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ANALYTICAL STUDY OF SOLITONS TO
BENJAMIN-BONA-MAHONY-PEREGRINE EQUATION
WITH POWER LAW NONLINEARITY BY USING THREE
METHODS

M.S. OSMAN!, Hadi REZAZADEH:?, Mostafa ESLAMI3, Ahmad
NEIRAMEH*, Mohammad MIRZAZADEHS?

In this paper, the unified, improved Riccati sub-equation and modified Kudryashov
methods are used to construct travelling wave solutions of the
Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity (BBMP
equation with power law nonlinearity). Several solutions are determined including
soliton wave solutions, solitary wave solutions, elliptic wave solutions and periodic
wave solutions. Itis shown that these methodologies are very powerful mathematical
tools for obtaining exact travelling wave solutions of nonlinear evolution equations.

Keywords: Power law nonlinearity, The unified method, The improved
sub-equation method, The modified Kudryashov method, Travelling
wave solutions.
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1. Introduction

The investigation of travelling wave solutions of nonlinear evolution equations
(NLEEs) are growing rapidly because mathematical modeling of many physical
systems leads to NLEEs. They are encountered in a variety of engineering and
scientific aplications such as the fluid dynamics, plasma physics, optical fibers,
chemical physics, biomathematics, oceans engineering, geochemistry and many
other scientific fields. There are several analytic techniques for solving NLEEs and
for constructing travelling wave solutions. In between these methods are the
extended G'/G -expansion method [1], the extended trial equation method [2,3],
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the Riccati-Bernoulli’s sub-ODE method [4], the first integral method [5,6], the
truncated expansion method [7], the sub-equation method [8,9], the modified
simple equation method [10], the extended Jacobi’s elliptic function method [11],
the functional variable method [12, 13], the sine-Gordon expansion method [14],
the new extended direct algebraic method [15], and many others [16,17].

In this article, we use the unified, improved Riccati sub-equation and modified
Kudryashov approaches to find traveling wave solutions of the BBMP equation
with power law nonlinearity of the form [18]:

a—u+aa—u+bu"6—u+c (’233u =0, @)

ot OX ox  o°xot
where ab,c and n are nonzero constants. The exponent n represents the power
law nonlinearity parameter and it is necessary to have n=0, as these values will
place Eq. (1) beyond the linear regime. Here in Eq. (1) the first term indicates the
evolution term, while the last term indicates the dispersion term. The third term is
the nonlinear term. Khalique in [18] obtained exact wave solutions of Eq.(1) using
Lie symmetry method and simplest equation approach and Aminikhah et al. [19]
proposed the functional variable method to solve this equation. The special case
where n=2, the BBMP equation with power law nonlinearity is called the
modified Benjamin-Bona-Mahony equation [20].

The rest of the paper is organized as follows. Details of the unified method,
improved Riccati sub-equation and modified Kudryashov methods have been
presented in the next Section. The obtained solutions of BBMP equations with
power law nonlinearity using these methods are presented in Section 3.
Conclusionsare presented in Section 4.

2. Methods

In this Section we express the first step of the unified, improved Riccati
sub-equation and modified Kudryashov methods for finding traveling wave
solutions of NLEEs.

Consider the nonlinear evolution equation (NLEE)

F(u,a—”,a—”,a—u,...}o, (2)

ot 0ox, 0Ox,

where F isa polynomial in u and its partial derivatives.
Using the wave transformation

u(xt)=U (&), E=X+X, +...4+%, — At (3)
where 2 is aconstant, Eq. (2) is arranged as the following nonlinear ordinary
differential equation

GU,U"U",..)=0. 4)



Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law... 269

2.1. The description of unified method

Herein, we find the traveling wave solutions (in polynomial function or rational
function forms) for the NLEE given by Eq. (4) via the unified method
[21,22,23,24,25]. The outline of this method is presented as follow.

(1) Polynomial solutions

To obtain the solutions of Eq. (4) in polynomial function forms, we assume that

U=U@©)=3are),
o ; ©)
C@) =3bT'@), £=-2+3x, p=12,

where r'(g):(f—g(r((:)),t, x.l<k<gare the arguments of uin Eq. (2),a andb, are
constants. The unified method provides the balance principle technique to evaluate
the relation between the two parameters n and m and satisfies the consistency
condition between the arbitrary functions in the solutions given by Eq. (5) (for
details see [24, 25, 26, 27, 28]).

It worth mentioning that, the unified method solves Eq. (4) to elementary
solutions or elliptic solutions when p=10r p=2 respectively.
(11) Rational solutions
To get these solutions, we suppose that

U=U@=3ar'@/Yre, n=k,
q (6)
(CEP =3bT@), e=-at+3x, p=12

wherer’(¢) =f—§(r(.§)),t, x,,1<s<qare the arguments of u inEq. (2),a.r,,and b, are

constants. Similarly, The unified method provides the balance principle technique
to evaluate the relation between the parameters nk and m and satisfies the
consistency condition between the arbitrary functions in the solutions given by Eq.
(6) (for details see [24,25,26,27,28]). Furthermore, the values of p give different
types for these solutions by the same criteria described in (I).

2.2. The description of improved Riccati sub-equation method

In this subsection we express the improved Riccati sub-equation which is
proposed in [29,30] for finding exact solutions of NLEEs, that the essential steps of
this method are described below.
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Step 1. We suppose that Eg. (4) has the following solution
U= Ya @+, (7

where » and a are arbitrary, and (&) is a solution of the fractional Riccati
equation that satisfies

y'(€)= o +yi (&) (8)
Step 2. The positive integer n in Eq. (7) is determined with the balancing of the
highest order derivatives and nonlinear terms in Eq. (4).
Step 3. Substituting (7) along with Eqg. (8) into Eq. (4) and collecting the
coefficients of (&) and setting the coefficients of [y (£)] (i=0,1,2,...,n) to be zero,

we get a set of overdetermined nonlinear algebraic equations for a (i=01,2,...,n),

o and o.
Step 4. Finally, assuming that »,o and a (i=0,1,2,...,n) can be obtained by solving

the algebraic equations in step 3 and substituting these constants and the solutions
of Eqg. (8) into Eq. (7), we can finally obtain exact solutions of Eq. (4).

Step 5. The Riccati equation (8) admits the following exact solutions [31,32]

Type I. When <0,

v, (&) = —J-o tanh(v-0¢),
v,(&) = -0 coth(v=c¢),
v, (&) = o tanh(2v=-0 &) tiv-osech(2V-0¢),
v, (&)= o coth(2v=-0&) £ o esch(2v-0&),

vs(¢)= —%{Etanm@mﬁ coth(@f)],

Type I1. When >0,
ve(&) =Vo tan(Voé),
v,(&) = —Jo cot(Joé),
vy (&) = —Jo tan(2Jo &) o sec(2Jo),
wo (&) = —Jo cot(2Voé) o esc(2Vo ),
Vo (5) = %[\/Etan(gé) —\/ECOt(%é)],
Type I1l. When o =0,

1
=————, d =const.
vy (6) Z+d

2.3. The description of the modified Kudryashov method

A summary of the modified Kudryashov method [33,34] is given to extract new
closed-form solutions to a nonlinear system of partial differential equations. The
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essential steps of modified Kudryashov method are described below.
Step 1. Lets assume that the solution u(¢) of the nonlinear Eq. (4) can be

considered as
U (&) =2+22aQ"(®), ©)

where unknowns a (i =0,1,...N) are identified later,so that a, =0, N isa positive
integer and Q(¢) satisfies the following new auxiliary equation

Q'(©)=(Q*(©)-Q(&))In(A), A =01, (10)
where the solution of the Eq. (10) is
_ 1
Q)= Tgae (11)

Step 2. By inserting Eq. (9) along with Eqg. (10) in Eq. (4) and equating the
coefficient of each power of Q(¢) to zero, we get a system of algebraic equations
in different parameters. The received system is then solved for finding some free
parameters values. Finally, new closed-form solutions for the nonlinear Eq. (2) are
produced.

3. The BBMP equation with power law nonlinearity

In this Section, we obtain several solutions of BBMP equations with power law
nonlinearity using methods that we have presented in before Section.
Let

U(@=ulxt), &=x-at, (12)
from relation (12) and its derivatives we have
-AJ,+aU,+bU"U, - U, =0. (13)
or
(- AU +—2 U™ jeU, =0a%4 (14)
n+1 °

By using the transformation
1

U=vr, (15)
Eq. (14) can be written as
—<n(n+HAVV  +c(n’ DA +n’(L+n)@-AV *+bn¥V *=0,nz0n=+l.  (16)

3.1. The unified method

By considering the homogeneous balance between vv. and v* in Eq. (16),
we get n=2(k -1),k =1,2,3,... Here, we confine ourselves to find these solutions
when k=2 and p=1 or p=2.
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3.1.1. The solitary wave solution

The unified method admits the solitary wave solution of Eqg. (1) as

ac(2+3n + nZ)stechz(%R &l

b0t = 2b(n?+cR?) a7
—y _ an’ - h2_
where ¢&=x n2+cR2)t and R =.bZ-4bb, .
3.1.2. The soliton wave solution
From Eq. (5) in Eq. (16), we get the soliton wave solution of Eq. (1) as
blTi
2 2y -2 b2
U, (6t) = 4ab; bzc(i:3n+n )e . b,>0, (18)
b[l—sze%](bfc+4b2n2)
4ab,n’®

where e=x - ——2 ¢,
d bZc +4b,n’

3.1.3. The elliptic wave solution

Herewith we write the elliptic wave solution of (1) by using the unified method
(something is missing here). This solution is given by (for details see the subsection
2.1)

~ 6ac(b2+H+2b4F2(§))%
”3(“)_[ b(—2+b,c+3cH) J (19)

= L = 2 _
where &=x +—2+b2c+30Ht and H =.b?-4b,b, .
The auxiliary function (&) in Eq. (19) is given by

I'(£) = b, (€) +b,* +by,
which is classified into different types of elliptic functions according to the
classification in [35].
Finally, we find the rational function solutions of Eg. (1) by a similar technique
in subsection 3.1.4 that we did by using the unified method. These rational
solutions (periodic type or soliton type) are introduced in the following subsection.
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3.1.4. The rational solutions

Here, the rational solutions of Eq. (1) will be obtained in two different forms as
follows.

Case 1:periodic type

1

0 (x 1) = 3ab’c(1-sin(b,&)) |2 (20)
o b2+bZc)(1+sin(b,&)) )

2
where &£=x —%t .

Case 2:soliton type

b, >0, (21)

R
us(x,t) = b

2—bzc(eE§—R)

where £=x - ZZ t and R =.bZ-4bb, .

- ZC
3.2. The improved Riccati sub-equation method

We assume that Eq. (16) has a solution in the form given below
V=28 @+, (22)

where » and a (i =0,1,2,...,n) areconstantsand y(¢) satisfies the Riccati Eq. (8).
Balancing between vv . and v ° in Eq. (16) we can gain n=2. So, we have

V (&) =a,+a(@+yp)+a,(0+y)’. (23)
By substituting Eq. (23) and its derivatives into Eq. (16) and collecting all terms
with the same power of  together, the left-hand side of Eq. (16) is converted into
another polynomial in . Equating each coefficient of this polynomial to zero,
yields a set of simultaneous algebraic equations for the unknowns a,,a,» and 1.

On using Maple software package, we finally get a set of algebraic equations.
Then solving the set of algebraic equations yields

nZa _ ca(a+w2)(nz+2+3n)
-’ +4co’ %= b(-n”+4co)
(24)
_Aca(n2+2+3n)w _ca(n®+2+3n)
A=t b(-n’+4co) %7 b(-n®+4co)

Using Egs. (24), (23), (12), (15) and the solutions of (8), we can find the following
travelling wave solutions of Eq. (1) as follows
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Type I. When o <o,

1

ug(x,y)= (L ((0+@*) + 4w =0 tanh(=5&)) - 2(w—\/$tanh(J$§))2))“,

S|

U (x,y)= (L((a+w2)+4w(w—ﬁcoth(ﬁg»—2(w-ﬁcoth(@§»2)) ,
Ug(x,y) = (L((a +0%) + 4w — (V-0 tanh(2v-c &) Fiv—osech(2V-c &)

1

~2(0- (-0 tanh(2V=0¢) FiN-osech (V=€)
Uy (X, y) = ( L((a + %) + 4o — (V-0 coth(2v—c &) FA/-ocsch(2/-o&))

~2(0- (-0 coth(2=0&) F-oesch (2= &))?))",

U (x,y)= (L((a+w2)+4w(w—ﬁcoth(ﬁg»—2(w—ﬁcoth(ﬁg))2))

Up(X,y)= (L((a+a)2)+4a)(a)—%(x/$tanh(g§) +\/$coth(§§)))

2
n‘a t and L:M.
-n?+4co b(—n2+4ca)

where &£=x +

Type 1. When o >0,

1
n
1

1

U (x,y) = (L((G+w2)+4a)(a)+\/gtan(\/;§))_2(w+\/gtan(\/;§))z))
= (L ((0'+a)2)+4a)(a)—\/gcot(\/;§))—2(50_\/;00»[(\/;5))2))?,

U, (X,y)
Uy (X, y) = (L (0 + %) + bax(w — (Vo tan(2\o &) T Vosec (2o &)

~2(w— (Vo tan(2yo &) FJosec (Vo £)))? ))
Uy, (X, y) = ( L((o+ ")+ 4a(0 - (o cot(2\aé) Foosc(24/o¢))

—2(w— (o cot(2Jo &) Focse(2Mo&)))? ))F ,
/s /s

Us(X,y) = (L((o + @) +4w(w+§(£ tan(TUe:) o cot(Tch»)

L
n
1

Type I11. When &=0,
um(x,y):(L((a+w2)+4a)(w—§%)—2(w—§%)2))§, d =const.
n%a ¢ and I_:ca(n +2+3n)

where =X+ B A ————a
d 4co —n? b(4ca—n2)
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3.3. The modified Kudryashov method

Assume the formal solution of the Eq. (12) through the Eqg. (9)
V (&) =a,+aQ (&) +aQ’(&). (25)
We substitute Eq. (25) along with its first and second derivatives into Eq. (16) and
collect all terms with the same order of Q(¢), we get a system of nonlinear

algebraic equation. Solving this system, we acquire the following solution sets:

_ n’a _—2ca(n+1)(n+2)(Ln’A)
B b(n2 +c(Ln2A))

(26)
_2ca(n+1)(n+2)In* A
a, =
b(n® +cIn”A)
Using Egs. (26), (25), (12), (15) and auxiliary equation (11), we can find the
following travelling wave solutions of Eq. (1) as follows

2ca(n+1)(n+2)(Ln*A)

T i o

2ca(n+1)(n+2)(Ln*A)

b(nz+c(Ln2A))[1+d[cosh{(X—MJLnAJHmh[[X_M]LHAD]Z

4. Conclusions

U, (xt) =

In this paper, the unified, improved Riccati sub-equation and modified
Kudryashov methods were used to obtain the solutions to the BBMP equations with
power law nonlinearity. These solutions include soliton wave solutions, solitary
wave solutions, elliptic wave solutions, and periodic wave rational solutions, which
may be helpful to better realize the mechanisms of the complex physical
phenomena in different branches of engineering sciences, mathematical physics
and other technical areas. Moreover, these methods can be applied to solve other
NLEEs.
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