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FRACTIONAL DIFFERENTIAL EQUATION IN PARTIALLY ORDERED
CONTROLLED METRIC SPACES

Nizar Souayah'

In this paper a fractional equation (with derivatives of order o less than 1) is
considered. We study the existence of solutions of boundary value problems for system
of fractional equations. Our approach is based on Banach fized point theorem.
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1. Introduction

Solving fractional problems continues to motivate many researchers especially in last
decade. Indeed, the fractional differential equations are used to modelling many phenomena
in biology, physics,... [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Con-
sequently, this topic is gaining much importance. Many papers dealing with the existence
of solution to the value problem for some differential equation see [16], [17], [18], [19]. In
the literature, many techniques are combined to obtained the desired results. One of the
approach used is the fixed point theory which is considered as powerful tool in this area.
Indeed, this theory is developing faster during the last years and several results have been
reported in many different metric spaces [20], [21], [22], [23], [24], [25], [26], [28].

In this paper, we discuss the existence of a solution to the following problem:
(P) - Doz(t) = f(t,z(t)) =Fz(t)ift € Jo = (0,T]
’ z(0) = z(T)=r
where T'> 0 and f : J x R — R is a continuous function, J = [0,7] and D“z denotes a
Riemann-Liouville fractional derivative of x with o € (0, 1).

The paper is organized as follows. In Section 2, we start by recalling the partially
ordered controlled metric space then we prove a version of fixed point theorem on this
context under some hypothesis. In Section 3, we discuss the existence of solution for the
value problem (). To achieve this we prove Theorem 3.1 by applying the fixed point result
obtained in Section 2 with a corresponding weighted norm.

2. Fixed point results in partially ordered controlled metric spaces
First, we remind the reader of the definition of a controlled metric space.

Definition 2.1. [27] Let X be a nonempty set and 6 : X x X — [1,00) be a mapping. The
function p: X x X — [0,00) is called a controlled metric type if

(c1) nlx,y) =0 if and only if x =y,
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(c2) p(x,y) = ply,x),
(cs) w(@,y) < 0(x, 2)u(x, 2) + 0z, y) (2, y),
for all z,y,z € X. The pair (X, u) is called a controlled metric type space.

We define Cauchy and convergent sequences in controlled metric type spaces as fol-
lows:

Definition 2.2. Let (X, u) be a controlled metric type space and {t,}n>0 be a sequence in
X.

(1) We say that the sequence {t,} converges to some t in X, if for every e > 0, there exists
N = N(e) € N such that u(t,,t) < e for all n > N. In this case, we write lim, o0 t, = t.
(2) We say that the sequence {t,} is Cauchy, if for every e > 0, there exists N = N(e¢) € N
such that p(tm,tn) < € for all myn > N.

(8) The controlled metric type space (X, u) is called complete if every Cauchy sequence is
convergent.

Definition 2.3. Let X be a nonempty set. If (X, u) is a controlled metric space and (X, <)
is a partially ordered set, then (X, pu, <) is called a partially ordered controlled metric space.
t1,ta € X are called comparable if t1 < to or to < t1 holds.

Theorem 2.1. Let (X, pu,<) be a complete partially ordered controlled metric space. Let
h: X — X be a increasing mapping. Assume that there exists to < h(tg) and define the
sequence {t,} by t1 = h(to), ta = h(t1),...tn = h(tn—1).

Suppose that there exists a function o : [0,00) — [0, k) where 0 < k < 1 satisfying o(t,) — 1
implies t,, — 0 such that

w(h(a), h(b)) < o(u(a,b))u(a,b) for each a,b € X with a < b. (1)

Assume that h is continuous or X is such that :
if an increasing sequence {t,} — t in X then t, <t Vn.
Moreover, if for each a,b € X there exists ¢ € X which is comparable to a and b.
In addition, assume that, for every a € X, we have
lim O(tn41,t) and lm O(t, t,41) exist and are finite. (2)
n—oo

n—oo

Suppose that

—_

0(t; t;
sup hm (z+1a 2+2)

0 Livl,tm) < —. 3
1100 e(tiati—i-l) ( +1 ) Lk ( )

Then, h has a unique fixed point.
Proof. Since tg < h(tg) and h is an increasing function, we obtain by induction that:
to < h(to) < h3(to) < ... < h™(tg) < h" " (to).
We denote t,, = h™(tg), n=1,2,... . Since t,, < tp41 for each n € N then by (1) we get
u(h™ (to), k"2 (t0))
o (p(tns tng1)) p(tns tns)
kp(tn, tns1)
kK2 u(tn—1,tn)
k™ u(to, 1) (4)

Therefore, we can conclude from (4) that

U(tn+l ) tn+2)

INIA AN CIA

lm p(ty,tne1) =0.

n—0o0
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In the next step we show that {¢,} is a Cauchy sequence. Using the triangle inequality we
obtain:

N(tnatm) < a(tnatn+1)ﬂ(tmtn+1)+9(tn+1»tm)ﬂ(tn+1atm)
< Ot tna ) (b, tnyr) + O(tng1, tn)0(Engrs tng2) (o1, tnt2)
+ G(tn+1atm)e(tn—i-%tm):u(tn—i-?vtm)
m—2 3
< Ottt tusn) + D (T 005 t) )0t tisa)alts, tia)
i=n+1 j=n+1
m—1
+ H o(tsvtm)ﬂ(tmflatm)
s=n-+1
m—2 7 ]
< Ot tas )R ulto, 1) + S0 (T 005, t) )0k, i)W nlto, 1)
i=n+1 j=n+1
m—1
+ I 0te tm)k™ulto, tr)
s=n+1
< O(tn, tns1) K" pu(to, t1) + Z ( H o(t ) (tistiv1)k plto, tr)
i=n+1 j=n+1
m—1 7
< Ot tas) K" plto 1) + Y (H6‘@3’7tm))e(tiyti+1)kiﬂ(t07tl) (5)

i=n+1 j=0

We denote 1, = Z (H 0(t;, tm))ﬁ(ti, tiy1)k'. Then we have from (5)

=0  j=0
,U(tnytm) < ﬂ(t07t1)[kn0(tn7tn+l) + (ql)m—l - wn)} (6)
Using (6) and by taking into account (2) and (3) we deduce that lim 1), exists and the

n—oo
sequence {1, } is Cauchy. Hence, if we take the limit in the inequality (6) as n, m < oo, we

conclude that

lim  p(tn,tm) =0,

n,m—oo

which affirms that {¢,,} is a Cauchy sequence in the complete partially ordered controlled
metric space (X, p, <), then {t,,} converges to some t € X.
Let prove that ¢ is a fixed point of h. Since h is continuous we have

t= lim t, = lim A"(ty) = lim A"T'(ty) = h( lim h"(to)) = h(t).

n—oo n—00 n—oo

Then t is a fixed point of A.
To prove the uniqueness of the fixed point, let u be another fixed point of A then

p(t,w) = p(h(t), h(u)) < o(p(t,uw)p(t, )

which holds unless p(t,u) = 0 then ¢ = u and h has a unique fixed point. g

In the next section, we prove the existence of a solution for a fractional differential
equation using our result, we also, prove the same result using monotone iterative method.
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3. Fractional differential equation
3.1. Fixed point method

Let C1_o(J,R) = {f € C((0,T],R) : t':=® € C(J,R)}. We define the following
weighted norm
= %z (1))
171l = maxct=21a(0)

Theorem 3.1. Let « € (0,1), f € C(J x R,R) increasing and o : [0,00) — [0, k) where
0 < k < 1. In addition, we assume the following hypothesis:

(1) 1 (0) 02(8) ~ Flua(t). eo(0)] < (11 (0n — v3) ) o 2
() 2 <

Then the problem (P) has a unique solution.

Proof. Problem (P) is equivalent to the problem Mz = M where

Mz (t) = rt* ' + ﬁ/o (t —s)* L Fa(s)ds.

In fact, proving that the operator M has a fixed point is sufficient to say that problem M
has a unique solution. We use Banach fixed point theorem. Therefore we need to check that
hypothesis in Theorem 2.1 are satisfied.
Indeed, A = C1_4(J,R) is a partially ordered set if we define the following order relation in
A:

UV eCi_o(J,R),U <V if and only if U(t) < V(¢)Vt € J.
Also, (A, i) is a complete controlled metric space if we choose:

pla,y) = maxt'=a(t) —y(0)], 2,y € Croa(/R).

)

The mapping M is increasing since f is increasing.
Now, we must prove that M is a contraction map. Let z,y € C1_4(J,R), 0 < a < 1.

1 —a ! a—
It = 263l| < s maxe 17 [ 0= )" (e 0(9) = St ()

Since ||[Mz — My|| = maxt'=%|z(s) — y(s)| then

|2(s) = y(s)| = [|2(s) — y(s)|| max s>~

Subsequently, using the first hypothesis of the theorem we get

[V~ Myl < ﬁggfatl’“ / (¢ = 5" E g (51-2a(s) — y(s5)lr(s) — (o)

_ 1 I—a t B a1 T'(200) o B -
T T dem’ /0[“ 8 o (sl (s) — y(s)| [ max s

2(s) = y(s)] | max 52~ | ds

" max £170la(s) — y(s)llo (lla(s) — y(s)]])

I'(2a)
—— ma
['(«) tefo,1]

¢
To /(t—s)aflso‘*lds.
0

From the Riemann-Liouville fractional integral we have

! _Soc—lsoz—l s = F(O[) 2
/O(t ) d _F(Qa)t

a—1
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Therefore, we have

Mz — My|| < o(||z(s) — y(s)l])[l2(s) — y(s)]]

3.2. Monotone iterative method
First, we present the following hypothesis;
Hypothesis 3.2 (Hy). (1) L(t) = L,t € J or,
(2) the function L is non constant on J and
Fg;) max |L()| <1, only if € (0, %)
Next, we present the following consequence of Theorem 3.1.
Lemma 3.1. Ifa € (0,1),L € C(J,R),z € C1_o(J,R),and hypothesis (Hy) holds, then the

problem (P) has a unique solution.

Hypothesis 3.3 (H3). (1) L(t) = L,t € J or, )
(2) the function L is non constant and if L(t) is negative, then there exists L non decreasing
where —L(t) < L(t) on J and for every x € J we have

1 / e 1=

—— [ (a—7)*"L(r)dr < 1.
L(a) Jo

Now, for our purpose we prove the following useful lemma.

Lemma 3.2. Let a € (0,1) and L € C(J,[0,00)) or L € C(J,(—00,0]). Assume that
q € C1—o(J,R) is a solution to the following problem.

D%q(t) < —L(t)q(t), teJo (7)
3(0) < 0.
If (Hs) holds, then q(t) <0 for all t € J.
Proof. Assume that our lemma is false, that is there exists x,y € (0,a] such that ¢(x) =
0,q(y) > 0 and ¢(t) < 0 for ¢t € (0,x]; g(t) > 0 for ¢t € (z,y]. Let xo be the first maximal
point of ¢ on [z, y]

Casel:
Assume that L(t) > 0 for all ¢ € J. Thus, D*?q(t) <0 for ¢ € [z,y]. Hence,

[ oo

Therefore, B = I'~%q(x¢) — I'"%q(x) < 0. But,

B= F<11_a[/zo(xo —7) %q(r)dT — /Ox(x ()]

l—a{/ 290 —7)" %= (& —7)"%q(r)dr

+/x (20— 7)~"q(r)dr}

1

“T-a) /% (o — )" %q(r)dr > 0.

Which leads us to a contradiction given the fact that B <0
Case2:
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Assume that L(t) < 0 for all ¢ € J, and consider L to be nondecreasing on .J. Now, if we
apply I on problem (7) we obtain;

a—1
q(t) — d(O)tF(a) < —I*[L(t)q(t)] for t € [z,x0).
Notice that, ¢(0) tra(;; < 0 and that is due to the fact that ¢(0) < 0. Thus,
0e0) < i [ oo = T Lalr)ar

= I‘(la)[/;(xo — T)O‘*lL(T)q(T)dT + /wo (xo — T)ailL(T)q(T)dT]
< _(i“((xci))) O%(xo — 1) ' L(r)dr, let o= xlo

zo)zd (1
= Q(F?c)y)o ; (1—0)*"'L(oxg)do
< Q(lff;fg /0 (1 - 0)* ' L(0a)do
= %(xs));g /Oa(a — ) L(7)dr

q(o)

’ — ) L(r)dr
<3 [a=nr Lryar

Hence, q(z0)[1 — ﬁ Jy (@ — 7)*"'L(7)dr] < 0. Using hypothesis (H>) this implies that

q(zo) < 0, which leads us to a contradiction, and concludes our proof. O

We say that y is a lower solution of problem (), if
Dy(t) < TFy(t), teJo; §(0) <0,
and we say that y is an upper solution of problem (P), if
D%y(t) > Fy(t), te Jo; §(0) <0
Next, define the following hypothesis;
Hypothesis 3.4 (H3). There exists a function L € C(J,R) where
lg(t, ur,us) — g(t,v1,v2)| < L(t)|v1 — u1| whenever xzo <uy <wvy <y, us < vg

Theorem 3.5. Assume that xo is a lower solution of problem (P), and yo is an upper
solution of problem (P), where xo,yo € C1—a(J,R). Moreover, assume that hypothesis Hy, Ho
and Hs hold, the problem (P) has solutions in [xo,y0] = {y € Ci—a(J,R) | zo(t) < y(t) <
Yo(t),t € Jo,T0(0) < §(0) < Go(0)}-

Proof. Using Lemma 3.1, and Lemma 3.2, the proof is similar to the proof of Theorem 2 in
[28]. |

Now, we present the following example.
Example I
Let 0 <« < 1,and A, B € C([0, 1], (0,00)) such that A(t) < B(¢) for t € [0,1]. Now consider
the following problem;

DeE(t) = FE(t);t € Jo = (0,1]. (8)

£(0)=0
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where
t 11—«

FE(t) = 2o " At -1-€@)F + B(t)/o [cos(tr)]*¢(r)dr

Now, let 2:9(t) = 0 and yo(t) = ¢, first note that z((¢) is a lower solution of the problem (8).
Next, we show that yo(t) is an upper solution of problem (8);

tlfoz

Fyo(t) = m —A(t) + E(t)/o [cos(tT)]) rdr

tl—(x

< m—&(t)—l—[ﬁ%(t)/o dr

tl—oc

T A(t) + B(t)

tlfoz
I'2-a)
= Dayo(t).

Thus, yo(t) is an upper solution of the problem (8). Now, it is not difficult to see that all

the hypothesis of Theorem 3.5, are satisfied. Therefore, problem (8) has solutions in [zg, yo]

if a € (3,1) and for o € (0, 3] we need to assume that # max |A(t)] < 1.

' 2 20) 4]

<

4. Conclusion

We proved the existence and uniqueness of fixed point for a contractive mapping in
partially ordered controlled metric type spaces, we were able to use our result to show that
the Fractional differential equation (P) has a solution. Moreover, we used the monotone
iterative method to show that (P) has a solution.
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