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CAUCHY SPLIT-BREAK PROCESS: ASYMPTOTIC 
PROPERTIES AND APPLICATION IN SECURITIES 

MARKET ANALYSIS 

Eugen LJAJKO1,a, Vladica STOJANOVIĆ2, Marina TOŠIĆ1,b, Ivan BOŽOVIĆ3 

 The paper presents a novel kind of nonlinear and non-stationary stochastic 
process, that can be applicable in the analysis of time series with accentuated and 
persistent fluctuations. Using Cauchy distributed innovations, the resulting model, 
named the Cauchy Split-BREAK (CSB) process, was examined in terms of its basic 
stochastic properties and asymptotic behaviour. To estimate the unknown parameters 
of the CSB process, an estimation procedure based on empirical characteristic 
functions is proposed, along with numerical simulations of thus obtained estimators. 
It is also shown that the CSB process can be a suitable stochastic model for analysing 
the dynamics of the securities market. 

Keywords: nonlinear time series; pronounced and permanent fluctuations; non-
stationarity; Cauchy distribution; parameters estimation; simulations. 

1. Introduction 

Stochastic modelling of time series with accentuated and persistent 
fluctuations is one of the important topics in contemporary research. To this end, 
various stochastic models are proposed, primarily devoted to application in social 
sciences and econometrics [1,16]. A particular problem arises when the observed 
time series have nonlinear and non-stationary dynamics, which usually reflects in 
increasing the complexity of their stochastic structure [7,13]. To solve this problem, 
Engle and Smith [6] proposed the so-called stochastic permanent break 
(STOPBREAK) process, later investigated by numerous authors, especially in the 
domain of structural and permanent changes in real-world data fluctuations [5,8]. 
Besides that, Stojanović et al. [21] introduce the so-called Split-BREAK process, 
also applied in modelling  different time series with constant and pronounced 
fluctuations. Recently, some more general forms of the Split-BREAK process, the 
so-called General (that is, Gaussian) Split-BREAK (GSB) process, were introduced 
and discussed in Stojanović et al. [20,22,23], as well as Jovanović et al. [9].  

Using a similar idea, the Split-BREAK model with Cauchy distributed 
innovations, named Cauchy Split-BREAK (CSB) process, is introduced here. The 
main motive is the fact that the Cauchy distribution is infinitely divisible and stable, 
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which, as will be seen, will be important features for determining stochastic 
distributions of the basic series in the CSB model. In addition, since the Cauchy 
distribution does not have finite moments, it can be used in modelling  the dynamics 
of non-stationary time series with large fluctuations and long tails, i.e., with a wide 
range of data. The following section presents the definition and key stochastic 
properties of the CSB process, applying the characteristic functions (CFs) method. 
The CSB process parameter estimation procedure, based on empirical characteristic 
functions (ECFs), is described in Section 3. Thereafter, Section 4 is devoted to 
Monte Carlo simulations of the proposed estimators, as well as the application of 
the CSB process in dynamic analysis of the total trading values of QUALCOMM 
Incorporated Common (QCOM) stocks. Finally, in Section 5 some concluding 
remarks are given. 

2. CSB process. Definition and key properties 

The main assumptions about the CSB process can be made based on its 
corresponding time series as given in the following: 

Definition 2.1. Let (𝛺𝛺,ℱ,𝑃𝑃) the probability space, expanded with filtration 
𝐹𝐹 = (ℱ𝑡𝑡), where 𝑡𝑡 = 0,1, . . . ,𝑇𝑇 is the set of time indices. The Cauchy Split-BREAK 
(CSB) process represents the following time series, defined on expanded basis 
(𝛺𝛺,ℱ,𝑃𝑃,𝐹𝐹): 

i) (𝜀𝜀𝑡𝑡) is an innovation series, that is, the independent identical distributed 
(IID) random variables (RVs) with zero-centred 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑦𝑦(0, 𝜆𝜆) distribution, 
whose probability distribution function (PDF) is: 

𝑓𝑓𝜀𝜀(𝑥𝑥) =
𝜆𝜆

𝜋𝜋(𝑥𝑥2 + 𝜆𝜆2) ,     𝑥𝑥 ∈ ℝ ,                                                                 (1) 

and 𝜆𝜆 > 0 is the scale parameter.  
ii) (𝑚𝑚𝑡𝑡) is a series of martingale means given by recurrence relation: 

𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1 + 𝑞𝑞𝑡𝑡−1 𝜀𝜀𝑡𝑡−1 = 𝑚𝑚0 + �𝑞𝑞𝑗𝑗𝜀𝜀𝑗𝑗

𝑡𝑡−1

𝑗𝑗=0

,                                                        (2) 

where is almost surely (as) 𝑚𝑚0 =
𝑎𝑎𝑎𝑎
𝜇𝜇 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), 𝜀𝜀−1 = 𝜀𝜀0 =

𝑎𝑎𝑎𝑎
0, and 

𝑞𝑞𝑡𝑡 = 𝐼𝐼(𝜀𝜀𝑡𝑡−12 > 𝑐𝑐) = �
1,         𝜀𝜀𝑡𝑡−12 > 𝑐𝑐
0,         𝜀𝜀𝑡𝑡−12 ≤ 𝑐𝑐

                                                             (3) 

is the Noise-Indicator with the parameter (critical value) 𝑐𝑐 > 0. 
iii) (𝑦𝑦𝑡𝑡) is a basic CSB series defined by the adaptive decomposition: 

𝑦𝑦𝑡𝑡 = 𝑚𝑚𝑡𝑡 + 𝜀𝜀𝑡𝑡.                                                                                  (4)  
Now, we give some practical interpretations of the concepts introduced in 

Definition 2.1. First, filtration (ℱ𝑡𝑡) is a set of “information” about some (actual) 
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time series at time 𝑡𝑡, so the RVs (𝜀𝜀𝑡𝑡) are ℱ𝑡𝑡-adaptive, for each 𝑡𝑡 = 0,1, … ,𝑇𝑇. 
Moreover, according to the well-known fact about the Cauchy distribution, the 
cumulative distribution function (CDF) of the RVs (𝜀𝜀𝑡𝑡) is: 

𝐹𝐹𝜀𝜀(𝑥𝑥) ≔ 𝑃𝑃{𝜀𝜀𝑡𝑡 < 𝑥𝑥} = � 𝑓𝑓𝜀𝜀(𝑧𝑧)𝑑𝑑𝑑𝑑
𝑥𝑥

−∞
=

1
2

+
1
𝜋𝜋
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �

𝑥𝑥
𝜆𝜆
� ,

𝑥𝑥 ∈ ℝ ,                                                                                                   (5) 

as well as the characteristic function 𝜑𝜑𝜀𝜀(𝑢𝑢) = e−𝜆𝜆|𝑢𝑢|, 𝑢𝑢 ∈ ℝ. Thus, Cauchy 
distribution can be viewed as the Fourier transform of the Laplace distribution. 
Also, Cauchy distribution does not have moment generating function, that is, the 
finite moments of order greater than or equal to one. Then, assumption of the 
Cauchy distributed innovations (𝜀𝜀𝑡𝑡) is motivated by the fact that it, compared to 
other distributions, such as the Gaussian, can more adequately fit empirical 
distributions with long tails and pronounced peaks (see Section 4). Besides, (𝑚𝑚𝑡𝑡) 
is ℱ𝑡𝑡−1 measurable series which represents the predictive and stability component, 
contrary to the innovations (𝜀𝜀𝑡𝑡) that make the deviation (noise) component of the 
of the CSB process. Finally, the parameter 𝑐𝑐 > 0 is the critical value of reaction, 
which indicates significance of earlier realizations of series (ε𝑡𝑡), in order to include 
its current values in Eq. (2). More precisely, when 𝑞𝑞𝑡𝑡−1 = 0, the martingale mean 
𝑚𝑚𝑡𝑡 is equal to its previous value 𝑚𝑚𝑡𝑡−1, and the main CSB series (𝑦𝑦𝑡𝑡), given by Eq. 
(4), is then realized with ‘low’ fluctuation. Otherwise, the case 𝑞𝑞𝑡𝑡 = 1 indicates a 
pronounced fluctuation of the series (𝑦𝑦𝑡𝑡). Having in mind that the series(𝑚𝑚𝑡𝑡) and 
(𝑦𝑦𝑡𝑡) depend on the time moment 𝑡𝑡 ∈ 𝑇𝑇 they are observed in, it is obviousely that 
they are non-stationary. Moreover, their basic distributional properties can be 
shown as follows: 

Theorem 2.1. Let (𝑚𝑚𝑡𝑡) and (𝑦𝑦𝑡𝑡) be the CSB series defined by Eqs. (2) and (4), 
respectively, where 𝑚𝑚0 =

𝑎𝑎𝑎𝑎
𝜇𝜇 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). Then, for any 𝑥𝑥 ∈ ℝ and 𝑡𝑡 = 0,  1, … ,𝑇𝑇, the 

CDFs of (𝑚𝑚𝑡𝑡) and (𝑦𝑦𝑡𝑡) are: 

𝐹𝐹𝑚𝑚(𝑥𝑥, 𝑡𝑡) ≔ 𝑃𝑃{𝑚𝑚𝑡𝑡 < 𝑥𝑥}

=⊗
𝑡𝑡

𝑗𝑗=1
�𝑎𝑎𝑐𝑐𝐹𝐹𝜀𝜀

(𝑗𝑗)(𝑥𝑥) + (1 − 𝑎𝑎𝑐𝑐)𝐹𝐹0(𝑥𝑥)� ⨂𝐹𝐹𝜇𝜇(𝑥𝑥),                              (6) 

𝐹𝐹𝑦𝑦(𝑥𝑥, 𝑡𝑡) ≔ 𝑃𝑃{𝑦𝑦𝑡𝑡 < 𝑥𝑥}

=⊗
𝑡𝑡

𝑗𝑗=1
�𝑎𝑎𝑐𝑐𝐹𝐹𝜀𝜀

(𝑗𝑗)(𝑥𝑥) + (1 − 𝑎𝑎𝑐𝑐)𝐹𝐹0(𝑥𝑥)� ⨂𝐹𝐹𝐶𝐶(𝑥𝑥),                                (7) 

where “⨂” is the convolution operator, 𝐹𝐹𝜀𝜀
(𝑗𝑗)(𝑥𝑥) and 𝐹𝐹0(𝑥𝑥) are the CDFs of the RVs 

𝜀𝜀𝑡𝑡 and 𝐼𝐼0 =
𝑎𝑎𝑎𝑎

0, respectively, 𝐹𝐹𝐶𝐶(𝑥𝑥) = 𝐹𝐹𝜇𝜇(𝑥𝑥) ⨂ 𝐹𝐹𝜀𝜀(𝑥𝑥) is the CDF of the RV 𝜇𝜇 + 𝜀𝜀𝑡𝑡 
with Cauchy (𝜇𝜇, 𝜆𝜆) distribution, and 𝑎𝑎𝑐𝑐 = 𝑃𝑃{𝑞𝑞𝑡𝑡 = 1} = 𝑃𝑃{𝜀𝜀𝑡𝑡2 > 𝑐𝑐}. Additionally, 
for 𝑇𝑇 = +∞, the following convergences (in distribution) hold: 
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1
𝑡𝑡
𝑚𝑚𝑡𝑡 ⟶

𝑑𝑑
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑦𝑦(0,𝑎𝑎𝑐𝑐𝜆𝜆),

1
𝑡𝑡
𝑦𝑦𝑡𝑡 ⟶

𝑑𝑑
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑦𝑦(0, 𝑎𝑎𝑐𝑐𝜆𝜆),        𝑡𝑡 → +∞.                                           (8) 

Proof. Let us define the RVs 𝜁𝜁𝑡𝑡 = 𝑞𝑞𝑡𝑡𝜀𝜀𝑡𝑡, 𝑡𝑡 = 0, 1, … ,𝑇𝑇, which are easily 
shown to represent a mutually uncorrelated RVs. Applying the conditional 
probabilities, the CDF of (𝜁𝜁𝑡𝑡) is: 

𝐹𝐹𝜁𝜁(𝑥𝑥) ≔ 𝑃𝑃{𝜁𝜁𝑡𝑡 < 𝑥𝑥}
= 𝑃𝑃{𝜁𝜁𝑡𝑡 < 𝑥𝑥|𝑞𝑞𝑡𝑡 = 1} ∙ 𝑃𝑃{𝑞𝑞𝑡𝑡 = 1} + 𝑃𝑃{𝜁𝜁𝑡𝑡 < 𝑥𝑥|𝑞𝑞𝑡𝑡 = 0} ∙ 𝑃𝑃{𝑞𝑞𝑡𝑡 = 0} 

= 𝑃𝑃{𝜀𝜀𝑡𝑡 < 𝑥𝑥} ∙ 𝑃𝑃{𝑞𝑞𝑡𝑡 = 1} + 𝑃𝑃{𝑥𝑥 > 0} ∙ 𝑃𝑃{𝑞𝑞𝑡𝑡 = 0} 
= 𝑎𝑎𝑐𝑐𝐹𝐹𝜀𝜀(𝑥𝑥) + (1 − 𝑎𝑎𝑐𝑐)𝐹𝐹0(𝑥𝑥). 

where 𝜑𝜑0(𝑢𝑢) ≡ 1 is the CF of the RV 𝐼𝐼0 =
𝑎𝑎𝑎𝑎

0. Based on that, the CF of the RVs (𝜁𝜁𝑡𝑡) 
is as follows: 

𝜑𝜑𝜁𝜁(𝑢𝑢) = � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝜁𝜁(𝑑𝑑𝑑𝑑)
+∞

−∞

= � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖[𝑎𝑎𝑐𝑐𝐹𝐹𝜀𝜀 + (1 − 𝑎𝑎𝑐𝑐)𝐹𝐹0](𝑑𝑑𝑑𝑑)
+∞

−∞
= 𝑎𝑎𝑐𝑐𝜑𝜑𝜀𝜀(𝑢𝑢) + (1 − 𝑎𝑎𝑐𝑐)𝜑𝜑0(𝑢𝑢) 

= 1 + 𝑎𝑎𝑐𝑐�𝑒𝑒−𝜆𝜆|𝑢𝑢| − 1�. 

By applying Eq. (2), for the CFs of the series (𝑚𝑚𝑡𝑡) one obtains: 

𝜑𝜑𝑚𝑚(𝑢𝑢, 𝑡𝑡) = 𝜑𝜑𝜇𝜇(𝑢𝑢)�𝜑𝜑𝜂𝜂(𝑢𝑢)
𝑡𝑡−1

𝑗𝑗=0

= 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 �1 + 𝑎𝑎𝑐𝑐�𝑒𝑒−𝜆𝜆|𝑢𝑢| − 1��
 𝑡𝑡

,                               (9) 

where 𝜑𝜑𝜇𝜇(𝑢𝑢) = ei𝑢𝑢𝑢𝑢 is the CF of the RV 𝑚𝑚0 =
𝑎𝑎𝑎𝑎
𝜇𝜇. Thus, according to Eq. (9) and 

Lévy’s correspondence theorem, Eq. (6) immediately follows. In a similar way, 
using Eq. (4), for the CFs of the series (𝑦𝑦𝑡𝑡) one obtains: 

𝜑𝜑𝑦𝑦(𝑢𝑢, 𝑡𝑡) = 𝜑𝜑𝑚𝑚(𝑢𝑢)𝜑𝜑𝜀𝜀(𝑢𝑢) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜆𝜆|𝑢𝑢| �1 + 𝑎𝑎𝑐𝑐�𝑒𝑒−𝜆𝜆|𝑢𝑢| − 1��
 𝑡𝑡

.                            (10) 

Applying again Levy's correspondence theorem to the last expression, Eq. (7) 
immediately follows.  

To prove the convergences in Eqs. (8), let us notice that according to Eqs. 
(9) and (10), the CFs of RVs 𝑚𝑚𝑡𝑡 𝑡𝑡⁄  and 𝑦𝑦𝑡𝑡 𝑡𝑡⁄ , when 𝑡𝑡 > 0, are as follows: 

𝜑𝜑𝑚𝑚 �
𝑢𝑢
𝑡𝑡

, 𝑡𝑡� = 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡 ∙ �1 + 𝑎𝑎𝑐𝑐 �𝑒𝑒

−𝜆𝜆|𝑢𝑢|
𝑡𝑡 − 1��

 𝑡𝑡

,

𝜑𝜑𝑦𝑦 �
𝑢𝑢
𝑡𝑡

, 𝑡𝑡� = 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖−𝜆𝜆|𝑢𝑢|

𝑡𝑡 ∙ �1 + 𝑎𝑎𝑐𝑐 �𝑒𝑒
−𝜆𝜆|𝑢𝑢|

𝑡𝑡 − 1��
 𝑡𝑡

. 

Taking the limit values, when 𝑡𝑡 → +∞ and 𝑢𝑢 ∈ ℝ is a fixed (but an arbitrary) 
value, it is obtained: 
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𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→+∞

𝜑𝜑𝑚𝑚 �
𝑢𝑢
𝑡𝑡

, 𝑡𝑡� = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→+∞

𝜑𝜑𝑦𝑦 �
𝑢𝑢
𝑡𝑡

, 𝑡𝑡� = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→+∞

�1 + 𝑎𝑎𝑐𝑐 �𝑒𝑒
−𝜆𝜆|𝑢𝑢|

𝑡𝑡 − 1��
 𝑡𝑡

 

= 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→+∞

�1 −
𝑎𝑎𝑐𝑐𝜆𝜆|𝑢𝑢|
𝑡𝑡

�
 𝑡𝑡

= 𝑒𝑒−𝑎𝑎𝑐𝑐𝜆𝜆|𝑢𝑢|. 

The last expression represents the CF of the Cauchy (0,𝑎𝑎𝑐𝑐𝜆𝜆) distribution, and both 
convergences in Eq. (8) are confirmed. ∎ 

Remark 2.1. The uncorrelated series (𝜁𝜁𝑡𝑡) can be interpreted as a ‘new’ innovation 
series with ‘occasional’ zero values. Their corresponding CDF: 

𝐹𝐹𝜁𝜁(𝑥𝑥) = 𝑎𝑎𝑐𝑐𝐹𝐹𝜀𝜀(𝑥𝑥) + (1 − 𝑎𝑎𝑐𝑐)𝐹𝐹0(𝑥𝑥) 

is obviously continuous almost everywhere, with the sole exception at 𝑥𝑥 = 0, where 
the jump of size 1 − 𝑎𝑎𝑐𝑐 occurs (see, e.g. Stojanović et al. [19]). This CDF is the 
mixture of Cauchy and discrete distribution concentrated at zero, which we call the 
Contaminated Cauchy Distribution (CCD). Also, the asymptotic relations in Eq. (8) 
indicate that series (𝑚𝑚𝑡𝑡 𝑡𝑡⁄ ) and (𝑦𝑦𝑡𝑡 𝑡𝑡⁄ ), generated by non-stationary time series 
(𝑚𝑚𝑡𝑡) and (𝑦𝑦𝑡𝑡), converge to the Cauchy distribution, when 𝑡𝑡 → +∞. These can be 
easily observed by the convergence of CFs 𝜑𝜑𝑚𝑚(𝑢𝑢 𝑡𝑡⁄ , 𝑡𝑡) and 𝜑𝜑𝑦𝑦(𝑢𝑢 𝑡𝑡⁄ , 𝑡𝑡),  as shown 
in Fig. 1. ∎ 

    
Fig. 1. Modulus convergences for CFs 𝜑𝜑𝑚𝑚(𝑢𝑢 𝑡𝑡⁄ , 𝑡𝑡) and 𝜑𝜑𝑦𝑦(𝑢𝑢 𝑡𝑡⁄ , 𝑡𝑡), 𝑡𝑡 = 1, 2, … , 500. 

In the following are presented the asymptotic properties of some other linear 
transformations of the non-stationary CSB series (𝑚𝑚𝑡𝑡) and (𝑦𝑦𝑡𝑡), also related to the 
Cauchy distribution. 

Theorem 2.2. Let us define, for an arbitrary 𝛼𝛼 ≥ 1, the 𝛼𝛼-mean time series: 

𝑀𝑀�𝑡𝑡;𝛼𝛼 =
1
𝑡𝑡𝛼𝛼
�𝑚𝑚𝑗𝑗

𝑡𝑡

𝑗𝑗=1

, 𝑌𝑌�𝑡𝑡;𝛼𝛼 =
1
𝑡𝑡𝛼𝛼
�𝑦𝑦𝑗𝑗

𝑡𝑡

𝑗𝑗=1

, 

where (𝑚𝑚𝑡𝑡) and (𝑦𝑦𝑡𝑡) are the non-stationary time series given by Eqs. (2) and (4), 
respectively. Then, the following statements are valid: 
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i) When 1 ≤ 𝛼𝛼 ≤ 2, the series 𝑀𝑀�𝑡𝑡;𝛼𝛼 and 𝑌𝑌�𝑡𝑡;𝛼𝛼 are asymptotically Cauchy 
distributed, i.e., the following relations hold, when  𝑡𝑡 → +∞: 

𝑀𝑀�𝑡𝑡;𝛼𝛼~𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑦𝑦 �𝜇𝜇𝑡𝑡1−𝛼𝛼,
𝑎𝑎𝑐𝑐𝜆𝜆𝑡𝑡2−𝛼𝛼

2
� ,

𝑌𝑌�𝑡𝑡;𝛼𝛼~𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑦𝑦 �𝜇𝜇𝑡𝑡1−𝛼𝛼, 𝜆𝜆𝑡𝑡1−𝛼𝛼 +
𝑎𝑎𝑐𝑐𝜆𝜆𝑡𝑡2−𝛼𝛼

2
� .                                 (11) 

ii) When 𝛼𝛼 > 2, the series 𝑀𝑀�𝑡𝑡;𝛼𝛼 and 𝑌𝑌�𝑡𝑡;𝛼𝛼 vanish asymptotically, i.e., 

𝑀𝑀�𝑡𝑡;𝛼𝛼 ⟶
𝑑𝑑
𝐼𝐼0, 𝑌𝑌�𝑡𝑡;𝛼𝛼 ⟶

𝑑𝑑
𝐼𝐼0, 𝑡𝑡 → +∞.                                             (12) 

Proof. Firstly we prove the convergence in Eq. (11) for the series 𝑀𝑀�𝑡𝑡;𝛼𝛼. Using the 
definition of series (𝑚𝑚𝑡𝑡), given by Eq. (2), it is obtained: 

𝑀𝑀�𝑡𝑡;𝛼𝛼 =
1
𝑡𝑡𝛼𝛼
�𝑚𝑚𝑗𝑗

𝑡𝑡

𝑗𝑗=1

=
1
𝑡𝑡𝛼𝛼
��𝑚𝑚0 + �𝑞𝑞𝑘𝑘𝜀𝜀𝑘𝑘

𝑗𝑗−1

𝑘𝑘=0

�
𝑡𝑡

𝑗𝑗=1

=
1
𝑡𝑡𝛼𝛼
�𝑡𝑡𝑚𝑚0 + �(𝑡𝑡 − 𝑗𝑗)𝑞𝑞𝑗𝑗𝜀𝜀𝑗𝑗

𝑡𝑡−1

𝑗𝑗=0

� 

= 𝑡𝑡1−𝛼𝛼𝑚𝑚0 + �
𝑘𝑘
𝑡𝑡𝛼𝛼
𝜁𝜁𝑡𝑡−𝑘𝑘

𝑡𝑡

𝑘𝑘=1

. 

Therefore, 𝑀𝑀�𝑡𝑡;𝛼𝛼 is the sum of mutually uncorrelated RVs 𝜁𝜁𝑡𝑡−𝑘𝑘, when 𝑘𝑘 = 1, … , 𝑡𝑡. 
According to the well-known theoretical facts about the CFs, for the CFs of the RVs 
𝑀𝑀�𝑡𝑡;𝛼𝛼 one obtains: 

𝜑𝜑𝑀𝑀� ;𝛼𝛼(𝑢𝑢, 𝑡𝑡) = 𝜑𝜑𝑚𝑚 �
𝑢𝑢

𝑡𝑡𝛼𝛼−1
, 0��𝜑𝜑𝜁𝜁 �

𝑘𝑘𝑘𝑘
𝑡𝑡𝛼𝛼
�

𝑡𝑡

𝑘𝑘=1

= 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼��1 + 𝑎𝑎𝑐𝑐 �𝑒𝑒
− 𝜆𝜆𝜆𝜆|𝑢𝑢|

𝑡𝑡𝛼𝛼 − 1��
𝑡𝑡

𝑘𝑘=1

. 

Now, let us denote the function: 

𝜓𝜓𝑀𝑀(𝑢𝑢, 𝑡𝑡,𝛼𝛼) ≔ 𝑙𝑙𝑙𝑙𝜑𝜑𝑀𝑀� ;𝛼𝛼(𝑢𝑢, 𝑡𝑡) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 + �𝑓𝑓𝑘𝑘(𝑢𝑢, 𝑡𝑡,𝛼𝛼)
𝑡𝑡

𝑘𝑘=1

,                               (13) 

wherein 𝑓𝑓𝑘𝑘(𝑢𝑢, 𝑡𝑡,𝛼𝛼) ≔ ln �1 + 𝑎𝑎𝑐𝑐 �e− 𝜆𝜆𝜆𝜆|𝑢𝑢|
𝑡𝑡𝛼𝛼 − 1��. Using the asymptotic relations: 

𝑙𝑙𝑙𝑙 (1 + 𝑥𝑥) = 𝑥𝑥 + ℴ(𝑥𝑥), 𝑒𝑒𝑥𝑥 − 1 = 𝑥𝑥 + ℴ(𝑥𝑥), 𝑥𝑥 → 0, 
for 𝑡𝑡 → +∞ and fixed (but an arbitrary) 𝑢𝑢 ∈ ℝ, we get: 

𝑓𝑓𝑘𝑘(𝑢𝑢, 𝑡𝑡,𝛼𝛼) = 𝑎𝑎𝑐𝑐 �𝑒𝑒
− 𝜆𝜆𝜆𝜆|𝑢𝑢|

𝑡𝑡𝛼𝛼 − 1� + ℴ𝑘𝑘(𝑡𝑡−𝛼𝛼𝑢𝑢) = −
𝑎𝑎𝑐𝑐𝜆𝜆𝜆𝜆|𝑢𝑢|
𝑡𝑡𝛼𝛼

+ ℴ𝑘𝑘(𝑡𝑡−𝛼𝛼𝑢𝑢), 

where ℴ(𝑧𝑧) → 0 and ℴ𝑘𝑘(𝑧𝑧) → 0, when 𝑧𝑧 → 0. Substituting the last expression in 
Eq. (13) follows: 
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𝜓𝜓𝑀𝑀(𝑢𝑢, 𝑡𝑡,𝛼𝛼) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 −
𝑎𝑎𝑐𝑐𝜆𝜆
𝑡𝑡𝛼𝛼

��𝑘𝑘|𝑢𝑢| + ℴ𝑘𝑘(𝑡𝑡−𝛼𝛼𝑢𝑢)�
𝑡𝑡

𝑘𝑘=1

 

= 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 −  
𝑎𝑎𝑐𝑐𝜆𝜆
2𝑡𝑡𝛼𝛼

∙ 𝑡𝑡(𝑡𝑡 + 1)|𝑢𝑢| + ℴ(𝑡𝑡1−𝛼𝛼𝑢𝑢), 

and taking 𝑡𝑡 → +∞, one obtains: 

𝜓𝜓𝑀𝑀(𝑢𝑢, 𝑡𝑡,𝛼𝛼)~ �
𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 − 𝑎𝑎𝑐𝑐𝜆𝜆𝑡𝑡2−𝛼𝛼|𝑢𝑢| 2⁄ , 1 ≤ 𝛼𝛼 ≤ 2

0,  𝛼𝛼 > 2.
 

Thus, replacing them into CFs 𝜑𝜑𝑀𝑀� ;𝛼𝛼(𝑢𝑢, 𝑡𝑡), the first asymptotic relation in Eq. (11) 
is easily obtained. 

A similar procedure can be conducted for the series 𝑌𝑌�𝑡𝑡;α. Using the 
previously proven facts and Eq. (4), we find that: 

𝑌𝑌�𝑡𝑡;𝛼𝛼 =
1
𝑡𝑡𝛼𝛼
��𝑚𝑚𝑗𝑗 + 𝜀𝜀𝑗𝑗�
𝑡𝑡

𝑗𝑗=1

= 𝑀𝑀�𝑡𝑡;𝛼𝛼 + �
𝜀𝜀𝑗𝑗
𝑡𝑡𝛼𝛼

𝑡𝑡

𝑗𝑗=1

= 𝑡𝑡1−𝛼𝛼𝑚𝑚0 + �
𝑘𝑘
𝑡𝑡𝛼𝛼
𝜁𝜁𝑡𝑡−𝑘𝑘

𝑡𝑡

𝑘𝑘=1

+ �
𝜀𝜀𝑡𝑡−𝑘𝑘
𝑡𝑡𝛼𝛼

𝑡𝑡−1

𝑘𝑘=0

 

= 𝑡𝑡1−𝛼𝛼𝑚𝑚0 +
𝜀𝜀𝑡𝑡
𝑡𝑡𝛼𝛼

+ �(1 + 𝑘𝑘𝑞𝑞𝑡𝑡−𝑘𝑘)
𝜀𝜀𝑡𝑡−𝑘𝑘
𝑡𝑡𝛼𝛼

𝑡𝑡

𝑘𝑘=1

. 

Since 𝜀𝜀𝑡𝑡−𝑘𝑘, 𝑘𝑘 = 0, 1, … , 𝑡𝑡, are mutually independent RVs, the CFs of 𝑌𝑌�𝑡𝑡;𝛼𝛼 are 
obtained as follows: 

𝜑𝜑𝑌𝑌�;𝛼𝛼(𝑢𝑢, 𝑡𝑡) = 𝜑𝜑𝑚𝑚 �
𝑢𝑢

𝑡𝑡𝛼𝛼−1
, 0�𝜑𝜑𝜀𝜀 �

𝑢𝑢
𝑡𝑡𝛼𝛼
���(1 − 𝑎𝑎𝑐𝑐)𝜑𝜑𝜀𝜀 �

𝑢𝑢
𝑡𝑡𝛼𝛼
� + 𝑎𝑎𝑐𝑐 𝜑𝜑𝜀𝜀 �

(𝑘𝑘 + 1)𝑢𝑢
𝑡𝑡𝛼𝛼

��
𝑡𝑡

𝑘𝑘=1

 

= 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡
1−𝛼𝛼−𝜆𝜆|𝑢𝑢|

𝑡𝑡𝛼𝛼 ��(1 − 𝑎𝑎𝑐𝑐)𝑒𝑒−
𝜆𝜆|𝑢𝑢|
𝑡𝑡𝛼𝛼 + 𝑎𝑎𝑐𝑐 𝑒𝑒−

𝜆𝜆(𝑘𝑘+1)|𝑢𝑢|
𝑡𝑡𝛼𝛼 �

𝑡𝑡

𝑘𝑘=1

 

= 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 �𝑒𝑒−
𝜆𝜆|𝑢𝑢|
𝑡𝑡𝛼𝛼 �

𝑡𝑡+1

��1 + 𝑎𝑎𝑐𝑐  �𝑒𝑒−
𝜆𝜆𝜆𝜆|𝑢𝑢|
𝑡𝑡𝛼𝛼 − 1��

𝑡𝑡

𝑘𝑘=1

. 

Applying the same procedure as above, for the function 𝜓𝜓𝑌𝑌(𝑢𝑢, 𝑡𝑡,α) ≔ ln𝜑𝜑𝑌𝑌�;𝛼𝛼(𝑢𝑢, 𝑡𝑡) 
we have: 

𝜓𝜓𝑌𝑌(𝑢𝑢, 𝑡𝑡,𝛼𝛼) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 −
𝜆𝜆(𝑡𝑡 + 1)|𝑢𝑢|

𝑡𝑡𝛼𝛼
+ �𝑙𝑙𝑙𝑙 �1 + 𝑎𝑎𝑐𝑐  �𝑒𝑒−

𝜆𝜆𝜆𝜆|𝑢𝑢|
𝑡𝑡𝛼𝛼 − 1��

𝑡𝑡

𝑘𝑘=1

 

= 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 −
𝜆𝜆(𝑡𝑡 + 1)|𝑢𝑢|

𝑡𝑡𝛼𝛼
−
𝑎𝑎𝑐𝑐𝜆𝜆
𝑡𝑡𝛼𝛼

��𝑘𝑘| 𝑢𝑢| + ℴ𝑘𝑘(𝑡𝑡−𝛼𝛼𝑢𝑢)�
𝑡𝑡

𝑘𝑘=1

 

= 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 −
𝜆𝜆(𝑡𝑡 + 1)|𝑢𝑢|

𝑡𝑡𝛼𝛼
−
𝑎𝑎𝑐𝑐𝜆𝜆
2𝑡𝑡𝛼𝛼

∙ 𝑡𝑡(𝑡𝑡 + 1)|𝑢𝑢| + ℴ(𝑡𝑡1−𝛼𝛼𝑢𝑢). 

Taking 𝑡𝑡 → +∞ in the last expression, one obtains: 
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𝜓𝜓𝑌𝑌(𝑢𝑢, 𝑡𝑡,𝛼𝛼)~ �
𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡1−𝛼𝛼 −  𝜆𝜆𝑡𝑡1−𝛼𝛼|𝑢𝑢| −  𝑎𝑎𝑐𝑐𝜆𝜆𝑡𝑡2−𝛼𝛼|𝑢𝑢|/2, 1 ≤ 𝛼𝛼 ≤ 2

0,  𝛼𝛼 > 2,
 

and replacing this expression into CFs 𝜑𝜑𝑌𝑌�;𝛼𝛼(𝑢𝑢, 𝑡𝑡) the theorem is completely proven. 
◼ 
Remark 2.2. The previous theorem gives important features of the non-stationary 
CSB series, that is, shows that series (𝑚𝑚𝑡𝑡) and (𝑦𝑦𝑡𝑡) are asymptotically closed for 
the Cauchy distribution under some linear transformations. The case of α = 2 
should be especially emphasized as an interesting one, since relations in Eq. (11) in 
that case give: 

1
𝑡𝑡2
�𝑚𝑚𝑗𝑗

𝑡𝑡

𝑗𝑗=1

⟶
𝑑𝑑
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑦𝑦 �0,

𝑎𝑎𝑐𝑐𝜆𝜆
2
� ,

1
𝑡𝑡2
�𝑦𝑦𝑗𝑗

𝑡𝑡

𝑗𝑗=1

⟶
𝑑𝑑
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑦𝑦 �0,

𝑎𝑎𝑐𝑐𝜆𝜆
2
� ,

𝑡𝑡 → +∞.                                                                                              (14) 
This is a generalized version of the central limit theorem for the so-called stable 
distributions (see, e.g. Campbell et al. [2, pp. 778]). ∎ 

At last part of this section, let us define another CSB series, the so-called 
increments: 

𝑋𝑋𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1,    𝑡𝑡 = 1, … ,𝑇𝑇.                                                        (15) 
In accordance with Eqs. (1), (2) and (6), we can represent this series as: 

𝑋𝑋𝑡𝑡 = 𝜀𝜀𝑡𝑡 − 𝜃𝜃𝑡𝑡−1𝜀𝜀𝑡𝑡−1,                                                                  (16) 

where 𝜃𝜃𝑡𝑡 = 1 − 𝑞𝑞𝑡𝑡 = 𝐼𝐼(𝜀𝜀𝑡𝑡−12 ≤ 𝑐𝑐). Obviously, the series (𝑋𝑋𝑡𝑡) is a stationary 
stochastic process with a random coefficient 𝜃𝜃𝑡𝑡, and it operates in two modes: 

a) Emphasized fluctuations of the series (𝜀𝜀𝑡𝑡) in the previous time moment 
implicate 𝜃𝜃𝑡𝑡−1 = 0, and Eq. (16) becomes 𝑋𝑋𝑡𝑡 = 𝜀𝜀𝑡𝑡.  

b) If 𝜀𝜀𝑡𝑡−12  do not overdraw the critical value 𝑐𝑐, it follows 𝜃𝜃𝑡𝑡−1 = 1 and 𝑋𝑋𝑡𝑡 is 
given as a linear, integrated MA(1) process 𝑋𝑋𝑡𝑡 = 𝜀𝜀𝑡𝑡 − 𝜀𝜀𝑡𝑡−1.  

For these reasons, one can consider the series (𝑋𝑋𝑡𝑡) to be an ‘optional’ moving 
average (MA) stochastic process and, therefore, express its key stochastic 
properties in the following way: 

Theorem 2.3. Let (𝑋𝑋𝑡𝑡) be the CSB series defined by Eqs. (15) and (16). Then, for 
any 𝑥𝑥 ∈ ℝ and 𝑡𝑡 = 0,  1, … ,𝑇𝑇, the CDF of the RVs (𝑋𝑋𝑡𝑡) is given by: 

𝐹𝐹𝑋𝑋(𝑥𝑥) ≔ 𝑃𝑃{𝑋𝑋𝑡𝑡 < 𝑥𝑥} = (1 − 𝑏𝑏𝑐𝑐)𝐹𝐹𝜀𝜀(𝑥𝑥) + 𝑏𝑏𝑐𝑐𝐹𝐹2𝜀𝜀(𝑥𝑥),                                   (17) 

where 𝑏𝑏𝑐𝑐 = 𝐸𝐸(𝜃𝜃𝑡𝑡) = 𝑃𝑃{𝜀𝜀𝑡𝑡−12 ≤ 𝑐𝑐} = 1 − 𝑎𝑎𝑐𝑐, and 𝐹𝐹𝜀𝜀(𝑥𝑥), 𝐹𝐹2𝜀𝜀(𝑥𝑥) are, respectively, 
the CDFs of the Cauchy (0, 𝜆𝜆) and Cauchy (0,2𝜆𝜆) distributions.  

Proof. Similarly as above, let us define the series of uncorrelated RVs 𝜂𝜂𝑡𝑡 = 𝜃𝜃𝑡𝑡𝜀𝜀𝑡𝑡, 
𝑡𝑡 = 0, 1, … ,𝑇𝑇. Using the conditional probabilities, for the CDF of the RVs (𝜉𝜉𝑡𝑡) one 
obtains: 
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𝐹𝐹𝜂𝜂(𝑥𝑥) ≔ 𝑃𝑃{𝜂𝜂𝑡𝑡 < 𝑥𝑥}
= 𝑃𝑃{𝜂𝜂𝑡𝑡 < 𝑥𝑥|𝜃𝜃𝑡𝑡 = 1} ∙ 𝑃𝑃{𝜃𝜃𝑡𝑡 = 1} + 𝑃𝑃{𝜂𝜂𝑡𝑡 < 𝑥𝑥|𝜃𝜃𝑡𝑡 = 0} ∙ 𝑃𝑃{𝜃𝜃𝑡𝑡 = 0} 

= 𝑃𝑃{𝜀𝜀𝑡𝑡 < 𝑥𝑥} ∙ 𝑃𝑃{𝜃𝜃𝑡𝑡 = 1} + 𝑃𝑃{𝑥𝑥 > 0} ∙ 𝑃𝑃{𝜃𝜃𝑡𝑡 = 0} 
= 𝑏𝑏𝑐𝑐𝐹𝐹𝜀𝜀(𝑥𝑥) + (1 − 𝑏𝑏𝑐𝑐)𝐹𝐹0(𝑥𝑥). 

According to this, the CF of the RVs (𝜂𝜂𝑡𝑡) is obtained as follows: 

𝜑𝜑𝜂𝜂(𝑢𝑢) ≔ � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝜂𝜂(𝑑𝑑𝑑𝑑)
+∞

−∞

= � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖[𝑏𝑏𝑐𝑐𝐹𝐹𝜀𝜀 + (1 − 𝑏𝑏𝑐𝑐)𝐹𝐹0](𝑑𝑑𝑑𝑑)
+∞

−∞
= 𝑏𝑏𝑐𝑐𝜑𝜑𝜀𝜀(𝑢𝑢) + (1 − 𝑏𝑏𝑐𝑐)𝜑𝜑0(𝑢𝑢) 

= 1
+ 𝑏𝑏𝑐𝑐�𝑒𝑒−𝜆𝜆|𝑢𝑢|

− 1�.                                                                                                                          (18) 

According to Eq. (18), for the CF of the series (𝑋𝑋𝑡𝑡), given by Eq. (16), we get: 

𝜑𝜑𝑋𝑋(𝑢𝑢) = 𝜑𝜑𝜀𝜀(𝑢𝑢) ∙ 𝜑𝜑𝜂𝜂(−𝑢𝑢) = (1 − 𝑏𝑏𝑐𝑐)𝑒𝑒−𝜆𝜆|𝑢𝑢| + 𝑏𝑏𝑐𝑐𝑒𝑒−2𝜆𝜆|𝑢𝑢|.                               (19) 

Thus, Eq. (17) immediately follows by applying the Levy correspondence theorem 
to Eq. (19). ◼ 
Remark 2.3. Note that by differentiating Eq. (17), we obtain the PDF of the 
series(𝑋𝑋𝑡𝑡) as follows: 

𝑓𝑓𝑋𝑋(𝑥𝑥) = (1 − 𝑏𝑏𝑐𝑐)
𝑑𝑑𝐹𝐹𝜀𝜀(𝑥𝑥)
𝑑𝑑𝑑𝑑

+ 𝑏𝑏𝑐𝑐
𝑑𝑑𝐹𝐹2𝜀𝜀(𝑥𝑥)
𝑑𝑑𝑑𝑑

=
𝜆𝜆
𝜋𝜋
�

1 − 𝑏𝑏𝑐𝑐
𝑥𝑥2 + 𝜆𝜆2

+
2𝑏𝑏𝑐𝑐

𝑥𝑥2 + 4𝜆𝜆2
� .∎ 

3. Parameters estimation. Empirical characteristic function method 

In this part, we estimate the unknown parameters of the CSB process, that 
is, the critical value (𝑐𝑐) and the scale parameter (𝜆𝜆). For that cause, we denote 
further 𝜃𝜃 = (𝑏𝑏𝑐𝑐,𝜆𝜆)′ and use the increments (𝑋𝑋𝑡𝑡), which, as already mentioned, are 
the only observable and stationary series of the CSB processes. Also, this series has 
a similar structure to linear MA processes, but with Cauchy distributed innovations 
(𝜀𝜀𝑡𝑡). The Cauchy distribution is peculiar purpose of its heavy tail and the difficulty 
in estimating its parameters (see, e.g. [12]). For instance, the moment-based 
estimation procedures cannot be applied because the mean and variance of the 
Cauchy distribution do not exist, while the maximum likelihood estimators (MLEs) 
require complex calculations. Therefore, here we propose the empirical 
characteristic function (ECF) method, based on matching the ECF with the 
theoretical CF of the stationary series (𝑋𝑋𝑡𝑡).  

The ECF method was implemented in time series analysis by the pioneering 
work of Knight and Satchell [10], and later examined in detail by Knight and Yu 
[11] and Yu [24]. Thereafter, some extensions of CF-based estimators are 
discussed, e.g., in Meintanis [14] or Carrasco and Kotchoni [3]. Following these 
ideas, an ECF procedure similar to those in Stojanović et al. [18,20] is described 
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here. It is worth pointing out that the main preeminence of the ECF method is the 
fact that the theoretical CFs are uniformly bounded, which implies the numerical 
stability of the estimators obtained in this manner. Furthermore, in accordance with 
the bijective correspondence between the CFs and their corresponding CDFs, the 
ECFs retain all the 'information' present in the sample. In that sense, the general 
definition of the CF of order 𝑟𝑟 ≥ 1 can be given as follows: 

Definition 3.1. Let 𝐮𝐮 = (𝑢𝑢1, … ,𝑢𝑢𝑟𝑟) ∈ ℝ𝑟𝑟 and 𝑿𝑿𝑡𝑡
(𝑟𝑟): = (𝑋𝑋𝑡𝑡, … ,𝑋𝑋𝑡𝑡+𝑟𝑟−1)′, 𝑡𝑡 =

0, 1, … ,𝑇𝑇 − r + 1, be the overlapping blocks of the series (𝑋𝑋𝑡𝑡). The 𝑟𝑟-dimensional 
CF of vector  𝑿𝑿𝑡𝑡

(𝑟𝑟) is given as follows: 

 𝜑𝜑𝑋𝑋
(𝑟𝑟)(𝒖𝒖;𝜃𝜃): = 𝐸𝐸 �𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝒖𝒖′𝑿𝑿𝑡𝑡

(𝑟𝑟)�� =
𝐸𝐸�𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖 ∑ 𝑢𝑢𝑗𝑗𝑋𝑋𝑡𝑡+𝑗𝑗−1𝑟𝑟

𝑗𝑗=1 ��.                          (20) 

An explicit expression for the CFs of increments (𝑋𝑋𝑡𝑡) is given by the following 
statement: 

Theorem 3.1. Let (𝑋𝑋𝑡𝑡) be the series introduced by Eqs. (15) and (16). Then, the 
CFs of order 𝑟𝑟 ∈ ℕ of the 𝑟𝑟-dimensional stochastics process �𝑿𝑿𝑡𝑡

(𝑟𝑟)� are given by: 

𝜑𝜑𝑋𝑋
(𝑟𝑟)(𝒖𝒖;𝜃𝜃) = 𝑒𝑒−𝜆𝜆|𝑢𝑢𝑟𝑟| ��(1 − 𝑏𝑏𝑐𝑐)𝑒𝑒−𝜆𝜆�𝑢𝑢𝑗𝑗� + 𝑏𝑏𝑐𝑐𝑒𝑒−𝜆𝜆�𝑢𝑢𝑗𝑗−𝑢𝑢𝑗𝑗+1��

𝑟𝑟−1

𝑗𝑗=0

,                         (21) 

where 𝑢𝑢0 = 0 and 𝑏𝑏𝑐𝑐 = 𝑃𝑃{𝜀𝜀𝑡𝑡−12 ≤ 𝑐𝑐}. 
Proof. Note first that, according to Eq. (19), the statement is obviously valid in the 
case when 𝑟𝑟 = 1 and 𝑢𝑢1 = 𝑢𝑢. Now, suppose that 𝑟𝑟 > 1 and denote: 

ℒ(𝒖𝒖;𝜃𝜃) ≔ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝒖𝒖′𝑿𝑿𝑡𝑡
(𝑟𝑟)� = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖�𝑢𝑢𝑗𝑗+1𝑋𝑋𝑡𝑡+𝑗𝑗

𝑟𝑟−1

𝑗𝑗=0

�

= 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖�𝑢𝑢𝑗𝑗+1�𝜀𝜀𝑡𝑡+𝑗𝑗 − 𝜃𝜃𝑡𝑡+𝑗𝑗−1𝜀𝜀𝑡𝑡+𝑗𝑗−1�
𝑟𝑟−1

𝑗𝑗=0

� 

= 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖 �𝑢𝑢𝑟𝑟𝜀𝜀𝑡𝑡+𝑟𝑟−1 + ��𝑢𝑢𝑗𝑗 − 𝜃𝜃𝑡𝑡+𝑗𝑗−1𝑢𝑢𝑗𝑗+1�𝜀𝜀𝑡𝑡+𝑗𝑗−1

𝑟𝑟−1

𝑗𝑗=0

��. 

According to the last expression and Eqs. (18) and (20), the 𝑟𝑟-dimensional CF of 
the series �𝑿𝑿𝑡𝑡

(𝑟𝑟)� is obtained as 𝜑𝜑𝑋𝑋
(𝑟𝑟)(𝐮𝐮;𝜃𝜃): = 𝐸𝐸[ℒ(𝐮𝐮;𝜃𝜃)], and Eq. (21) immediately 

follows. ■  

Further, let us denote 𝑿𝑿𝑇𝑇: = {𝑋𝑋1, … ,𝑋𝑋𝑇𝑇} as some realization of length 𝑇𝑇 ∈
ℕ of the increments (𝑋𝑋𝑡𝑡), as well as 𝑟𝑟-dimensional ECF matching them as: 
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𝜑𝜑�𝑇𝑇
(𝑟𝑟)(𝒖𝒖)  ≔

1
𝑇𝑇 − 𝑟𝑟 + 1

� 𝑒𝑒𝑒𝑒𝑒𝑒�𝑖𝑖𝒖𝒖′𝑿𝑿𝑡𝑡
(𝑟𝑟) �

𝑇𝑇−𝑟𝑟+1

𝑡𝑡=1

 . 

As previously stated, the main objective of the ECF method is to minimize the 
‘distance’ between the theoretical CF and its corresponding ECF. The appropriate 
ECF estimators are then obtained by a minimization the following objective 
function: 

𝑆𝑆𝑇𝑇
(𝑟𝑟)(𝜃𝜃) ≔ � 𝑔𝑔(𝒖𝒖)�𝜑𝜑𝑋𝑋

(𝑟𝑟)(𝒖𝒖;𝜃𝜃) − 𝜑𝜑�𝑇𝑇
(𝑟𝑟)(𝒖𝒖)�

2
𝒅𝒅𝒅𝒅

ℝ𝑟𝑟
                                     (22) 

with respect to the parameter 𝜃𝜃 = (𝑏𝑏𝑐𝑐, 𝜆𝜆)′. Here, 𝜑𝜑𝑋𝑋
(𝑟𝑟)(𝐮𝐮;𝜃𝜃) is the CF of the order 

𝑟𝑟 ≥ 1, defined by Eq. (20), 𝐝𝐝𝐝𝐝 ≔ d𝑢𝑢1 ⋯d𝑢𝑢𝑟𝑟, and 𝑔𝑔:ℝ𝑟𝑟 → ℝ+ is some weight 
function.  Therefore, the ECF estimates are solutions to the following minimization 
equation: 

𝜃𝜃�𝑇𝑇
(𝑟𝑟) = arg𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃∈𝛩𝛩
𝑆𝑆𝑇𝑇

(𝑟𝑟)(𝜃𝜃) , 

where Θ = (0,1) × (0, +∞) is a non-trivial parameter space. According to some 
general results of ECF-asymptotic theory (see, e.g., Knight and Yu [11] or 
Stojanović et al. [18]), strong consistency and asymptotic normality (AN) of the 
ECF estimators, under some regulatory conditions, can be proved. Moreover, the 
above procedure holds if CF is of order 𝑟𝑟 ≥ 1 at least equal to the number of its 
parameters. For that purpose, we base the estimation procedure on the two-
dimensional CF of the vector series 𝑿𝑿𝑡𝑡

(2) ≔ (𝑋𝑋𝑡𝑡,𝑋𝑋𝑡𝑡+1)′. The objective function 𝑆𝑆𝑇𝑇
(2) 

then represents a double integral with weight 𝑔𝑔:ℝ2 → ℝ+, and it can be numerically 
calculated by using some cubature formulas. Let us notice that, according to Eq. 
(21), the two-dimensional CF of the series (𝑋𝑋𝑡𝑡) can be expressed in an explicit form 
as follows: 

𝜑𝜑𝑋𝑋
(2)(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = 𝑒𝑒−𝜆𝜆|𝑢𝑢2|�1 + 𝑏𝑏𝑐𝑐�𝑒𝑒−𝜆𝜆|𝑢𝑢1| − 1���(1− 𝑏𝑏𝑐𝑐)𝑒𝑒−𝜆𝜆|𝑢𝑢1|

+ 𝑏𝑏𝑐𝑐𝑒𝑒−𝜆𝜆|𝑢𝑢1−𝑢𝑢2|�,             (23) 
and the appropriate ECF is the real-valued function: 

𝜑𝜑�𝑇𝑇
(2)(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = 1

𝑇𝑇−1
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢1𝑋𝑋𝑡𝑡 + 𝑢𝑢2𝑋𝑋𝑡𝑡+1)𝑇𝑇−1
𝑡𝑡=1 ].    (23) 

As an illustration, in Fig. 2 are shown 3D plots of the two-dimensional CF and the 
corresponding ECF of increments (𝑋𝑋𝑡𝑡), when 𝑇𝑇 = 1500, 𝑏𝑏𝑐𝑐 = 0.5, and 𝜆𝜆 = 1. 
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Fig. 2. 3D plots of the two-dimensional CF (left) and the corresponding ECF (right) of the series 
𝑿𝑿𝑡𝑡

(2) = (𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡+1)′. 
 

4. Numerical simulations & application  

In this part, we present the implementation of the previously mentioned ECF 
procedure for estimating the parameters 𝜃𝜃 = (𝑏𝑏𝑐𝑐, λ)′ of the increment series (𝑋𝑋𝑡𝑡). 
Thereby, according to Eq. (5), estimates 𝑐̂𝑐 of the critical value can be easily obtained 
by solving the following equation (with respect to 𝑐𝑐 > 0): 

𝑃𝑃{𝜀𝜀𝑡𝑡2 ≤ 𝑐𝑐} = 𝑏𝑏�𝑐𝑐     ⟺      𝑐̂𝑐 = �𝐹𝐹𝜀𝜀−1 �
𝑏𝑏�𝑐𝑐 + 1

2
��

2

= 𝜆𝜆 𝑡𝑡𝑡𝑡 �
𝜋𝜋𝑏𝑏�𝑐𝑐

2
� .                         (24) 

Using the aforementioned results, primarily Eqs. (22) and (23), ECF estimates can 
be calculated by minimizing the following double integral: 

𝑆𝑆𝑇𝑇
(2)(𝜃𝜃) = � 𝑔𝑔(𝒖𝒖)�𝜑𝜑𝑋𝑋

(2)(𝒖𝒖;𝜃𝜃) − 𝜑𝜑�𝑇𝑇
(2)(𝒖𝒖)�

2
𝒅𝒅𝒅𝒅

ℝ2
.                                     (25) 

Here, 𝑔𝑔(𝐮𝐮) = 𝑔𝑔(𝑢𝑢1,𝑢𝑢2) = exp�−(𝑢𝑢12 + 𝑢𝑢22)� is the exponential weight, which 
places more weights around the origin, in accordance with the fact that the CF at 
this point contains the most information about the PDF of the estimated model. In 
order to solve integral in Eq. (25), the following numerical approximation is used, 
based on the 𝑁𝑁-point Gauss-Hermitian cubature formula: 

𝐼𝐼(𝑓𝑓,𝑔𝑔) ≔� 𝑔𝑔(𝑢𝑢1,𝑢𝑢2)𝑓𝑓(𝑢𝑢1,𝑢𝑢2)
ℝ2

𝑑𝑑𝑢𝑢1𝑑𝑑𝑢𝑢2  ≈ �𝜔𝜔𝑗𝑗𝑓𝑓�𝑣𝑣1𝑗𝑗 , 𝑣𝑣2𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

.                      (26) 

Here, �𝑣𝑣1𝑗𝑗 , 𝑣𝑣2𝑗𝑗� are the cubature nodes, and 𝜔𝜔𝑗𝑗 are the appropriate weight 
coefficients, obtained using the package “Orthogonal polynomials” [4] in 
WOLFRAM MATHEMATICA software. In our case, the objective function in Eq. (25) 
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is minimized using the cubature formulas in Eq. (26), with 𝑁𝑁 = 81 nodes and using 
the R-function "nlminb".  

Further, two sample sizes 𝑇𝑇 = 250  and 𝑇𝑇 = 1500 have been considered, 
and 𝑁𝑁 = 500 independent realizations {𝑋𝑋1, … ,𝑋𝑋𝑇𝑇} of the series (𝑋𝑋𝑡𝑡) with Cauchy 
innovations (𝜀𝜀𝑡𝑡) were generated for both of them. True parameters values are 𝑏𝑏𝑐𝑐 =
0.5 and 𝑐𝑐 = 𝜆𝜆 = 1, and their initial estimates were taken randomly from the 
uniform distributions 𝒰𝒰(0,1) and 𝒰𝒰(0,2), respectively. Table 1 shows the obtained 
numerical results, that is, the mean values (Mean), minimums (Min.), maximums 
(Max.), the mean-squared estimation error (MSEE), along with the values of the 
objective function 𝑆𝑆𝑇𝑇

(2)(𝜃𝜃). It is evident that ECF estimates converge, because the 
MSEE and 𝑆𝑆𝑇𝑇

(2)(𝜃𝜃) values decrease as the sample size increases. In addition, notice 
that the estimates of the critical value 𝑐𝑐 > 0 have a slightly higher MSEE, as a 
consequence of the two-step estimation procedure, based on Eq. (24). 
 

Table 1.  
Estimated parameters obtained from Monte Carlo simulations of the CSB process. (True 

parameters are: 𝒃𝒃𝒄𝒄 = 𝟎𝟎.𝟓𝟓, 𝒄𝒄 = 𝝀𝝀 = 𝟏𝟏) 
Sample size 𝑇𝑇 = 250 𝑇𝑇 = 1500 
Parameters 𝑏𝑏𝑐𝑐 𝑐𝑐 𝜆𝜆 𝑆𝑆𝑇𝑇

(2) 𝑏𝑏𝑐𝑐 𝑐𝑐 𝜆𝜆 𝑆𝑆𝑇𝑇
(2) 

Min. 0.3006 0.6956 0.7019 2.63E-06 0.3255 0.7274 0.7257 1.84E-06 
Mean 0.4974 1.0710 1.0059 3.21E-05 0.4989 1.0582 1.0054 2.67E-05 
Max. 0.6995 1.3652 1.3140 1.39E-04 0.6743 1.2987 1.2744 9.00E-05 
MSEE 0.0136 0.0403 0.0290 - 0.0100 0.0303 0.0248 - 

 
Thereafter, in order to display the practical application of the CSB process, 

the fitting of the dynamics of the total trading values of QUALCOMM Incorporated 
Common (QCOM) stocks is described. The sample data set is taken on the basis of 
official stock market quotations from the National Association of Securities Dealers 
Automated Quotations (NASDAQ) [15]. In this way, five-year historical data, from 
May 29, 2018. until May 24, 2023. are considered as univariate time series of the 
length 𝑇𝑇 = 1257. In addition, the so-called log-volumes, obtained as the natural 
logarithm of the total monetary value of the trading volume, are observed as the 
basic time series: 

𝑦𝑦𝑡𝑡 ≔ 𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡 ∙ 𝑉𝑉𝑡𝑡) ,     𝑡𝑡 = 0,  1, … ,𝑇𝑇, 
where (𝑃𝑃𝑡𝑡) and (𝑉𝑉𝑡𝑡) are, respectively, price and trading volumes of QCOM stocks. 
The use of log-volume, as pointed out in [17], changes the interpretation of activity 
shocks, because the growth trend does not affect unexpected values in their 
dynamics. Additionally, the increments of CSB process can be expressed as 
follows: 

𝑋𝑋𝑡𝑡 ≔ 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 = 𝑙𝑙𝑙𝑙
𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

+ 𝑙𝑙𝑙𝑙
𝑉𝑉𝑡𝑡
𝑉𝑉𝑡𝑡−1

, 𝑡𝑡 = 1, … ,𝑇𝑇, 
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that is, they represent the sum of the log-returns of stock prices and trading volumes. 
Thereafter, by using Eqs. (2)−(4), the series (𝑚𝑚𝑡𝑡) and (𝜀𝜀𝑡𝑡) can be obtained by the 
following recurrence procedure: 

�
𝜀𝜀𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑚𝑚𝑡𝑡,                            

𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1 + 𝜀𝜀𝑡𝑡−1𝐼𝐼{𝜀𝜀𝑡𝑡−22 ≥ 𝑐̂𝑐}.  
                                                 (27) 

Here, 𝑐̂𝑐 is the estimated critical value, obtained according to Eq. (24), and starting 
values for the iterative procedure in Eq. (24) are 𝜀𝜀0 = 𝜀𝜀−1 = 0. Using the well-
known facts about the Cauchy distribution (see, e.g. [12]), the median 𝜇̂𝜇 of the series 
(𝑦𝑦𝑡𝑡) is used as an estimate of the parameter 𝜇𝜇. At the same time, using the modelled 
values (εt), given by Eq. (27), the mean absolute deviation (MAD):  

𝜆̃𝜆 =
1
𝑇𝑇
�|𝜀𝜀𝑡𝑡 − 𝜇̂𝜇|
𝑇𝑇

𝑡𝑡=1

 

is taken as the initial estimate of the scale parameter 𝜆𝜆. The ECF procedure 
mentioned above is then applied and thus obtained estimated parameters values, 
along with the key statistical indicators of the CSB series, are shown in Table 2. 
 

Table 2.  
Estimated parameters and key statistical indicators of the QCOM stocks data 

Parameters Estimates Statistical 
indicators 

CSB series 
(𝑦𝑦𝑡𝑡) (𝑚𝑚𝑡𝑡) (𝑋𝑋𝑡𝑡) (𝜀𝜀𝑡𝑡) 

𝑏𝑏𝑐𝑐 1.31E−03 Min. 19.115 19.115 -1.5517 -1.5517 
𝑐𝑐 6.79E−04 Max. 23.236 23.235 2.2832 3.0026 
𝜆𝜆 0.3033 Median 20.632 20.231 -0.0212 -0.0186 
𝑆𝑆𝑇𝑇

(2) 9.89E−05 MAD 0.4169 0.3327 0.3306 0.4067 
 

Based on these results, it can be noted that the estimates of the log-volumes 
(𝑦𝑦𝑡𝑡) and the martingale means (𝑚𝑚𝑡𝑡) are quite ‘close to each other’. Also, the 
increments (𝑋𝑋𝑡𝑡) and the innovation series (𝜀𝜀𝑡𝑡) have similar estimated values. Note 
that this is a consequence of previous theoretical results given in Theorems 2.1. and 
2.3. Finally, a ‘small’ estimated values of parameters 𝑏𝑏𝑐𝑐 (and 𝑐𝑐) indicate that their 
true values are 𝑏𝑏𝑐𝑐 = 𝑐𝑐 = 0. Therefore, the series (𝑋𝑋𝑡𝑡) and (ε𝑡𝑡) become equal, which 
means that (𝑋𝑋𝑡𝑡) have a Cauchy (𝜇𝜇, 𝜆𝜆) distribution. This implies: 

𝑋𝑋𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 = 𝜀𝜀𝑡𝑡   ⟺   𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, 
that is, the series (𝑦𝑦𝑡𝑡) has independent increments. Thus, according to Eq. (1) it 
follows 𝑦𝑦𝑡𝑡−1 = 𝑚𝑚𝑡𝑡, and all of the 'past information' is contained into previous 
realization of (𝑦𝑦𝑡𝑡). It makes the overall statistical analysis simpler, because 
according to Theorem 2.2, RVs (𝑦𝑦𝑡𝑡) then have a Cauchy (𝜇𝜇, 𝜆𝜆𝜆𝜆) distribution. As an 
illustration, the empirical PDFs (given by histograms) and the theoretical PDFs 
(given by lines) of the CSB series (𝑦𝑦𝑡𝑡) and (𝑋𝑋𝑡𝑡), respectively, are shown in Fig. 3. 
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Fig. 3. Empirical distributions of real-world data (histograms) and their corresponding PDFs fitted 

with Cauchy distributions (lines). 

5. Conclusions 

The manuscript presents a new nonlinear stochastic model, named the 
Cauchy Split-BREAK (CSB) process, convenient for empirical analysis of time 
series with persistent and pronounced fluctuations. Stochastic characteristics of the 
CSB process are investigated, with special emphasis on its asymptotic properties. 
We implemented a procedure based on the ECF method for the CSB model 
parameters estimation. Thus obtained results were applied in modelling the 
dynamics of the total value of the trading volume of QCOM shares. It is worth 
noting that, with certain modifications, similar stochastic models as well as 
estimation techniques can be used to fit some related non-linear time series. 
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