.1. Suppose that C is a nonzero symmetric semipositive definite
matriz and r is a positive constant. Then, (I +rC)~' = (I +rC)72.

Proof. Note that if C' is a diagonal matrix the validity of the assertion can be
easily seen. In general situation, since C' is symmetric positive semidefinite,
there exists an orthogonal matrix U such that ¢ = UTDU where D is a
diagonal matrix with nonnegative diagonal entries. Consequently, we may
conclude the result immediately from the fact that

(I +rC) "o =y" (I+rD) "y, Ve e C™,
where y =Ux and k =1, 2. O

Theorem 2.2. Assume that A € R™ " is non-symmetric positive definite,
C € R™™ 4s symmetric positive semidefinite and B € R™ " has full row
rank. Furthermore, suppose that A = H + S where H and S are, respectively,
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the symmetric and skew-symmetric part of A, i.e., H = (A + AT)/2 and
S =(A—AT)/2. Let a and 7y be two given positive parameters so that

2
Lo (1A Y
Y o )\mino-min

where Amin and omin stand for the smallest eigenvalues of H and BBT, respec-
tively. Then p(M;}Ngy) < 1.
Proof. Let (X, ) be an eigenpair of Go, = M, Ny = M'N, with ||z, = 1.
In what follows, without loss of generality, we may assume that Bx # 0. Notice
that positive definiteness of the matrix A implies that H is a symmetric positive
definite matrix, and hence Ay, > 0. Now, by the Cauchy-Schwarz inequality
we conclude that
le? Nyz|? = | ¥ B (1, + rC) " (BBT)"'BAx |?

< || Az|3]| BT (BB") ™! (I +rC) ' Bz|3

< ||A|j3 (z"B" (I, + rC) " (BB") "' (I, + rC) ' Bx)
< A + 1415 (" B (1, + rC)"N(BB") (I, + rC)"'Bz) .

Therefore, we obtain

¥ Not| < /N2y + 14327 BT (1, + rC) = (BBT)~1 (I, + rC)~! Ba

min

- )\1- (Xosn + 141527 B (L ++C) " (BB") ™ (I + C) ™' Bx)
2
= i+ L2 (1T (1, ey ) (BET) (1,4 rC) ). (9)

AInin
As a consequence of the well-known Courant-Fischer theorem [19, Theorem
4.2.11], it is seen that 7 Hx > Ap,. Using (9), the fact that R(z% Az) =
x" Hz and Proposition 2.1, we derive

| 2" M,z | — | 2" Nox | > 2 Ho + ra? BY (1, + 7C) ' Ba— | 2" N,z |

All2
> ra? BT (1, +rC) ' Bx — H)\ﬁ (z"(BB") '2)
> raf?! BY(I,, + rC) Bz — —“AH% (ZH(BBT)’lz)
" )\min
o MAB
>rztz )\—(z (BB")™'z2)
A 2
=27 (ﬂm — —“A ||2(BBT)1> z,
where 2z = (I,, + rC)"!Bz. By the assumption r > X H,Alg , so we conclude

that )
H A 5 gy
4 rly, )\ (BB*)™ | z>0,
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which completes the proof. 0J

We now propose the following algorithm to solve the saddle point prob-
lem.

Algorithm 1.

(1) Choose an initial guess (¥, ¢ > 0 and «,v > 0.
(2) Set r = a/y and 1@ = f — Az,

(3) Set

M=A+rB'(I,+rC)'B and N = B'(I, +rC)"(BBT)"'BA.

(4) For k=0,1,2..., Do .
(5) Solve Mz*+1) = Nz® + f for z(++1)
(6) If || f — Az® Do /|17 @5 < €, then z, = 2**+Y and stop.
(7) EndDo .
(8) Solve Cy, = g — Bz, for y,.

Algorithm 1 computes the approximate solution (x,;y,) for the problem
(1). It is noted that, in practice, we use the GMRES(m) to solve the system
involving Step 5 of the algorithm. Moreover, when A is symmetric positive
definite, the matrix M is symmetric positive definite, too. In this case we can
use the conjugate gradient method to solve the system of Step 5. Similar to
[25, Theorem 2.2] the convergence of the method can be verified in both of the
cases.

3. Numerical experiments

In this section, we present two examples, which are of the block linear sys-
tem of the form (1) with (symmetric and nonsymmetric) real positive definite
matrix A, to assess the feasibility and effectiveness of the proposed method.
We compare the numerical behaviors of the proposed method with the Inexact
Hermitian and skew-Hermitian Splitting (IHSS) method, presented by Benzi
and Golub in [8], in terms of number of iteration steps (denoted by Iters) and
the CPU time in seconds (denoted by CPU). For Examples 3.1 and 3.2, the
matix A of the corresponding system is symmetric and nonsymmetric, respec-
tively, so, the corresponding matrix M, , is symmetric and nonsymmetric pos-
itive definite, respectively. Therefore, in the implementation of the proposed
method, we apply the CG and GMRES(50) algorithms to solve the linear sys-
tem with the coefficient matrix M, , for Examples 3.1 and 3.2, respectively,
and the Cholesky factorization for the remaining systems. The parameter «,
adopted in HSS method, is the experimentally found optimal one that mini-
mizes the total number of iteration steps. In addition, the parameters a and
~ for the proposed method are set to be 1 and 1075, respectively.

All iteration processes are started from zero and terminate once the Fu-
clidean norms of the current residuals are reduced by a factor of 10° from those
of the initial residuals. Further, all codes are computed in double precision in
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TABLE 1. Numerical results Example 3.1.

Proposed method HSS method
(o, 7) = (1,107°)

n Iters CPU a Iters CPU
5000 2 0.16 0.04 173 1.51
10000 | 2 0.28 0.04 173 2.97
15000 | 2 0.40 0.04 173 4.33
20000 | 2 0.50 0.04 173 5.87

TABLE 2. Numerical results Example 3.2 with v = 1/50.

Proposed method HSS method
(e, 7) = (1,107%)
Grid (n,m) Iters CPU a Iters CPU
8 x 8 (162,62) 2 0.02 0.07 187 0.02
16 x 16 | (578,256) 2 0.04 0.04 222 0.10
32 x 32| (2178,1024) 3 0.75 0.02 349 1.67
64 x 64 | (8450,4096) | 8 24.65 0.006 1152 71.68

MATLAB, and all experiments are performed on a personal Laptop with Intel
Core i7 CPU 1.8 GHz, 6GB RAM.

Example 3.1. [22] Consider the saddle point problem (1) with the coefficient
matrices A = (a;j)nxn, B = [T,0], and C = I, where

—|i—j 2
1 6%7 T =
210 1000
We set 0 = 1.5 and m = %. The right-hand side vector (f;g) is taken such
that the vector (z;y) of all ones is the exact solution of (1).

a;j = tridiag(1,4, 1) € R™*™, O € R™*(=m),

vo|

Example 3.2. We consider the steady-state Navier-Stokes equation

—vAu+ (u.V)u+Vp =f,
Vau =0,

where v > 0. By the IFISS package [15], this problem is linearized by the
Picard iteration and then discretized by using the stabilized Q1-PO0 finite ele-
ments (see [16]). This yields a generalized saddle point problem of the form
(1). The right-hand side vectors f and g are taken such that x and y are two
vectors of all ones.

in Q=10,1] x [0,1],

The number of iteration steps and the CPU times for the IHSS and
proposed methods for the Examples 3.1 and 3.2, with respect to different
values of the problem sizes n and m, are listed in Tables 1 and 2. From these
tables we see that the proposed method can successfully compute satisfactory
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FIGURE 1. Spectrum radius of the M, !N, for Example 3.1:
n = 2178 (left) and for Example 3.2: n = 5000 (right).

approximations to the exact solutions of the above two examples in a few
iteration steps and when comparing the IHSS and the proposed method, the
latter method performs better than the former.

In Fig. 3, we plot p(M_!N,,) with respect to the fixed o = 1 and
different values of v for the above two examples, respectively. As expected, it
can be observed that p(M, #Now) converges to zero as vy tends to zero.

4. Conclusion

We have presented an efficient method to solve generalized saddle point
problems. Theoretical analysis of the method have been presented. The per-
formance of the proposed method have been numerically compared with the
inexact Hermitian and skew-Hermitian splitting method. The obtained nu-
merical results have shown that the proposed method outperforms the IHSS
method for the presented examples.
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