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CONVERGENCE THEOREMS FOR OPERATORS WITH

CONDITION (E) IN HYPERBOLIC SPACES

Cristina Călineaţă1, Cristian Ciobănescu2

We introduce convergence results of iteration process Sn, by Sintunavarat and

Pitea [J. Nonlinear Sci. Appl., 2016, 9, 2553-2562] in the framework of hyperbolic spaces,

introduced by Kohlenbach [Trans. Am. Math. Soc., 2005, 357, 89-128]. This study is

carried out on a remarkable class of operators, that of mappings with condition (E),

introduced by Garcia-Falset et al. [J. Math. Anal. Appl., 2011, 375, 185-195]. This

work presents both results on ∆-convergence and also some strong convergence results,

under additional conditions. We conclude the paper with at least two possible ways for

further study.
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1. Introduction

Several mathematical problems arising in nonlinear analysis can be solved by means

of fixed point theory, currently an active direction of study. This approach supposes finding

suitable classes of operators and adequate study framework, which ensure necessary topolog-

ical and geometric properties for the existence of fixed points. Once the existence is proved,

numerical modeling and simulation are necessary for finding them. So, versatile numerical

algorithms are desired to make complete such a study.

During the last period, several remarkable classes of operators for fixed point problems

are introduced. We mention here: Suzuki in 2008 [25], Garcia-Falset et al. in 2011 [10],

Aydi et al. in 2012 [5], Kamran et al. in 2016 [13], Donghan et al in 2018 [9], Bejenaru and

Postolache in 2020 [7], Ali et al in 2021 and 2017, respectively [3, 4]. As concerns recent

designed algorithms for fixed point problems, we mention a few references: Sahu et al. [21],

Thakur et al. [27, 28], Usurelu et al. [29, 30], Yao et al. [31, 32].

Given the theme of the paper, we will focus on hyperbolic spaces, as generalization of

metric spaces, in the sense introduced by Kohlenbach [16]. For other works in this regard,

please, see: Goebel and Kirk [11], Reich and Shafrir [20]. The axiomatic system of these

spaces shows that the convex structure of Takahashi is fructified herein (see [26], [19]). On

the other hand, it should also be noted that hyperbolic spaces represent a natural gener-

alization of CAT(0) spaces, which have the additional assumption of satisfying a condition

named (CN) (see [8], [12], [14]), in which various convergence properties are studied, as it

happens in [1] or in [6].
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Based on the four properties of hyperbolic spaces, certain results can be studied in

this direction and, also, the classic iterations can be stated in a new context, as suggested by

Ahmad et al. [2], in a recent paper. Inspired by all these aspects, we consider that dealing

with problems in this context is an important starting point of development, which deserves

to be followed closely, given all the results that can be produced.

2. Preliminaries

First, we will present some results regarding hyperbolic spaces.

Definition 2.1 ([16]). A hyperbolic space is a metric space (X, d) together with a map

W : X2 × [0, 1]→ X, with the following properties:

(i) d (u,W (x, y, α)) ≤ (1− α)d(u, x) + αd(u, y);

(ii) d (W (x, y, α),W (x, y, β)) = |α− β| d(x, y);

(iii) W (x, y, α) = W (y, x, 1− α);

(iv) d (W (x, z, α),W (y, w, α)) ≤ (1 − α)d(x, y) + αd(z, w), for all x, y, z, w ∈ X and

for all α, β ∈ [0, 1].

In this case, we will denote the hyperbolic space with (X, d,W ).

It is useful to notice that relation (i) is the well known convex structure introduced

by Takahashi [26].

Definition 2.2 ([26], [24]). We will consider the hyperbolic space (X, d,W ).

(i) A subset S of this hyperbolic space is called convex if

W (x, y, α) ∈ S,

for all x, y ∈ S and for all α ∈ [0, 1].

(ii) This hyperbolic space is said to be strictly convex if for any x, y ∈ X and λ ∈ [0, 1],

there exists a unique element z ∈ X such that

d(z, x) = λd(x, y)

and

d(z, y) = (1− λ)d(x, y).

(iii) This hyperbolic space is said to be uniformly convex if for all u, x, y ∈ X, r > 0

and ε ∈ (0, 2], there exists δ ∈ (0, 1] so if d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr, then

d

(
W

(
x, y,

1

2

)
, u

)
≤ (1− δ)r.

(iv) A map η : (0,∞)× (0, 2] → (0, 1] with the property that δ = η(r, ε), for a given

r > 0 and ε ∈ (0, 2] is said to be a modulus of uniform convexity. Furthermore, the map η

is called monotone if it decreases with respect to r, for a fixed ε.

Remark 2.1 ([17]). We can see that a uniformly convex hyperbolic space is strictly convex.

Considering the fact that one of the main results is referred to as ∆-convergence,

further we will detail some aspects regarding this concept.

Definition 2.3. We will consider the hyperbolic space (X, d,W ) and {xn} a bounded

sequence in this space.

For x ∈ X, define a continuous functional

r (·, {xn}) : X → [0,∞) , r (x, {xn}) = lim sup
n→∞

d(x, xn).



Convergence theorems for operators with condition (E) in hyperbolic spaces 11

(i) The asymptotic radius is defined as follows

r ({xn}) = inf {r (x, {xn}) : x ∈ X} .

(ii) The asymptotic center of a bounded sequence {xn} from a subset S of X is defined

as follows

AS ({xn}) = {x ∈ X : r (x, {xn}) ≤ r (y, {xn}) for any y ∈ S} .

In the more general case, where the asymptotic center is considered for the space X,

it will be denoted by A ({xn}).

Lemma 2.1 ([18]). Let (X, d,W ) be a complete uniformly convex hyperbolic space with a

monotone modulus of uniformly convexity.

Then every bounded sequence {xn} in X has a unique asymptotic center with respect

to any nonempty closed convex subset S of X.

Definition 2.4. We will consider the hyperbolic space (X, d,W ). A sequence {xn} in X

is said to ∆-converge to an element x ∈ X if x is the unique asymptotic center of every

subsequence {un} of {xn}.
So, we will note ∆- lim

n→∞
xn = x and x is called the ∆-limit of the sequence {xn}.

Lemma 2.2 ([15]). Let (X, d,W ) be a uniformly convex hyperbolic space with a monotone

modulus of uniformly convexity. We will consider an element x ∈ X and a sequence {αn}
in [a, b] provided that 0 < a ≤ b < 1. If {xn} and {yn} are sequences in X such that

lim sup
n→∞

d(xn, x) ≤ r,

lim sup
n→∞

d(yn, x) ≤ r

and

lim
n→∞

d (W (xn, yn, αn), x) = r,

for some r ≥ 0, then

lim
n→∞

d(xn, yn) = 0.

In 2008, Suzuki [25] introduced a new nonexpansivity condition (the class of operators

with property (C)), which was later extended in 2011 by Garcia-Falset et al. in [10], by

introducing the so-called operator class with condition (E).

Definition 2.5 ([10]). Let S be a nonempty subset of a Banach space X and µ ≥ 1. Any

mapping T : S → X which satisfies the inequality

‖x− Ty‖ ≤ µ ‖x− Tx‖+ ‖x− y‖ ,

for all x, y ∈ S, is said to be endowed with (Eµ) property. Furthermore, T satisfies condition

(E) on S if T satisfies condition (Eµ), for some µ ≥ 1.

In the following definition, we will adapt Definition 2.5 in the context of hyperbolic

spaces, because the study is based on this class of operators with condition (E).

Definition 2.6. Let (X, d,W ) be a complete uniformly convex hyperbolic space. A mapping

T : S → X satisfies condition (Eµ) provided that

d(x, Ty) ≤ µd(x, Tx) + d(x, y),

for all x, y ∈ S, where S is a nonempty subset of a space X.
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We will present a lemma with important results regarding this class of operators,

which will also be used in the context of uniformly convex hyperbolic spaces.

Lemma 2.3 ([10]). Let (X, d) be a metric space, S a nonempty subset of X and T : S → S

a operator with condition (E).

(i) If T satisfies condition (C), then T satisfies condition (E).

(ii) If T has conditions (E) and p is a fixed point of the operator T , then

d(Tx, p) ≤ d(x, p),

for all x ∈ S.

(iii) If T satisfies condition (E), then its fixed point set is always closed.

In the following, we will review a few things about the iterative process used in the

next section. For the beginning, we mention that in the following we will understand by S a

subset of a hyperbolic space and, on the other hand, the operator T satisfies condition (E)

and F represents the set of its fixed points.

In 2016, Sintunavarat and Pitea [23] introduced an iterative scheme in connection

with Berinde-type operators. For an arbitrary x1 ∈ S, a sequence {xn} results as output of

the following three-step procedure:
yn = (1− βn)xn + βnTxn
zn = (1− γn)xn + γnyn
xn+1 = (1− αn)Tzn + αnTyn,

(2.1)

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences in (0, 1).

This iteration (2.1) can be extended in the context of hyperbolic spaces as follows.

For an arbitrary x1 ∈ S, a sequence {xn} is generated by the iterative scheme:
yn = W (Txn, xn, βn)

zn = W (yn, xn, γn)

xn+1 = W (Tyn, T zn, αn),

(2.2)

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences in (0, 1).

Last but not least, we will recall another recently introduced condition, which will

be the basis for the generalization of convergence results. It should be noted, however, that

this definition is an adaptation of the classic one, introduced in 1974 by Senter and Dotson

[22].

Definition 2.7 ([2]). Let (X, d,W ) be a complete uniformly convex hyperbolic space, S

a nonempty subset of X and f : [0,∞) → [0,∞) a nondecreasing function. A mapping

T : S → S satisfies the condition (A) if

(i) f(a) = 0 if and only if a = 0;

(ii) f(a) > 0, for each a > 0;

(iii) d(x, Tx) ≥ f (d (x, F )), for each x ∈ S.

3. Main results

To begin with, we will present several preparatory results, useful in developing our

convergence results. In the following, by F we will denote the set of fixed points of the

operator T .
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Lemma 3.1. Let (X, d,W ) be a complete uniformly convex hyperbolic space, S a closed

nonempty convex subset of X and T : S → S an operator with the property that F 6= ∅, and

d(Tx, p) ≤ d(x, p) for any x ∈ X, and p ∈ F . If p ∈ F and the sequence {xn} is generated

by (2.2), then lim
n→∞

d(xn, p) exists.

Proof. Using Lemma 2.3 (ii), we can say that

d(yn, p) = d(W (Txn, xn, βn), p)

≤ (1− βn)d(xn, p) + βnd(Txn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p).

(3.1)

Based on (3.1), we have

ρ(zn, p) = d(W (yn, xn, γn), p)

≤ (1− γn)d(xn, p) + γnd(yn, p)

≤ (1− γn)d(xn, p) + γnd(xn, p)

= d(xn, p).

(3.2)

Using (3.1) and (3.2), we get

d(xn+1, p) = d(W (Tyn, T zn, αn), p)

≤ (1− αn)d(Tzn, p) + αnd(Tyn, p)

≤ (1− αn)d(zn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p).

(3.3)

This last inequality implies that the sequence {d(xn, p)}n is bounded and nonincreas-

ing, for any p ∈ F . So, we obtain that lim
n→∞

d(xn, p) exists, for any p ∈ F . �

Lemma 3.2. Let (X, d,W ) be a complete uniformly convex hyperbolic space, S a closed

nonempty convex subset of X and T : S → S an operator with condition (E) and with the

property that F 6= ∅. If the sequence {xn} is generated by (2.2) with {αn}, {βn}, {gamman}
bounded away from zero, then

lim
n→∞

d(xn, Txn) = 0.

Proof. First of all, take p ∈ F . According to Lemma 3.1, the limit lim
n→∞

d(xn, p) exists, for

a fixed point p of the operator T . Therefore, we can consider that

lim
n→∞

d(xn, p) = r. (3.4)

Using again Lemma 2.3 (ii), we can use that

d(Txn, p) ≤ d(xn, p)

and taking lim sup in (3.4), we have

lim sup
n→∞

d(Txn, p) ≤ r. (3.5)

But from the relation (3.1), we know that

d(yn, p) ≤ d(xn, p)

and using a procedure similar to the one above mentioned and the relationship (3.4), we

obtain
lim sup
n→∞

d(yn, p) ≤ r. (3.6)
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From relation (3.3) and Lemma 3.1, we obtain

d(xn+1, p) ≤ (1− αn)d(zn, p) + αnd(yn, p)

= (1− αn)d(W (yn, xn, γn), p) + αnd(yn, p)

≤ (1− αn)(1− γn)d(xn, p) + [(1− αn)γn + αn] d(yn, p)

= d(xn, p) + [1− (1− γn)(1− αn)] (d(yn, p)− d(xn, p)) ,

which proves that
d(xn+1, p)− d(xn, p)

1− (1− γn) (1− αn)
≤ d(yn, p)− d(xn, p).

Given these things, there exists A > 0 so that

1

A
(d(xn+1, p)− d(xn, p)) ≤

d(xn+1, p)− d(xn, p)

1− (1− γn) (1− αn)
≤ d(yn, p)− d(xn, p).

Using this last inequality and (3.4), we get

r ≤ lim inf
n→∞

d(yn, p). (3.7)

Obviously, from (3.6) and (3.7), we have

lim
n→∞

d(yn, p) = r,

and from this it follows that

lim sup
n→∞

d(W (Txn, xn, βn), p) = r. (3.8)

Finally, from (3.4), (3.5), (3.8) and using Lemma 2.2, we deduce that

lim
n→∞

d(xn, Txn) = 0,

which concludes the proof. �

Considering the previous two results, we will now be able to give a ∆-convergence

result.

Theorem 3.1. Let (X, d,W ) be a complete uniformly convex hyperbolic space, S a closed

nonempty convex subset of X and T : S → S an operator with condition (E) and with the

property that F 6= ∅. Then, the sequence {xn} generated by (2.2) with {αn}, {βn}, {γn}
bounded away from zero, ∆-converges to a point p ∈ F .

Proof. Considering the fact that the sequence {xn} is bounded, it has essentially a unique

asymptotic center

AS ({xn}) = {x0} .
On the other hand, we will consider a subsequence {un} of {xn} such that

AS ({un}) = {u0} .

Using Lemma 3.2, we get

lim
n→∞

d(un, Tun) = 0. (3.9)

Next, we will prove that u0 ∈ F .

Using the fact that the operator T satisfies the condition (E), we have

d(un, Tu0) ≤ µd(un, Tun) + d(un, u0),

for some µ ≥ 1.
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From here and using (3.9), follows that

r (Tu0, {un}) = lim sup
n→∞

d(Tu0, un)

≤ lim sup
n→∞

d(u0, un)

= r (u0, {un}) .

Given the uniqueness of the asymptotic center, we can say that Tu0 = u0 so u0 ∈
F . All that remains now is to prove that u0 is the unique asymptotic center for every

subsequence {un} of {xn} and therefore, we will assume by reductio ad absurdum that

there is another asymptotic center, which we will note v0.

From Lemma 3.1, we deduce that lim
n→∞

d(xn, u0) exists. But, on the other hand, it

can be seen that
lim sup
n→∞

d(u0, un) = lim sup
n→∞

d(v0, un)

≤ lim sup
n→∞

d(v0, xn)

≤ lim sup
n→∞

d(u0, xn)

= lim sup
n→∞

d(u0, un),

which is obviously a contradiction.

So, u0 ∈ F is the unique asymptotic center for each subsequence {un} of {xn} and

finally, we conclude that {xn} ∆ - converges in the set F . �

In the following, we will detail three results regarding the strong convergence.

Theorem 3.2. Let (X, d,W ) be a complete uniformly convex hyperbolic space, S a compact

nonempty convex subset of X and T : S → S an operator with condition (E) and with the

property that F 6= ∅. Then, the sequence {xn} generated by (2.2) with {αn}, {βn}, {γn}
bounded away from zero, converges strongly to a point p ∈ F .

Proof. In the first place, we will consider an element x ∈ S. Because S is a compact set,

we can say that there exists a subsequence, which we will note {xnk
} of the sequence {xn}

such that

lim
k→∞

d ({xnk
} , x) = 0.

Using now the fact that the operator T is part of the class of mappings with the

condition (E), we have that

d (xnk
, Tx) ≤ µd (xnk

, Txnk
) + d (xnk

, x) , (3.10)

for some µ ≥ 1.

From Lemma 3.2, we get

lim
k→∞

d ({xnk
} , T {xnk

}) = 0.

Taking the limit when k goes to ∞ in relation (3.10), it is immediately inferred that

lim
k→∞

d ({xnk
} , Tx) = 0.

Given the uniqueness of the limit for the convergent sequences, we have Tx = x,

so x ∈ F and using Lemma 3.1, one has that lim
n→∞

d(xn, x) exists, hence the conclusion is

obtained. �
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Theorem 3.3. Let (X, d,W ) be a complete uniformly convex hyperbolic space, S a closed

nonempty convex subset of X and T : S → S an operator with condition (E) and with the

property that F 6= ∅. Then, the sequence {xn} generated by (2.2) converges strongly to a

point p ∈ F if and only if

lim
n→∞

d(xn, F ) = 0.

Proof. We will first assume that the sequence {xn} converges strongly to a point p ∈ F .

From Lemma 3.1, we have

lim
n→∞

d(xn, p) = 0,

so

lim
n→∞

d(xn, F ) = 0.

The inverse implication uses the Lemma 2.3 (iii), which guarantees that the set F is

closed in S and uses arguments quite similar to Theorem 2 from [22]. �

At the end of this section, using the property (A) of the operators, we will provide

another strong convergence result.

Theorem 3.4. Let (X, d,W ) be a complete uniformly convex hyperbolic space, S a closed

nonempty convex subset of X and T : S → S an operator with condition (E) and with the

property that F 6= ∅. If, in addition, the operator T also satisfies condition (A), then the

sequence {xn} generated by (2.2) converges strongly to a point of F .

Proof. First of all, using Lemma 3.2, we get

lim inf
n→∞

d(xn, Txn) = 0. (3.11)

As T satisfies condition (A), we can write

d(xn, Txn) ≥ f (d(xn, F )) . (3.12)

From (3.11) and (3.12), we deduce

lim inf
n→∞

f (d(xn, F )) = 0

and from here it is immediately obtained that

lim inf
n→∞

d(xn, F ) = 0.

Finally, using Theorem 3.3, we can conclude that the sequence {xn} admits a strong

limit in the set F , which is what we wanted to prove. �

4. Conclusions

The objective of the paper is to introduce certain convergence results for an iterative

process in three steps, in the context of hyperbolic spaces. These results indicate two aspects:

on the one hand, the fact that the chosen iterative process is extremely versatile, can be

adapted in various situations. On the other hand, the idea that important results can be

obtained, regarding strong convergence, without too many additional conditions, fact which

represents an important point of study in the field of nonlinear analysis and fixed point

theory. Furthermore, it should be noted that this study is only a first step in the framework

given by these spaces, and can be continued in the context of the same iteration or other

iterative processes, to obtain common fixed point results. Finally, it is worth to be noted

that this can be done using other classes of operators, newly introduced.
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[26] W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Sem. Rep., 1970,

22, 142-149.

[27] B. S. Thakur, M. Postolache, Existence and approximation of solutions for generalized extended non-

linear variational inequalities, J. Inequal. Appl., 2013, Art. No. 590.

[28] B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approximating fixed points of

nonexpansive mappings, Filomat 2016, 30(10), 2711-2720.

[29] G. I. Usurelu, M. Postolache, Algorithm for generalized hybrid operators with numerical analysis and

applications, J. Nonlinear Var. Anal., 2022, 6(3), 255-277.

[30] G. I. Usurelu, T. Turcanu, M. Postolache, Algorithm for two generalized nonexpansive mappings in

uniformly convex spaces, Mathematics 2022, 10(3), Art. No. 318.

[31] Y. Yao, M. Postolache, S. M, Kang, Strong convergence of approximated iterations for asymptotically

pseudocontractive mappings, Fixed Point Theory Appl., 2014, Art. No. 100.

[32] Y. Yao, R. P. Agarwal, M. Postolache, Y.-C. Liu, Algorithms with strong convergence for the split

common solution of the feasibility problem and fixed point problem Fixed Point Theory Appl., 2014,

Art. No. 183.


