
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 2, 2024                                                     ISSN 2286-3540 

LOGIT-BASED SUPERPIXEL SEMANTIC SEGMENTATION 

OF IMAGES FOR PRECISION AGRICULTURE 

Corneliu FLOREA1, Alexandru BURGHIU2, Mihai IVANOVICI3 

In this work we approach the problem of remote sensing image segmentation 

using a classical approach: the image is first segmented and, subsequently, each 

segment is labeled using a classifier. For segmentation, we rely on a superpixel 

framework and several methods are evaluated. For the classifier, again, several state-

of-the-art algorithms are tested and performances are compared. The best performing 

method is obtained by a modified SEED superpixel algorithm with boosted trees for 

classification. The evaluation is carried out on the Agriculture-Vision database and 

the results are encouraging. 
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1. Introduction 

Rapid global population growth and increasing demand for food production 

require effective monitoring and management of agricultural resources. Aerial 

imagery plays an essential role in providing valuable information for various 

agricultural applications such as crop yield estimation, precision agriculture and 

land use planning. Accurate segmentation and classification of agricultural regions 

in aerial imagery is important for these applications as it offers a cost-effective 

alternative to manual inspection, which requires experts to travel in person. 

However, the complexity and variability of agricultural landscapes pose significant 

challenges in developing robust and efficient region segmentation and classification 

methods. For instance, when attempting to delineate weed distributions in aerial 

images of farmland, the algorithm needs to accurately recognize and differentiate 

between sparse weed clusters that vary greatly in shape and size. We are using the 

Agriculture Vision dataset, which compared to previous agricultural image 

collection originates in larger resolution images, that record details up to 10 cm per 

pixel (cm/px) and precise annotations from professional agronomists with a strict 

quality assurance process. 
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In this paper we approach the problem of semantic segmentation of 

remotely-sensed images with application in precision agriculture using a “rather 

classical” solution, in the sense that we avoid the heavy computational deep 

learning models, which have dominated the solutions in the recent period. Given an 

image acquired from a camera mounted on a aerial drone, recording a specific 

location and land cover, the purpose is to label each pixel into a relevant class. An 

overview of the method may be seen in Figure 1. The method is based upon a 

classical approach where, first, the image is segmented, and each segment is further 

classified with the predictor trained on the appropriate database. For the 

segmentation, we actually over-segment the image based on the superpixel 

approach. For classification we rely on a boosted ensemble of trees.  
 

 
Fig 1. A schematic overview of the proposed method. 

 

Overall, the contribution of this paper is at the method level, where we 

propose a combination of features (derived from superpixels) and classifier that has 

not been used for semantic segmentation in general, and for agriculture aerial 

images in particular. The remainder of the paper is organized as follows: since the 

main parts of the method are based on segmentation and the overall framework, in 

the next section we review the most relevant works into these directions. Section 3 

is dedicated for presenting relevant aspects of the method, while section 4 is about 

implementation and results. The paper ends with conclusions. 

 

2. Previous works 

 

The embraced method uses superpixels and addresses the problem of 

semantic segmentation of remote sensing images with application to precision 

agriculture, more specifically for the cartography of the agricultural crop. The 

existing approaches are discussed in following paragraphs.  

Superpixel. The concept of superpixel has been introduced by Ren and 

Malik in 2003, [1] and represents an over-segmentation of an image formed by 
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gathering perceptually similar pixels. The superpixel is a validated low-level 

representation of image as it groups pixels that share similar colors or other low-

level properties such texture. 

Many notable implementations of the superpixel concept exist, starting with 

Normalized Cuts [1], Felzenszwalb and Huttenlocher (FH) [2] and the entropy rate 

superpixels (ERS) [3]. In summary, they are clustering methods and the difference 

lays in the clustering objective function, in the data space exploration or in the 

similarity measure and threshold. Some popular algorithms include SLIC [4], 

energy driven sampling - SEEDS [5] and Linear Spectral Clustering - (LSC) [6]. 

SLIC [4] initializes the centers into a regular grid and grows the segments by 

clustering pixels around the center with a distance-based similarity measure. 

SEEDS [5] uses an energy-based minimization while LSC [6] assumes spectral 

decomposition and limitations in variance. Stutz et al. [7] surveyed various methods 

and provide details that differentiate algorithms. 

Superpixels survived in the deep leaning dominated era. A common 

application lies in active learning for semantic segmentation. For instance, SEAL 

(Segmentation Affinity Loss) [8] used deep convolutional networks to learn the 

features for superpixel generation. In an active learning framework, Cai et al. [9] 

and respectively Kim et al. [10] used SEEDS, followed by adapted merging to pre-

segment the image, so to minimize the user effort while annotating for future 

supervised segmentation. Overall, various alternatives for clustering pixels in 

superpixels have been proposed but is not based on logit representation of colors. 

Aerial and satellite image semantic segmentation. Semantic 

segmentation refers to the process where each pixel of the is associated to an object 

and the object is labeled. While in the recent years this field is dominated by the 

deep network approach, even that tremendous effort has put into miniaturization 

and efficientization of the calculus, deep networks still require a significant amount 

of resources, especially access to a graphical card; furthermore, they do require days 

for training. In contrast, non deep methods while they may be inferior as 

performance, they can be easily applied to larger resolution images and require 

significant lesser resources for training and prediction. Recently, a number of works 

used superpixels in remote sensing image segmentation. 

For instance, Zhang et al. [11] proposed a multi-scale, spectral based 

superpixels followed by optimization to segment coastal city images. Cheng et al. 

[12] notes the limitation of deep CNN in dealing with variable sized images and 

proposes a superpixel-based graph convolutional network for PolSAR (Polarimetric 

Synthetic Aperture Radar) image classification. Ma et al. [13] incorporate the 

superpixel generation and merging steps into, by means of differentiable loss 

function into an end-to-end trainable deep network. Geng et al. [14] successfully 

extended the superpixel hypergraph neural network to segmentation of Polarimetric 

SAR image. 
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To conclude, the faster computation and the ability to work with variable 

sized images made the superpixel concept to be useful. It had been used alone or in 

conjunction with deep networks, in the area of semantic segmentation of remote 

sensing images, even in the very recent times. 

2. Method 

In summary, our method consists of the following steps: (I) over-segment 

the RGB image with enhanced, logit based, SEEDS superpixel algorithm. (II) 

describe each superpixel with a set of attributes (III) given the database that is split 

into training and testing, train a classifier to correctly label each superpixel; (IV) 

post process the labelled image.   

 

2.1. Superpixel Segmentation 

 

For the superpixel segmentation, we take as baseline algorithm the SEEDS 

[5] solution and enhance it. We recall that superpixels aim to group similar pixels, 

based on homogeneity or other criteria. Inspired by the SLIC [4] superpixel, the 

SEEDS also start with a regular grid of prototypes (set empirically to 500 for our 

experiments), that it assigns neighboring pixels based on color to each prototype. 

In subsequent steps, the superpixels are updated at pixel level and at block level.  

The update uses an energy minimization principle, where it is considered 

the square of the probability for two colors to be in the same group, as a 

homogeneity criteria. The probabilities are taken from the 3D RGB color histogram.  

The original SEEDS algorithm defines the following measure to be the 

minimizable color energy: 
 

𝐻(𝑠) =   ∑ 𝛹(𝐴𝑘)𝑘     (1) 

 

where Ψ(𝐴𝑘) is a function enforcing the colors to be concentrated in one or few 

values. Ak is the building superpixel. The original function proposed [5] was based 

on the square of probabilities in the superpixel histogram (i.e GINI index). We have 

found out that a logit version works slightly better:  
 

Ψ(𝐴𝑘) = ∑
𝑒−𝑐(𝐴𝑘)

∑ 𝑒
−𝑐(𝐴𝑗)

𝑗

𝑘     (2) 

 

The eq.(2) shows the main technical contribution of the proposed paper. We 

removed the boundary term from the original SEEDS method, but we adhere to the 

hill climbing principle (where maximization direction is found my going in the 

direction marked by the derivative gradient) in the pixel update and block update. 

At the end of the superpixel algorithm, it results the superpixel partition: the pixels 
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in each image i ∈ I are separated into a set S0(i) of superpixels, and to produce a 

base segmentation S0 := Si ∈ I. The number of superpixels in an image is variable, 

due to block fusion. 

 

2.2 Features  

Each superpixel is described by a feature vector of fixed size. In our 

implementation, the descriptor is made out of the mean for each color plane 

(R,G,B), the variances on the same color plane and the histogram of gradient 

orientation [15] (HOG) with 6 bins. Overall, the feature vector has length 12 and 

multiple superpixels form multiple instances.   

 

2.3. Classifier 

 

While many non-deep classifiers have been proposed in the literature, our 

version for this application is an ensemble of boosted trees. The boosting paradigm, 

has been introduced for binary classification, but it has been extended to multiple 

classes by the SAMME (Stagewise Additive Modelling with a Multi-class 

Exponential loss function) [16] algorithm. The boosting, intuitively, refers to 

building classifiers from an ensemble in a sequential manner, where the current one 

tries to compensate for the errors of the previous classifiers. A multiclass boosting 

and arcing procedure was shown to work with high capacity classifiers such as 

SVM [17], but is as efficient with smaller ones and it is faster.  

Intuitive motivation of the proposed method lies in the fact that, here, we 

use strong attributes, compared to weak ones, there [17]. The procedure is as 

following: 

1. Let be given a training database with n examples  

2. Initialize the observation weights : Wi
(1)

= 1, i ∈ {1, … , n}  

3. For  m=1:M   

a. Randomly select a classifier 𝒯𝓅
(𝓂)

𝑤𝑖𝑡ℎ p ∈ {1 … Q}  Also 

select  X(p) 

b. Select a random bootstrap sample of the data  

c. Fit the chosen classifier 𝒯𝓅
(𝓂)

 to the training data using 

weights W(m) 

d. Compute the recognition error:  

 

    ε𝑚 = (∑ 𝑊𝑖
(𝑚)

[𝑐𝑖 ≠ 𝒯𝓅
(𝓂)(𝑥𝑖)]𝑛

𝑖=1 ) / ∑ 𝑊𝑖
(𝑚)𝑛

𝑖=1    (3) 

 

e. Compute the update: 
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           α(𝑚) = min (log
1−ε𝑚

ε𝑚
+ log(𝐾 − 1) , α𝑚𝑎𝑥)       (4) 

 

f. Set the new weights, to emphasize examples poorly labeled: 

           

  𝑊𝑖
(𝑚+1)

← 𝑊𝑖
(𝑚)

⋅ βα(𝑚)[𝑐𝑖≠𝒯𝓅
(𝓂)

(𝑥𝑖)]   (5) 

 

4. The final classifier is given by: 

 

𝐶(𝑋) = arg max
𝑘

∑ α(𝑚)[𝒯𝓅
(𝓂)

(𝑋(𝑝)) = 𝑘]𝑀
𝑚=1    (6) 

 

In this procedure, [ai = bi] is the Iverson bracket notation for the number of 

occurrences. For the proposed solution, αmax = 10 and  β is linearly decaying, with 

respect to the iteration from 6 to 3, while Q = 2.  The trees used as individual 

predictors have been cut early and prediction uses probability of being in a class. 

Next, the boosted ensemble classifier is able to provide probabilities for each class 

due to the number of individual classifiers working and aggregation of individual 

probabilities.  The original SAMME work [16] offers strong theoretical justification 

for the convergence of the algorithm, justification which stands to this version too. 
 

3.4. Post-processing 

This step takes place after prediction, and it has been introduced to limit the noisy 

labelling and to adapt the solution to the database.  

As one can see in Figure 2, annotations are not precisely at pixel level, but 

with polygons, thus being rather vague on the edges; yet regions are compact. As 

we further discuss database acquisition, there is physical motivation for these 

observations.  

In terms of prior (i.e. at training stage), for each class it has been determined 

the minimum and maximum area of the annotated shapes. Furthermore, on the 

validation subset, again, for each class, we have determined a pair of thresholds 

with respect to the probability provided by the classifier, as a lower confidence and 

an upper confidence values. 

After prediction, the mask for each class has been taken separately and 

processed. Each compact area that was found to be too small (given the minimum  

size) was removed. For areas large enough, starting from superpixels passing the 

high confidence threshold, they have been merged with neighboring ones that pass 

the lower confidence, in a process similar to the one used in the Canny edge detector 

(i.e. hysteresis-based merging). 
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4.  Experimental evaluation 

 

Implementation. The method has been implemented on Python using 

standard libraries. The superpixel segmentation code is derived from SEEDS. Due 

to the nature of the segmentation problem (potentially overlapping masks), for each 

image, masks for each class have been taken separately. 

 

 
Double plant 

 
Drydown 

 
Endrow 

 
Nutrient Deficiency 

 
Planter Skip 

 
Water 

 
Waterway 

 
Weed Cluster 

 

Fig. 2. The classes that are available in Agriculture Vision dataset. In addition, pixels that are in 

none of the above classes are taken as background. 

 

Database. The method has been evaluated on a subset from Agriculture 

Vision [18], the 2021 version. For this version, raw images have been collected 

within a sequence of 2-7 flights from 54 fields from 2017-2020 for a total of 261 

full field images. The majority of the images have been acquired with standard 

DSLR camera (Canon, Nikon D850, Nikon D800E) recording standard RGB 

images. Additionally, some of these fields contain Sentinel-2 imagery at 10m 
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resolution. Each image was labelled by annotators trained by expert agriculturalists 

using polygons (for segmentation). In total, there are 94,986 images split as follows: 

56,944/18,334/19,708 as train/val/test images. They contain the following classes: 

“double plant”, “drydown”, “endrow”, “nutrient deficiency”, “planter skip”, 

“water”, “waterway”, “weed cluster” and “background” and for each image there 

is a mask for each class. Also, we restrict ourself only to RGB channels from the 

images. 

Examples of images may be seen in Figure 2. 

As quality measure, following the introductory work [18], modified 

Intersection over Union” (mIoU) was used. The modification is due to masks being 

potentially overlapped: 

 

𝑚𝐼𝑜𝑈 =  
1

𝑐
∑

𝑇𝑃𝑐

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑐 + 𝑇𝑎𝑟𝑔𝑒𝑡𝑐 − 𝑇𝑃𝑐
𝑐

 

where TP – stands for true positive.  

 

Results. Visual examples may be seen in figure 3. From Figure 2 and Figure 

3 one may notice that the problem is difficult, with issues being generated both by 

confusing classes as poor delineation in images. Examining closely examples 

shown in figure 3, one will notice that the polygonal markings are not very precise 

and superpixel boundaries follow more curved shapes. Furthermore, variability in 

the training set of each class limits the prediction accuracy and, as showed in the 

last row from figure 3, the “weed” greenish characteristic tint is identified in a 

totally different region, leading to a poor result. 

A summary of the results, accumulated over the entire database may be seen 

in Table 1. We compared the proposed method with various baselines. For the 

segmentation, part we have considered the standard SLIC [4] method, as well as 

standard SEEDS [5] as being the most popular choice and respectively the baseline 

of the proposed method. For the descriptor side we have investigated, in addition, 

the quantized histogram (a simplification of Color Structure Descriptor [19]).  

 
 

Original image 

 

“Double plant” label 

Superpixel 

segmentation 

“Double plant” 

prediction 
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Original image “Double plant” label 
Superpixel 

segmentation 
“Double plant” 

prediction 

    

Original image “Weed” label 
Superpixel 

segmentation “Weed” prediction 

    
    

Fig. 3. Example of results. First row: a better example,  the middle row an average 

example, while in the last row, a wrong example with noticeable errors 

 

For the classifier part, following the large evaluation carried by Fernandez-

Delgado et al. [20], which identify non-deep machine learning system able to obtain 

strong performances on various problems, we compared against Support Vector 

Machine (SVM), with Gaussian kernel and random forest. It is noticeable that the 

proposed combination reaches the best performance. 

In the era of deep learning, a natural question is how much deep methods 

improve with respect to non-deep methods. In the paper introducing the database, 

Chui et al. [18] report several solutions. A comparison of the best option from the 

proposed set with the best deep solution, and, respectively, with an of-the-self 

solution on class level performance is in Table 2. As one can see, the proposed 

method is inferior to deep learning solutions, but it is much closer to an off-the-

shelf semantic segmentation method, that is such an off-the-shelf reported to a 

specifically engineered one. 
Table 1. 

Performance (modified IoU) of various versions of proposed solution. With gray 

background, we have marked the best solution 

Method Performance 

Superpixel Descriptor Classifier mIoU 

SLIC Mean, Var, HOG Random Forest 29.15 
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SEEDS Mean, Var, HOG Random Forest 28.85 

Modified SEEDS Mean, Var, HOG Random Forest 28.45 

Modified SEEDS Mean, Var, HOG SVM 25.41 

Modified SEEDS Mean, Var, HOG Boost Trees 29.96 

Modified SEEDS Mean, Var Boost Trees 24.25 

Modified SEEDS 
Mean, Var, 

HOG, color hist 
Boost Trees 26.45 

 

 

5. Conclusions 

 

In this paper we introduce a method for semantic segmentation of remote 

sensing images into various classes as a prerequisite of automated cartography and 

monitoring of agriculture crops in the broad context of precision agriculture or 

Agriculture 5.0.  

The image was first segmented using a modified SEEDS superpixel 

algorithm. Next, each superpixel has been described in terms of color, homogeneity, 

and texture. For classification, ensembles of boosted trees have been involved. The 

proposed method has taken into account the specific forms and shapes existing in 

the studied database and a post processing step has been implemented. Our choices 

for each step of the method aimed at avoiding the high computation needed by deep 

learning-based methods.  
Table 2 

Comparison, of class level performance, between the proposed method and deep learning-

based solutions. The reported metric is mIoU and higher is better 

Method Overall Background Double 
Dry-

down 
Endrow Nutrient Planter Water Waterway 

Weed 

Cluster 

Ours - 

Non 
deep 

29.96 56.42 17.16 43.18 8.05 31.26 18.9 42.67 32.84 19.16 

Chui et 

al. [18] 

Best 
Deep 

43.40 73.31 28.25 57.43 21.74 38.86 33.55 73.59 34.37 28.33 

Chui et 

al. [18] 
DeepLab 

35.28 73.01 21.32 56.19 12 35.22 20.1 42.19 35.04 22.51 

 

The method has been evaluated positively on images from 

AgricultureVision dataset. Each of the proposed changes was shown to improve the 

overall performance with respect to other popular choices. The limitations of the 

method are derived from the limited amount of resources available. From an end-

user point of view, the method, due to the training step, is limited in prediction of 

images similar to those used to build the classifier. The post-processing exploits 
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characteristics of the database, that are derived from acquisition, thus also limiting 

the generality.  
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