
U.P.B. Sci. Bull., Series A, Vol. 82, Iss. 2, 2020 ISSN 1223-7027

THE ROLE OF OBESITY IN FRACTIONAL ORDER TUMOR-IMMUNE

MODEL

Sadia Arshad1, Tuğba Akman Yıldız2, Dumitru Baleanu3, Yifa Tang4

This work investigates the tumor-obesity model via a fractional operator to analyze

the interactions between cancer and obesity, since fractional derivatives capture the long
formation of cancerous tumor cells that might takes years to develop. It is known that fat
cells enhance the development of cancerous tumor cells. To examine how the immune system

is influenced due to fat cells, interactions of four types of cell population, namely tumor
cells, immune cells, normal cells and fat cells are examined. We investigate the equilibrium

points and discuss their stability analytically. Numerical simulations are carried out to
verify the analytical results, demonstrating that a low fat diet results in a smaller tumor

burden as compared to a high-caloric diet.
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1. Introduction

World Health Organization reported in 2014 that more than 1.9 billion adults who are 18
years old and older, were overweight. Half a million cancer deaths are reported every year and
one in five is caused by obesity [8]. 2014 Cancer Progress Report of the American Association for
Cancer Research (AACR) reveals that approximately 25% of the relative contribution to cancer has
been obesity. Inactive life and poor diet result in a worse picture.

Adipose tissue enables the body to store energy as lipids, mostly triglycerides, for its future
uses [2]. Subcutaneous and visceral tissues are two kinds of adipose tissue. Subcutaneous adi-
pose tissues lie between muscle and skin. Visceral adipose tissues fill mainly the abdominal cavity.
Abdominal visceral adipocytes release free fatty acids since they are more active when compared
to abdominal subcutaneous adipocytes. In case of obesity, the adipocytes expand to abnormal
volumes. Díaz et al. examines the interactions of chemokines, cytokines, macrophages and T-cells
mathematically [9]. The effects of obesity on ovarian cancer are observed in the study [28]. Two
epidemiological studies discussing the frequency of obesity in the region of Valencia is suggested in
[18], [35]. In addition to the studies on obesity, some examples to mathematical models present-
ing tumor–immune interaction and cancer treatments can be mentioned. Firstly, we can mention
the review on the dynamical models including some immune cells such as macrophages, cytotoxic
T lymphocytes, natural killer cells, dendritic cells, regulatory T cells, and CD4+ T helper cells
together with tumor cells [27]. In addition, anti-tumor reactivity is investigated and local/global
bifurcations are analyzed [23]. A new mathematical interpretation to model lysis of a solid tumor
is presented [26], whereas the reaction of the immune system is interpreted mathematically in case
of multiple myeloma [15].

For mathematical investigation of cancer treatment, there are several nice works in the lit-
erature. For example, the role of immunity is discussed to fight with the cancer [36], whereas
immunoediting is summarized in the review [20]. Adoptive cellular immunotherapy is applied to
boost the immune system and to fight with tumor [21]. Contribution of BCG immunization is inves-
tigated for tumor–immune interaction [6]. Targeted chemotherapy is applied within-a-host model
to eliminate tumor [25]. To determine drug response the comparison of the efficiency of a tumor
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model three dimensional (3D) spheres system with traditional 2D tumor spheres is demonstrated
in [16]. Interactions between adaptive immune response and cancerous tumor cells are modeled
and compared with the experimental data [33]. A dynamical model is proposed to test the success
of chemotherapy, immunotherapy and vaccine therapy [11], while it has been extended by taking
into account the reaction tie of the immune system [40]. A classifier has developed in [7] based on
a convolutional neural network (CNN) simple architecture for tumor regression grading of rectal
tumors after neoadjuvant chemoradiotherapy. As different from these studies, an optimal control
problem has been constructed to set a chemotherapy strategy to cure minimize the number of tumor
cells in the study [12]. To understand the effect of obesity on tumor population, Ku-Carrillo et al.
proposes a mathematical model by extending the uncontrolled model in the study [12] so that the
interaction between adipose cells and the immune system is investigated in [22].

In parallel to the classical integer models, the fractional models have attracted an increasing
attention in mathematical biology over recent years. Fractional order models retain memory which
is one of the main characteristics of fractional derivatives, while one of the features of immune
response is to include memory. Recently, Pinto et al. [31] proposed a fractional order model
incorporating latently infected cells, macrophages and CTLs for HIV infection. Bolton et al. [5] fits
tumor growth data set by using fractional-order Gompertz model with an order of 0.68 much better
than the classical integer-order Gompertz growth model. Karaman et al. [19] has shown that the
fractional and continuous-time random-walk (CTRW) models lead to comparable results for low and
high–grade pediatric brain tumors. A fractional order model of dengue fever outbreak is proposed in
[14] showing that value of fractional order 0.77 is close to real data as compare to ordinary integer–
order dengue model. A fractional order tumor model based on the connection between a growing
immunogenic tumor and effector cells is investigated in [3]. In the study [38], a tumor–immune
fractional order mathematical model incorporating three types of cells namely activated immune
system cells, IL-2 (cytokine) and tumor cells is analyzed. Recently, cancer dormancy has been
investigated in terms of a Caputo fractional derivative [37]. Moreover, two models with Caputo and
conformable fractional derivative have been compared for tumor-immune interaction [4], whereas a
fractional model consisting of helper CD4+ T, cytotoxic CD8+ T cells, cancer cells, dendritic cells
and cytokine interleukin-2 (IL-2) cell are studied [39].

In this study, we examine the fractional order tumor-obesity model that consists of four
types of cells: immune cells, cancer cells, normal cells and fat cells. The aim is to investigate the
effect of fractional order derivative and parameters affecting the obesity. After stating the existence
and uniqueness of the solution, we proceed with the proof of non-negative solutions. Then, we find
the equilibrium points and discuss their stability theoretically. Then, we present some numerical
results to observe the impact of immune response rate and low/high caloric diet in the system.
The rest of the study is organized in the following way: In Sec. 2, some necessary definitions and
formulation of the model are presented. Equilibrium points and stability conditions are obtained
in Sec. 3. Then, we explain the discretization of the model in Sec. 4. Numerical simulations are
presented in Sect. 5 to illustrate the applicability of theoretical predictions. The paper ends with
the conclusion.

2. Fractional tumor-obesity model

We define left-sided fractional integral of order q ∈ R
+ as follows [32, 17, 13]

Iqf(t) =
1

Γ(q)

∫ t

a

(t− s)q−1f(s)ds, (1)

with f : R+ → R provided that the expression on right hand side is well-defined where t ∈ (a, b),
Γ(q) is the Euler Gamma function.

The Caputo fractional derivative Dqf of order 0 < q < 1 is given by

Dqf(t) =
1

Γ(1− q)

∫ t

a

(t− s)−qf ′(s)ds, (2)

provided that the expression on right hand side is well-defined.
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In the study [22], the tumor-obesity model has been investigated containing the population
immune cells I(t), tumor cells T(t), normal cells N(t) and fat cells F(t):







dI
dt

= s+ ρIT

α+T+µF
− c1IT − dI,

dT
dt

= r1T(1− b1T)− c2IT − c3TN+ c5TF,
dN
dt

= r2N(1− b2N)− c4TN,
dF
dt

= r3F(1− b3F)− c6TF,

(3)

for t ∈ (0, T ]. Here, the growth term for immune cells is represented by the following nonlinear
function:

ρIT

α+ T + µF
,

where ρ is immune response rate and α is immune threshold rate. Tumor cells and normal cells follow
a logistic growth function r1T(1 − b1T) and r2N(1− b2N), respectively, where r1 and r2 represent
the growth rates of tumor cells and normal cells, respectively. Depending on the type/stage of the
disease, r1 may be bigger or smaller than r2. We set r1 > r2, i.e., normal cells grow more slowly
then tumor cells. Moreover, b1 and b2 represent the inverse carrying capacities of the tumor cells
and normal cells, respectively with b−1

1 ≤ b−1
2 = 1. On the other hand, as a consequence of the

interaction of immune cells and tumor cells, there are two options: Tumor cells diminish or they
cause inactive immune cell population presented using the following terms:

−c1IT and − c2IT.

Furthermore, there are two terms −c3TN and −c4TN representing the competition between tumor
cells and normal cells, respectively. Here, we assume that 0 < c3 < c2. This simply indicates that
the immune system damages the tumor cell population more than the competition between tumor
cells and normal cells.

The fractional order system possesses memory kernel which may be crucial for modeling of
biological processes, as previous progression of the process can be model by fractional differential
equations. Therefore fractional order models are appropriate to model the biological phenomena
that cannot be described with integer order models as integer-order models are a special case of
their fractional order counterparts. Cancer patients have diverse type of dispositions in the period
of tumor progression that can be described better using fractional model as fractional order q can
be adjusted to best fit the real data according to disease conditions of different patients. Therefore,
in this study, we considered the following fractional order tumor-obesity model:







Dq
I = sq + ρqIT

αq+T+µF
− cq1IT − dqI,

Dq
T = rq1T(1− b1T)− cq2IT − cq3TN+ cq5TF,

Dq
N = rq2N(1− b2N)− cq4TN,

Dq
F = rq3F(1− b3F)− cq6TF,







, (4)

t ∈ (0, T ], where description, units and values of the parameters are given in Table 1. Notice that
the units of the model that is generalized by the fractional differential equations are different than
the units of the classical integer-order model in the sense that these are expressed with respect to an
intrinsic time variable depending on the fractional order q instead of the physical time. Therefore, a
modified parameter depending on the fractional dimension has been used in the generalized model
(4) to interpret the meaning of fractional order. When q → 1 the generalized fractional tumor
model in Eq. (4) reduces to the classical one given in Eq. (3).

The fractional order tumor model (4) can be written in the following form:

DqU(t) = F (U(t)), t ∈ (0, T ], U(0) = U0, (5)

where

U =







I

T

N

F






, U0 =







I0

T0

N0

F0






, F (U) =







sq + ρqIT

αq+T+µF
− cq1IT − dqI

rq1T(1− b1T)− cq2IT − cq3TN + cq5TF
rq2N(1− b2N)− cq4TN
rq3F(1− b3F)− cq6TF






.

We define the supremum norm as
‖F‖ = sup

t∈(0,T ]

|F (t)|,
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Table 1. Parameter values for the model

Parameters Description Values (Units) References

s Immune source rate 0.125 (day−1cells) Estimated
ρ Immune response rate 0.1 (day−1) Estimated
α Immune response initiated by tumor 0.3 (cells2) [10]
b1 Inverse of the carrying capacity of the tumor cells 1 (cells−1) [10]
b2 Inverse of the carrying capacity of the normal cells 1 (cells−1) [10]
b3 Inverse of the carrying capacity of the fat cells 0.5 (cells−1) [22]
r1 Growth rate of tumor cells 1.5 (day−1) [10]
r2 Growth rate of normal cells 0.9 (day−1) Estimated
r3 Growth rate of fat cells 0.1 (day−1) [22]
c1 Coefficient of the competition term 0.4 (day−1cells−1) Estimated
c2 Coefficient of the competition term 0.2 (day−1cells−1) Estimated
c3 Coefficient of the competition term 1 (day−1cells−1) [10]
c4 Coefficient of the competition term 0.8(day−1cells−1) Estimated
c5 Coefficient of the competition term 0.1(day−1cells−1) [22]
c6 Coefficient of the competition term 0.05(day−1cells−1) [22]
µ Immune response initiated by tumor 0.8 (day−1) Estimated
d Death rate of immune cells 0.2 (day−1) [10]

and the norm of the matrix M = [mij(t)] as

‖M‖ = Σi,j sup
t∈(0,T ]

|mij(t)|.

Theorem 2.1. The system (5) together with the initial condition U(0) = U0 has a unique solution
in the region ∆× (0, T ] if

A
q

max
















d
q

+ c
q
1η +

2ρqη

αq
e

1
1−( 1

αq +
µ
αq )η






, (r

q
1 + 2r

q
1b1η + c

q
2η + c

q
3η + c

q
5η), (r

q
2 + 2r

q
2b2η + c

q
4η), (r

q
3 + 2r

q
3b3η + c

q
6η)











< 1,

(6)

where t ∈ (0, T ], Aq = Tq

Γ(q+1)
, and

∆ = {(I, T,N,F) : max(|I|, |T|, |N|, |F|)} ≤ η.

Proof. The solution of system (5) has following form:

U(t) = U0 +
1

Γ(q)

∫ t

0

(t− s)q−1F (U(s))ds = Φ(U).

This gives the equality

Φ(U1)− Φ(U2) =
1

Γ(q)

∫ t

0

(t− s)q−1(F (U1(s))− F (U2(s)))ds.

Hence, we have

‖Φ(U1)− Φ(U2)‖ =
1

Γ(q)

∥
∥
∥
∥

∫ t

0

(t− s)q−1(F (U1(s))− F (U2(s)))ds

∥
∥
∥
∥

≤
1

Γ(q)

∫ t

0

(t− s)q−1‖(F (U1(s))− F (U2(s)))‖ds

≤ L‖U1 − U2‖,

where

L = A
q

max
















d
q

+ c
q
1
η +

2ρqη

αq
e

1
1−( 1

αq +
µ
αq )η






, (r

q
1

+ (2r
q
1
b1 + c

q
2

+ c
q
3

+ c
q
5
)η), (r

q
2

+ (2r
q
2
b2 + c

q
4
)η), (r

q
3

+ (2r
q
3
b3 + c

q
6
)η)











.

(7)

Thus, if L < 1, then the mapping Φ(U) is a contraction mapping and this yields that system (4)
has a unique solution in the region ∆× (0, T ]. �

Theorem 2.2. The solution of the FDE (4) remains in R
4
+.
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Proof. We observe that

Dq
I|I=0 = sq, Dq

T|T=0 = 0, Dq
N|N=0 = 0, Dq

F|F=0 = 0,

on each hyperplane bounding the non-negative orthant, the vector field points into R
4
+. The solution

will remain in R
4
+ [30]. �

3. Stability analysis generalized tumor-Obesity model

We will investigate the conditions under which equilibrium points of the fractional order
tumor-obesity model(4) exist and derive the analytical conditions for the stability of the equilibrium
points.

3.1. Equilibrium points

There are three types of equilibrium points of the system (4) such as Tumor Free Equilibrium,
Dead Equilibrium and Coexisting Equilibrium. To find them, we solve the following system for
I(t),T(t),N(t),F(t):

Dq
I(t) = 0, Dq

T(t) = 0, Dq
N(t) = 0, Dq

F(t) = 0.

• Tumor Free Equilibrium Eq
0 = (sq/dq , 0, 1, 1/b3): The tumor cells are zero, but the normal

cells survive.
• Dead Equilibrium:

– Type 1 Eq
1 = (sq/dq , 0, 0, 1/b3): Both tumor cells and normal cells die off.

– Type 2 Eq
2 = (f(Z), Z, 0, h(Z)): Only normal cells diminished and the tumor cells

remain, where Z is a non-negative solution to the equation

Z +
cq2
rq1b

q
1

f(Z) −
cq5
rq1b

q
1

h(Z) =
1

bq1
, (8)

with

f(Z) =
sq(αq + Z + µh(Z))

(cq1Z + dq)(αq + Z + µh(Z))− ρqZ
, (9)

and

h(Z) =
1

b3
−

cq6
rq3b3

Z. (10)

Equation (8) yields a third order polynomial for Z as

B1Z
3 +B2Z

2 +B3Z +B4 = 0, (11)

where

B1 =

(

c
q
1 −

µc
q
1c

q
6

r
q
3b3

)(

1 +
c
q
5c

q
6

r
q
1b1r

q
3b3

)

,

B2 =

(

1 +
c
q
5c

q
6

r
q
1b1r

q
3b3

)(

α
q
c
q
1 + d

q
− ρ

q +
c
q
1µ

b3
−

dqµc
q
6

r
q
3b3

)

−

(

c
q
5

r
q
1b1b3

+
1

b1

)(

c
q
1 −

µc
q
1c

q
6

r
q
3b3

)

,

B3 =
c
q
2

r
q
1b1

(

s
q
−

sqµc
q
6

r
q
3b3

)

+

(

d
q
α

q +
dqµ

b3

)(

1 +
c
q
5c

q
6

r
q
1b1r

q
3b3

)

−

(

c
q
5

r
q
1b1b3

+
1

b1

)(

α
q
c
q
1 + d

q
− ρ

q +
c
q
1µ

b3
−

dqµc
q
6

r
q
3b3

)

,

B4 =
c
q
2

r
q
1b1

(

s
q
α

q
+

sqµ

b3

)

−

(

c
q
5

r
q
1b1b3

+
1

b1

)(

d
q
α

q
+

dqµ

b3

)

.

We define the discriminant of the polynomial in the Eq. (11) as

D(B) = 18B1B2B3B4 +B2
2B

2
3 − 4B4B

3
2 − 4B3

3B1 − 27B2
4B

2
1 . (12)

We note that if D(B) > 0 , then all roots are real; if D(B) < 0, then one of the roots is real
[34].

• Coexisting Equilibrium Eq
3 = (f(Z), Z, g(Z), h(Z): Both normal and tumor cells coexist,

where Z is a non-negative solution of the equation

Z +
cq2
rq1b

q
1

f(Z) +
cq3
rq1b1

g(Z)−
cq5
rq1b

q
1

h(Z) =
1

bq1
, (13)
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with

g(Z) = 1−
cq4
rq2
Z. (14)

The following third order polynomial for values of Z is derived from the Eq. (13):

C1Z
3 + C2Z

2 + C3Z +C4 = 0, (15)

where

C1 =

(

c
q
1 −

µc
q
1c

q
6

r
q
3b3

)(

r
q
2 −

c
q
3c

q
4

r
q
1b1

+
r
q
2c

q
5c

q
6

r
q
1b1r

q
3b3

)

,

C2 =

(

c
q
1 −

µc
q
1c

q
6

r
q
3b3

)(

r
q
2c

q
3

r
q
1b1

−

r
q
2c

q
5

r
q
1b1b3

−

r
q
2

b1

)

+

(

r
q
2 −

c
q
3c

q
4

r
q
1b1

+
r
q
2c

q
5c

q
6

r
q
1b1r

q
3b3

)(

αc
q
1 + d

q
− ρ

q +
c
q
1µ

b3
−

dqµc
q
6

r
q
3b3

)

,

C3 =

(

r
q
2c

q
3

r
q
1b1

−

r
q
2c

q
5

r
q
1b1b3

−

r
q
2

b1

)(

αc
q
1 + d

q
− ρ

q +
c
q
1µ

b3
−

dqµc
q
6

r
q
3b3

)

+

(

r
q
2 −

c
q
3c

q
4

r
q
1b1

+
r
q
2c

q
5c

q
6

r
q
1b1r

q
3b3

)(

d
q
α

q +
dqµ

b3

)

+
c
q
2r

q
2

r
q
1b1

(

s
q
−

sqµc
q
6

r
q
3b3

)

,

C4 =
c
q
2r

q
2

r
q
1b1

(

s
q
α

q +
sqµ

b3

)

+

(

r
q
2c

q
3

r
q
1b1

−

r
q
2c

q
5

r
q
1b1b3

−

r
q
2

b1

)(

d
q
α

q +
dqµ

b3

)

.

3.2. Stability analysis

The Jacobian matrix of the system (4) evaluated at the equilibrium point (I∗,T∗,N∗,F∗) is
given by

J(I∗,T∗,N∗,F∗) =







ω1 ω2 0 ω3

−ω4 ω5 −ω6 ω7

0 −ω8 ω9 0
0 −ω10 0 ω11






, (16)

where

ω1 =
ρq

T
∗

αq + T∗ + µF∗

− c
q
1T

∗

− d
q
, ω2 =

ρq
I
∗(αq + µF∗)

(αq + T∗ + µF∗)2
− c

q
1I

∗

, ω3 = −

ρq
I
∗

T
∗

(αq + T∗ + µF∗)2
,

ω4 = c
q
2T

∗

, ω5 = r
q
1 − 2rq1b1T

∗

− c
q
2I

∗

− c
q
3N

∗ + c
q
5F

∗

, ω6 = c
q
3T

∗

, ω7 = c
q
5T

∗

,

ω8 = c
q
4N

∗

, ω9 = r
q
2 − 2rq2b2N

∗

− c
q
4T

∗

,

ω10 = c
q
6F

∗

, ω11 = r
q
3 − 2rq3b3F

∗

− c
q
6T

∗

.

Using Matignon’s results [29]

|arg(λi)| >
qπ

2
, (i = 1, 2, 3, 4), (17)

where λ1, λ2, λ3, λ4 are the eigenvalues of the Jacobian matrix evaluated at the equilibrium points,
we can discuss the local stability of the equilibrium points of the model (4).

Theorem 3.1. The tumor free equilibrium point Eq
0 = (sq/dq, 0, 1, 1/b3) of the system (4) is locally

asymptotically stable if

rq1 +
cq5
b3
< cq3 +

cq2s
q

dq
.

Proof. The Jacobian matrix at the tumor free equilibrium point Eq
0 is given by

J(Eq
0) =







ω1 ω2 0 0
0 ω5 0 0
0 −ω8 ω9 0
0 −ω10 0 ω11






.

The eigenvalues of the Jacobian are

λ1 = ω1 = −dq < 0,

λ2 = ω5 = rq1 − cq2I
∗ − cq3N

∗ + cq5F
∗ = rq1 − cq2

sq

dq
− cq3 +

cq5
bq3
,

λ3 = ω9 = rq2 − 2rq2b2N
∗ = −rq2 < 0,

λ4 = ω11 = rq3 − 2rq3b3F
∗ = −rq3 < 0.
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Tumor free equilibrium point Eq
0 is locally asymptotically stable if λ2 < 0 holds. Then, we

reach the desired inequality. �

Theorem 3.2. The dead equilibrium of Type 1 Eq
1 = (sq/dq , 0, 0, 1/b3) of the system (4) is a saddle

point.

Proof. The Jacobian matrix at the equilibrium point Eq
1 is given by

J(Eq
1) =







ω1 ω2 0 0
0 ω5 0 0
0 0 ω9 0
0 −ω10 0 ω11






.

The eigenvalues of the Jacobian are

λ1 = ω1 = −dq,

λ2 = ω5 = rq1 − cq2I
∗ + cq5F

∗ = rq1 −
cq2s

q

dq
+
cq5
b3
,

λ3 = ω9 = rq2,

λ4 = ω11 = rq3 − 2rq3b3F
∗ = −rq3.

We observe that λ1 < 0, λ4 < 0 are automatically satisfied, while λ2 < 0 if rq1+
c
q
5

b3
<

c
q
2s

q

dq
. However,

λ3 = rq2 > 0. It follows that the equilibrium point Eq
1 is a saddle point. �

Theorem 3.3. The dead equilibrium of Type 2 Eq
2 = (I∗,T∗, 0,F∗) is locally asymptotically stable

if the coefficients of the characteristic polynomial of the Jacobian in (16) evaluated at Eq
2 satisfy

A1 > 0, A3 > 0, A4 > 0 and η = A1A2A3 − (A2
3 + A2

1A4) > 0, (18)

for all q ∈ (0, 1), where

A1 = −(ω11 + ω5 + ω9 + ω1),

A2 = (ω1ω11 + ω1ω5 + ω2ω4 + ω11ω5 + ω10ω7 + ω1ω9 + ω11ω9 + ω5ω9),

A3 = (−ω1ω11ω5 − ω11ω2ω4 − ω10ω3ω4 − ω1ω10ω7 − ω1ω11ω9

− ω1ω5ω9 − ω2ω4ω9 − ω11ω5ω9 − ω10ω7ω9),

A4 = ω1ω11ω5ω9 + ω11ω2ω4ω9 + ω10ω3ω4ω9 + ω1ω10ω7ω9.

Proof. Eigenvalues of the Jacobian in (16) evaluated at Eq
2 are found through the following char-

acteristic equation:

PE2(λ) = λ4 + A1λ
3 + A2λ

2 +A3λ+A4 = 0.

By the Routh–Hurwitz criteria [1], we obtain the required conditions.
�

Theorem 3.4. The coexisting equilibrium point Eq
3 = (I∗,T∗,N∗,F∗) is locally asymptotically stable

if the coefficients of the characteristic polynomial of the Jacobian in (16) evaluated at Eq
3 satisfy

A1 > 0, A3 > 0, A4 > 0 and η = A1A2A3 − (A2
3 + A2

1A4) > 0, (19)

for all q ∈ (0, 1), where

A1 = −(ω11 + ω5 + ω9 + ω1),

A2 = (ω1ω11 + ω1ω5 + ω2ω4 + ω11ω5 + ω10ω7 + ω1ω9 + ω11ω9 + ω5ω9 − ω6ω8),

A3 = (−ω1ω11ω5 − ω11ω2ω4 − ω10ω3ω4 − ω1ω10ω7 − ω1ω11ω9 − ω1ω5ω9 + ω1ω6ω8

− ω2ω4ω9 − ω11ω5ω9 + ω11ω6ω8 − ω10ω7ω9),

A4 = ω1ω11ω5ω9 − ω1ω11ω6ω8 + ω11ω2ω4ω9 + ω10ω3ω4ω9 + ω1ω10ω7ω9.

Proof. The characteristic equation of the Jacobian in (16) evaluated at Eq
3 is given by

PE3(λ) = λ4 + A1λ
3 + A2λ

2 +A3λ+A4 = 0. (20)

By the Routh-–Hurwitz criteria [1], we derive the required condition. �
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Before discretization of the model (4), we discuss the numerical stability for different values
of b3 and ρ.

Effect of varying carrying capacity of fat cells b3

We are interested in the intersection of the following immune-nullcline (NI) and tumor-
nullcline (NT ) to examine the impact of low fat diet on tumor cell population at co-existing equi-
librium:

NI := {(I, T ) : I =
sq(αq + T + µh(T ))

(cq1T + dq)(αq + T + µh(T ))− ρqT
= f(T )},

NT := {(I, T ) : I =
1

cq2
(r1(1− b1T )− cq3g(T ) + cq5h(T )) = j(T )},

where h(T ) and g(T ) are defined in Eqn. (10) and (14), respectively.
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Figure 1. Case NI − NT : Effect of varying carrying capacity of fat cells for
q = 0.5 (top), q = 0.7 (middle) and q = 0.9 (bottom) with b3 = 0.5, b3 = 1.8.

We observe from Fig. 1 that shifting the T-nullcline by changing b3 reduces the number of
tumor cells at the equilibrium point. This clinically means that with a low caloric diet, the co-
existing equilibrium moves towards the state from a high tumor burden to a smaller tumor burden.
As we increase the order of fractional derivative, the equilibrium points move towards a high tumor
burden.

Effect of varying immune response ρ

As the immune response rate is increased from 0.1 to 1.2, the co-existing equilibrium point
approaches the state corresponding to a smaller tumor burden as depicted in Fig. 2, while the
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number of immune cells increases accordingly. As we increase the order of fractional derivative,
both the number of tumor cells and immune cells increase.
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Figure 2. Case NI − NT : Effect of varying immune response rate for q = 0.5
(top), q = 0.7 (middle) and q = 0.9 (bottom) with ρ = 0.1, ρ = 1.2

4. Discretization of the model

In this section, we explain the discretization of the tumor model. There are no general
methods to solve system of fractional differential equations analytically. We use L1-discretization
formula to obtain the numerical solution following the study [24].

In order to discretize the fractional order tumor model (4), we write it as follows:

0D
q
tχ(t) = ψ(χ(t)), t > 0, χ(0) = χ0, (21)

where

χ =







I

T

N

F






, χ0 =







I0

T0

N0

F0






, ψ(χ) =







sq + ρqIT

αq+T+µF
− cq1IT − dqI

rq1T(1− b1T)− cq2IT − cq3TN+ cq5TF
rq2N(1− b2N)− cq4TN
rq3F(1− b3F)− cq6TF






.
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Let tn = n∆t for n = 0, 1, · · · , N where ∆t =
tf
N

is the time step increment. The operator

0D
q
t f(t) is an approximation to the left Caputo derivative 0D

q
t f(t) and it is given by

0D
q
tk
f(t) =

1

Γ(1− q)

k∑

j=1

fj − fj−1

∆t

∫ tj

tj−1

1

(tk − s)q
ds

=
∆t−q

Γ(2− q)
︸ ︷︷ ︸

:=B0

k∑

j=1

(fj − fj−1) ((k − j + 1)1−q − (k − j)1−q)
︸ ︷︷ ︸

:=Ak,j

.

Then, the equation (21) can be discretized at t = tk as

B0 Ak,k χk = B0 Ak,k χk−1 −B0

k−1∑

j=1

(χj − χj−1) Ak,j + ψ(χk).

5. Numerical simulations

In this section, we present some numerical results. The initial conditions are set as

I0 = sq/dq, T0 = 1, N0 = 0, F0 = 0.8,

to study the equilibrium point Eq
2 , while they are fixed as

I0 = sq/dq, T0 = 0.0001, N0 = 1, F0 = 0.8

to examine the equilibrium point Eq
3 . We present time evolution of the model for values of q =

0.9, 0.7, 0.5 and check the stability conditions stated in Section 3.2. We try to understand the effect
of fat cells in the model by varying b3 and q. Further, we investigate the effect of immune response
rate ρ.

5.1. Case I: Results associated with the equilibrium point Eq
2

We find the equilibrium point Eq
2 by setting r2 = 0.7, b3 = 0.5 and b3 = 1, and list the

results in Table 2-3, respectively. For a high caloric diet (b3 = 0.5), as we decrease the value of the
parameter q, the number of immune cells increases, while the number of tumor cells and fat cells
decrease. For a low caloric diet (b3 = 1.8), the same behavior is observed. However, the number of
tumor cells and fat cells are smaller and the number of immune cells are larger than the case with
b3 = 0.5. This shows that fractional order q is an important parameter because it might change the
number of cells. By varying the carrying capacity of fat cells (b3), we investigate the effect of diet
on tumor cells. We can observe that the low caloric diet prevents the growth of tumor and it leads
the tumor to shrink. In Fig. 3, the number of cells are compared with respect to the low and high
caloric diet for different values of fractional order q. We observe that the solutions converge to the
equilibrium points showing the validity of our theoretical results.

Table 2. Case 1: Equilibrium point Eq
2 with r2 = 0.7 and b3 = 0.5

Equilibrium point A1 A2 A3 A4 η Eigenvalues

E0.9
2 = (0.2454, 1.0376, 0, 0.8879) 2.3010 1.3081 0.1843 0.0069 0.4841 (-1.5168,-0.5992,-0.0617,-0.1234)

E0.7
2 = (0.3037, 1.0349, 0, 0.7259) 2.3213 1.4159 0.2129 0.0133 0.0093 (-1.4346,-0.6923,-0.0881,-0.1062)

E0.5
2 = (0.3814, 1.0088, 0, 0.5733) 2.3188 1.4347 0.2193 0.0088 0.6338 (-1.4062,-0.7124,-0.1346,-0.0656)

Table 3. Case 1: Equilibrium point Eq
2 with r2 = 0.7 and b3 = 1

Equilibrium point A1 A2 A3 A4 η Eigenvalues

E0.9
2 = (0.2568, 0.9987, 0, 0.4648) 2.1877 1.1524 0.1394 0.0047 0.3095 (-1.4641,-0.5704,-0.0616,-0.0916)

E0.7
2 = (0.3206, 0.9812, 0, 0.3960) 2.1700 1.1966 0.1428 0.0047 0.3281 (-1.3716,-0.6502,-0.0878,-0.0603)

E0.5
2 = (0.4055, 0.9387, 0, 0.3362) 2.1307 1.1523 0.1207 0.4472e-04 0.2801 (-1.3352,-0.6593,-0.1333,-0.0029)
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Figure 3. Case 1: Equilibrium point Eq
2 for q = 0.9 (top), q = 0.7 (middle) and

q = 0.5 (bottom) with b3 = 0.5 (left), b3 = 1 (right) and r2 = 0.7.

5.2. Case 2: Results associated with the co-existing equilibrium with low immune

response rate

We continue with the equilibrium point Eq
3 by fixing the immune response rate as ρ = 0.1

with b3 = 0.5 and b3 = 1.8 in Table 4-5, respectively. Similar to the previous case, we can observe
that varying the fractional order q greatly affects the number of cells. As the fractional order q is
decreased, the number of immune cells and normal cells increases, while the number of tumor cells
and fat cells decrease. In Fig. 4, the effect of low caloric diet is more visible. In other words, it
leads to a smaller tumor cell population. A low caloric diet associated with the order q = 0.5 leads
tumor to eradicate in the final time step. However, for this choice of parameters, the number of
normal cells is smaller than the number of tumor cells.

Table 4. Case 2: Equilibrium points Eq
3 with b3 = 0.5, ρ = 0.1

Equilibrium point A1 A2 A3 A4 η Eigenvalues

E0.9
3 = (0.2621, 0.9330, 0.1608, 1) 2.1403 1.1869 0.1839 0.0077 0.3978 (-1.4585,-0.5650,-0.0584 ± 0.0220i)

E0.7
3 = (0.3177, 0.9560, 0.1196, 0.8230) 2.1971 1.3010 0.2061 0.0097 0.4997 (-1.4014,-0.6702,-0.0627 ± 0.0105i)

E0.5
3 = (0.3967, 0.9323, 0.1210, 0.6815) 2.3215 1.6129 0.3776 0.0269 1.1266 (-1.3359,-0.7401,-0.0700,-0.1755)

Table 5. Case 2: Equilibrium points Eq
3 with b3 = 1.8, ρ = 0.1

Equilibrium point A1 A2 A3 A4 η Eigenvalues

E0.9
3 = (0.3100, 0.7563, 0.3197, 0.3304) 1.9513 1.1224 0.2259 0.0116 0.3996 (-1.3088,-0.4829,-0.0798 ± 0.0197i)

E0.7
3 = (0.4114, 0.6428, 0.4080, 0.3357) 1.9202 1.2062 0.2927 0.0216 0.5127 (-1.1883,-0.5435,-0.0942 ± 0.0283i)

E0.5
3 = (0.6459, 0.2747, 0.7411, 0.4477) 3.3302 3.8530 1.8145 0.2950 16.7184 (-1.8391,-0.7937,-0.3487 ± 0.0970i)
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Figure 4. Case 2: Equilibrium point Eq
3 for q = 0.9 (top), q = 0.7 (middle) and

q = 0.5 (bottom) with b3 = 0.5 (left), b3 = 1.8 (right) ρ = 0.1.

5.3. Case 3: Results associated with the co-existing equilibrium with high im-

mune response rate

Next, we examine the effect of high immune response by taking ρ = 2 with b3 = 0.5 in
Table 6 and b3 = 1.5 in Table 7. The effect of the parameter ρ is very obvious, that is, the number
of immune cells converge to 2 for q = 0.9 and it decreases up to 1 for q = 0.5. It causes more tumor
cells to be destroyed. From Fig. 5, we observe that a low caloric diet leads to a sharp decrease in
the number of tumor cells. For a low caloric diet, tumor cells stabilizes to 0.1727, 0.1822, 0.0613 for
q = 0.9, 0.7, 0.5, respectively which are lower values compared with the case when patient is gaining
weight. In Fig. 5, it can be seen that a low caloric diet helps to control the number of tumor cells
and it is accelerated by smaller values of q.

Table 6. Case 3: Equilibrium points Eq
3 with b3 = 0.5, ρ = 1.2

Equilibrium point A1 A2 A3 A4 η Eigenvalues

E0.9
3 = (1.0775, 0.6496, 0.4158, 1.3038) 1.5389 0.6612 0.0981 0.0053 0.0776 (-1.2055,-0.1980,-0.0677 ± 0.0830i)

E0.7
3 = (0.7718, 0.7306, 0.3272, 1.1005) 1.6863 0.8419 0.1679 0.0121 0.1758 (-1.2156,-0.3026,-0.0841 ± 0.0853i)

E0.5
3 = (0.6782, 0.7597, 0.2838, 0.9257) 1.8675 1.1095 0.2793 0.0260 0.4102 (-1.2031,-0.4496,-0.1074 ± 0.0962i)

Table 7. Case 3: Equilibrium points Eq
3 with b3 = 1.8, ρ = 1.2

Equilibrium point A1 A2 A3 A4 η Eigenvalues

E0.9
3 = (1.7471, 0.1727, 0.8447, 0.5041) 1.2194 0.4507 0.0881 0.0062 0.0314 (-0.9310, -0.0809 ± 0.1894i,-0.1265)

E0.7
3 = (1.0872, 0.1822, 0.8322, 0.4932) 1.4067 0.6503 0.1390 0.0116 0.0850 (-0.9478,-0.1245 ± 0.1339i,-0.2098)

E0.5
3 = (0.8397, 0.0613, 0.9422, 0.5315) 1.6925 0.9063 0.1852 0.0118 0.2159 (-0.9515, -0.0473,-0.4064,-0.2873)
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Figure 5. Case 3: Equilibrium point Eq
3 for q = 0.9 (top), q = 0.7 (middle) and

q = 0.5 (bottom) with b3 = 0.5 (left), b3 = 1.8 (right), ρ = 1.2.

6. Summary and conclusion

In this study, we investigate the effect of obesity in a generalized cancer tumor growth
model. Integer order models can be limited and they may not reproduce the results obtained from
the real data. Fractional derivatives have advantage that the order q can be varied for a better data
fit depending on the progression of different cancers. In order to examine the effect of fractional
order q on tumor–obesity model, we present several numerical simulations for different values of
the fractional order q. Our simulation results demonstrate that varying the fractional order greatly
affects the behavior of tumor, immune, normal and fat cells. By perturbing the parameters b3, ρ
in the system, an increase in the number of immune cells and a decrease in the number of tumor
cells are observed in case of a low caloric diet. As the order of fractional derivative goes to zero, a
smaller tumor population is achieved. We showed that the numerical results are in good agreement
with theory, indicating the validity of the numerical and theoretical analysis.
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Lett. A., 358(2006), No. 1, 1–4.

[2] G Ailhaud, H Hauner, and AGB Bray, Development of white adipose tissue, Handbook of Obesity: Etiology

and Pathophysiology, (2004), 33—-79.

[3] Sadia Arshad, Ayesha Sohail, and Sana Javed,Dynamical study of fractional order tumor model, Int. J.

Comput. Methods., 12(2015), 1550032.
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