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DETERMINANTS WITH BERNOULLI POLYNOMIALS AND
THE RESTRICTED PARTITION FUNCTION

Mircea Cimpoeaş1

Let r ≥ 1 be an integer, a = (a1, . . . , ar) a vector of positive
integers and let D ≥ 1 be a common multiple of a1, . . . , ar. We study two
natural determinants of order rD with Bernoulli polynomials and we present
connections with the restricted partition function pa(n) := the number of
integer solutions (x1, . . . , xr) to

∑r
j=1 ajxj = n with x1 ≥ 0, . . . , xr ≥ 0.
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1. Introduction

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. The
restricted partition function associated to a is pa : N → N, pa(n) := the
number of integer solutions (x1, . . . , xr) of

∑r
i=1 aixi = n with xi ≥ 0. Let D

be a common multiple of a1, . . . , ar. The restricted partition function pa(n)
was studied extensively in the literature, starting with the works of Sylvester
[13] and Bell [3]. Popoviciu [10] gave a precise formula for r = 2. Recently,
Bayad and Beck [2, Theorem 3.1] proved an explicit expression of pa(n) in
terms of Bernoulli-Barnes polynomials and the Fourier Dedekind sums, in the
case that a1, . . . , ar are are pairwise coprime.

Let D be a common multiple of a1, . . . , ar. In [7], we reduced the compu-
tation of pa(n) to solving the linear congruence a1j1 + · · ·+ arjr ≡ n(mod D)
in the range 0 ≤ j1 ≤ D

a1
− 1, . . . , 0 ≤ jr ≤ D

ar
− 1. In [8], we proved that if

a determinant ∆r,D, see (2.5), which depends only on r and D, with entries
consisting in values of Bernoulli polynomials is nonzero, then pa(n) can be
computed in terms of values of Bernoulli polynomials and Bernoulli Barnes
numbers. In the second section, we outline several construction and results
from [8].
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In the third section, we study the polynomial

Fr,D(x1, . . . , xD) :=

∣∣∣∣∣∣∣∣∣∣

B1(x1)
1 · · · B1(xD)

1 · · · Br(x1)
r · · · Br(xD)

r
B2(x1)

2 · · · B2(xD)
2 · · · Br+1(x1)

r+1 · · · Br+1(xD)
r+1

...
...

...
...

...
...

...
BrD(x1)
rD · · · BrD(xD)

rD · · · BrD+r−1(x1)
rD+r−1 · · · BrD+r−1(xD)

rD+r−1

∣∣∣∣∣∣∣∣∣∣
,

which is related to ∆r,D by the identity

∆r,D = (−1)
rD(rD+r)

2 D
rD(rD+r−2)

2 · Fr,D(
D − 1

D
, . . . ,

1

D
, 0).

In Theorem 3.1 we prove that

F1,D(x1, . . . , xD) =
1

D!

∏
1≤i<j≤D

(xj − xi)
D∑
t=0

(−1)t
ED,D−t(x1, . . . , xD)

t+ 1
,

where ED,0(x1, . . . , xD) = 1, ED,1(x1, . . . , xD) = x1+· · ·+xD etc. are the elementary
symmetric polynomials. In Proposition 3.3, we prove that

Fr,D(x1, . . . , xD) =
∏

1≤i<j≤D
(xj − xi)r ·Gr,D(x1, . . . , xD),

where Gr,D(x1, . . . , xD) is a symmetric polynomial, hence ∆r,D 6= 0 if and only if

Gr,D(D−1D , . . . , 0) 6= 0.
In the last section, we propose another approach to the initial problem, studied

in [8], of computing pa(n) in terms of values of Bernoulli polynomials and Bernoulli
Barnes numbers. In formula (4.3) we show that

D−1∑
v=0

(−D)mda,m(v) =
(−1)r−1Dm+1

m!(r − 1−m!)
Br−1−m(a), (∀)0 ≤ m ≤ r − 1.

Seeing da,m(v)’s as indeterminates and considering also the identities

r−1∑
m=0

D∑
v=1

da,m(v)Dn+mBn+m+1(
v
D )

n+m+ 1
=

(−1)r−1n!

(n+ r)!
Br+n(a)−δ0n, (∀)0 ≤ n ≤ rD−r−1,

we obtain a system of rD linear equations with a determinant ∆̄r,D. In Remark 4.1
we note that if ∆̄r,D 6= 0, then da,m(v), 0 ≤ m ≤ r − 1, 1 ≤ v ≤ D, are the unique
solutions of the above system. We consider the polynomial F̄r,D ∈ Q[x1, . . . , xD]
defined by

F̄r,D(x1, . . . , xD) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
0 · · · 0 · · · 1 · · · 1

B1(x1) · · · B1(xD) · · · Br(x1)
r · · · Br(xD)

r
...

...
...

...
...

BrD−r(x1)
rD−r · · · BrD−r(xD)

rD−r · · · BrD−1(x1)
rD−1 · · · BrD−1(xD)

rD−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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We have that ∆̄r,D = (−D)D(r2)+(rD−r
2 )F̄r,D(D−1D , . . . , 1

D , 0). In formula (4.9) we
show that

F̄r,D(x1, . . . , xD) = (−1)(D+1)(r2)

 ∏
1≤i<j≤D

(xj − xi)r
Gr,D(x1, . . . , xD),

where Gr,D is a symmetric polynomial with degGr,D ≤ r
(
rD−r

2

)
+D

(
r
2

)
− r
(
D
2

)
.

Using the methods of Olson [9], in Proposition 4.1 we prove that for any D ≥ 1
we have

(1) F1,D(x1, . . . , xD) =
1

(D − 1)!

∏
1≤i<j≤D

(xj − xi), (2) ∆̄1,D =
1!2! · · · (D − 2)!

(−D)D
.

By our computer experiments in Singular [6], we expect that the following formula
holds

F̄r,2(x1, x2) = (−1)(
r
2)

[1!2! · · · (r − 1)!]3

r!(r + 1)! · · · (2r − 1)!
(x2−x1)r

r−1∏
j=0

((x2−x1)2−j2)r−j , (∀)r ≥ 1,

some justifications being noted in Remark 4.2. Also, we propose a formula for F̄2,D,
see Conjecture 4.2, but we are unable to “guess” a formula for F̄r,D in general.

2. Preliminaries

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. The re-
stricted partition function associated to a is pa : N→ N,

pa(n) := #{(x1, . . . , xr) ∈ Nr :
r∑
i=1

aixi = n}, (∀)n ≥ 0.

Let D be a common multiple of a1, . . . , ar. Bell [3] has proved that pa(n) is a
quasi-polynomial of degree r − 1, with the period D, i.e.

pa(n) = da,r−1(n)nr−1 + · · ·+ da,1(n)n+ da,0(n), (∀)n ≥ 0, (2.1)

where da,m(n + D) = da,m(n), (∀)0 ≤ m ≤ r − 1, n ≥ 0, and da,r−1(n) is not
identically zero. The Barnes zeta function associated to a and w > 0 is

ζa(s, w) :=

∞∑
n=0

pa(n)

(n+ w)s
, Re s > r,

see [1] and [12] for further details. It is well known that ζa(s, w) is meromorphic on
C with poles at most in the set {1. . . . , r}. We consider the function

ζa(s) := lim
w↘0

(ζa(s, w)− w−s). (2.2)

In [7, Lemma 2.6] we proved that

ζa(s) =
1

Ds

r−1∑
m=0

D∑
v=1

da,m(v)Dmζ(s−m, v
D

), (2.3)
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where ζ(s, w) :=
∑∞

n=0
1

(n+w)s , Re s > 1, is the Hurwitz zeta function. The Bernoulli

numbers Bj are defined by

z

ez − 1
=

∞∑
j=0

Bj
zj

j!
,

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 and Bn = 0 if n is odd and greater than 1.

The Bernoulli polynomials are defined by

zexz

(ez − 1)
=

∞∑
n=0

Bn(x)
zn

n!
.

They are related with the Bernoulli numbers by

Bn(x) =
n∑
k=0

(
n

k

)
Bn−kx

k.

The Bernoulli-Barnes polynomials are defined by

zrexz

(ea1z − 1) · · · (earz − 1)
=

∞∑
j=0

Bj(x;a)
zj

j!
.

The Bernoulli-Barnes numbers are defined by

Bj(a) := Bj(0;a) =
∑

i1+···+ir=j

(
j

i1, . . . , ir

)
Bi1 · · ·Bira

i1−1
1 · · · air−1r .

In [8, Formula (2.9)] we proved that

r−1∑
m=0

D∑
v=1

da,m(v)Dn+mBn+m+1(
v
D )

n+m+ 1
=

(−1)r−1n!

(n+ r)!
Br+n(a)− δ0n, (∀)n ∈ N, (2.4)

where δ0n =

{
1, n = 0,

0, n ≥ 1
is the Kronecker symbol. Given values 0 ≤ n ≤ rD − 1 in

(1.9) and seeing da,m(v)’s as indeterminates, we obtain a system of linear equations
with the determinant ∆r,D :=∣∣∣∣∣∣∣∣∣∣∣

B1(
1
D )

1 · · · B1(1)
1 · · · Dr−1Br(

1
D )

r · · · Dr−1Br(1)
r

D
B2(

1
D )

2 · · · DB2(1)
2 · · · Dr Br+1(

1
D )

r+1 · · · Dr Br+1(1)
r+1

...
...

...
...

...
...

...

DrD−1BrD( 1
D )

rD · · · DrD−1BrD(1)
rD · · · DrD+r−2BrD+r−1(

1
D )

rD+r−1 · · · DrD+r−2BrD+r−1(1)
rD+r−1

∣∣∣∣∣∣∣∣∣∣∣
(2.5)

Using basic properties of determinants and the fact that

Bn(1− x) = (−1)nBn(x) for all n ≥ 0,
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it follows that

∆r,D = C ·

∣∣∣∣∣∣∣∣∣∣

B1(
D−1
D

)

1
· · · B1(0)

1
· · · Br(

D−1
D

)

r
· · · Br(0)

r
B2(

D−1
D

)

2
· · · B2(0)

2
· · · Br+1(

D−1
D

)

r+1
· · · Br+1(0)

r+1
...

...
...

...
...

...
...

BrD(D−1
D

)

rD
· · · BrD(0)

rD
· · · BrD+r−1(

D−1
D

)

rD+r−1 · · · BrD+r−1(0)

rD+r−1

∣∣∣∣∣∣∣∣∣∣
, (2.6)

where C = (−1)
rD(rD+r)

2 D
rD(rD+r−2)

2 .

Proposition 2.1. (See [8, Proposition 2.1] and [8, Corollary 2.2])
With the above notations, if ∆r,D 6= 0, then

da,m(v) =
∆m,v
r,D

∆r,D

, (∀)1 ≤ v ≤ D, 0 ≤ m ≤ r − 1,

where ∆m,v
r,D is the determinant obtained from ∆r,D, as defined in (2.5), by re-

placing the (mD+v)-th column with the column ( (−1)
r−1n!

(n+r)!
Bn+r(a)−δn0)0≤n≤rD−1.

Consequently,

pa(n) =
1

∆r,D

r−1∑
m=0

∆m,v
r,Dn

m, (∀)n ∈ N.

Proof. The first part follows from the Cramer rule applied to the system (2.4).
The second part is a consequence of the first part and (2.1). �

Remark 2.1. In [8] it was conjectured that ∆r,D 6= 0 for any r,D ≥ 1. An
affirmative answer was given in the case r = 1, r = 2 and D = 1. In the general
case, an equivalent form was given in [8, Corollary 2.14], which reduced the
problem to show that a r × r determinant is non zero. In the next section we
tackle this problem from another point of vue, by studying a polynomial Fr,D
is D indeterminates with the property that ∆r,D = Fr,D(D−1

D
, . . . , 1

D
, 0).

3. Determinants with Bernoulli polynomials

Let r,D ≥ 1 be two integers. We consider the polynomial

Fr,D(x1, . . . , xD) :=

∣∣∣∣∣∣∣∣∣∣

B1(x1)
1 · · · B1(xD)

1 · · · Br(x1)
r · · · Br(xD)

r
B2(x1)

2 · · · B2(xD)
2 · · · Br+1(x1)

r+1 · · · Br+1(xD)
r+1

...
...

...
...

...
...

...
BrD(x1)
rD · · · BrD(xD)

rD · · · BrD+r−1(x1)
rD+r−1 · · · BrD+r−1(xD)

rD+r−1

∣∣∣∣∣∣∣∣∣∣
(3.1)

According to (2.6) and (3.1), using the notations from the previous section, we have
that

∆r,D = (−1)
rD(rD+r)

2 D
rD(rD+r−2)

2 · Fr,D(
D − 1

D
, . . . ,

1

D
, 0). (3.2)
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Lemma 3.1. For any r ≥ 1 we have that

∆ :=

∣∣∣∣∣∣∣∣∣
1 1

2 · · · 1
r

1
2

1
3 · · · 1

r+1
...

...
. . .

...
1
r

1
r+1 · · · 1

2r−1

∣∣∣∣∣∣∣∣∣ =
[1!2! · · · (r − 1)!]3

r!(r + 1)! · · · (2r − 1)!
.

Proof. We let

∆` :=

∣∣∣∣∣∣∣∣∣∣

r!
`

r!
`+1 · · · r!

r
(r+1)!
`+1

(r+1)!
`+2 · · · (r+1)!

r+1
...

...
. . .

...
(2r−`)!

r
(2r−`)!
r+1 · · · (2r−`)!

2r−`

∣∣∣∣∣∣∣∣∣∣
.

Note that ∆ = r!(r + 1)! · · · (2r − 1)!∆1. We have ∆r = (r − 1)!. For 1 ≤ ` < r, we
have

∆` = (r − 1)!

∣∣∣∣∣∣∣∣∣∣

r!
` · · · r!

r−1 1
(r+1)!
`+1 · · · (r+1)!

r
r!

(r−1)!
...

...
. . .

...
(2r−`)!

r · · · (2r−`)!
2r−`−1

(2r−`−1)!
(r−1)!

∣∣∣∣∣∣∣∣∣∣
.

Multiplying the first line accordingly and adding to the next lines in order to obtain
zeroes on the last column, it follows that

∆` = (r − `)! det
(
k(r+k−1)!(r−s)

s+k

)
`≤s≤r−1
1≤k≤r−`

=

= (r − 1)! ((r−`)!)
2

`···(r−1) ∆`+1 = ((r − `)!)2`!∆`+1,

hence the induction step is complete. �

Proposition 3.1. We have that

Fr,1(x) =
[1!2! · · · (r − 1)!]3

r!(r + 1)! · · · (2r − 1)!
xr

2
+ terms of lower degree.

Proof. We have Bn(x) = xn+ terms of lower order, hence the result follows from
Lemma 3.1. �

Proposition 3.2. For r = 1 and D ≥ 1 we have that:

(1) There exists a symetric polynomial G1,D(x1, . . . , xD) of degree D such that

F1,D(x1, . . . , xD) =
∏

1≤i<j≤D
(xj − xi)G1,D(x1, . . . , xD).

(2) G1,D(x1, . . . , xD) = 1
D!x1x2 · · ·xD+ terms of lower degree.

(3) G1,D(0, . . . , 0) = (−1)D
(D+1)! .

Proof. (1) From (3.1) it follows that

F1,D(x1, . . . , xD) =
1

D!

∣∣∣∣∣∣∣∣∣
B1(x1) B1(x2) · · · B1(xD)
B2(x1) B2(x2) · · · B2(xD)

...
...

...
...

BD(x1) BD(x2) · · · BD(xD)

∣∣∣∣∣∣∣∣∣ . (3.3)
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Moreover, for any permutation σ ∈ SD, we have that

F1,D(xσ(1), . . . , xσ(D)) = ε(σ)F1,D(x1, . . . , xD). (3.4)

Since

(xj − xi)|B`(xj)−B`(xi), (∀)1 ≤ ` ≤ D, 1 ≤ i < j ≤ D,
from (3.3) and (3.4) it follows that

F1,D(x1, . . . , xD) = G1,D(x1, . . . , xD) ·
∏

1≤i<j≤D
(xj − xi), (3.5)

where G1,D ∈ Q[x1, . . . , xD] is a symmetrical polynomial of degree D.
(2) The homogeneous component of highest degree of F1,D is

1

D!

∣∣∣∣∣∣∣∣∣
x1 x2 · · · xD
x21 x22 · · · x2D
...

...
...

...
xD1 xD2 · · · xDD

∣∣∣∣∣∣∣∣∣ =
x1 · · ·xD

D!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x1 x2 · · · xD
...

...
...

...

xD−11 xD−12 · · · xD−1D

∣∣∣∣∣∣∣∣∣ =
x1 · · ·xD

D!

∏
1≤i<j≤D

(xj−xi),

hence G1,D(x1, . . . , xD) = 1
D!
x1 · · ·xD+ terms of lower order.

(3) For any integers j ≥ 0 and 1 ≤ n ≤ D, we let

Lj(x1, . . . , xn) := the sum of all monomials of degree j in x1, . . . , xn,

i.e. L1(x1, . . . , xn) = x1 + · · · + xn, L2(x1, . . . , xn) = x21 + · · · + x2n + x1x2 +
· · ·+ xn−1xn, etc. It is easy to check that

Lj(x1, . . . , xn−2, xn)− Lj(x1, . . . , xn−1) = (xn − xn−1)Lj−1(x1, . . . , xn). (3.6)

We let

B`(x1, xk) :=
Bj(xk)−Bj(x1)

xk − x1
, (∀)1 < k ≤ D, ` ≥ 1.

Inductively, for 1 < j ≤ k ≤ D and ` ≥ 1, we define

B`(x1, . . . , xj−1, xk) :=
B`(x1, . . . , xj−2, xk)−B`(x1, . . . , xj−1)

xk − xj−1
. (3.7)

We prove by induction on j ≥ 1 that

B`(x1, . . . , xj−1, xk) =

`−j+1∑
t=0

(
`

t+ j − 1

)
B`−j+1−tLt(x1, . . . , xj−1, xk), (∀)1 ≤ ` ≤ D.

(3.8)

Indeed, since B`(x) =
∑`

t=0

(
`
t

)
B`−tx

t, it follows that (3.8) holds for j = 1. Now,
assume that j ≥ 2. From the induction hypothesis, (3.7), (3.6) and (3.8) it follows
that

B`(x1, . . . , xj−1, xk) =
∑`−j+2

t=1

(
`

t+j−2
)
B`−j+2−t ·

Lt(x1,...,xj−2,xk)−Lt(x1,...,xj−1)
xk−xj−1

=

=
∑`−j+2

t=1

(
`

t+j−2
)
B`−j+2−tLt−1(x1, . . . , xj−1, xk) =

=
∑`−j+1

t=0

(
`

t+j−1
)
B`−j+1−tLt(x1, . . . , xj−1, xk),
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hence the induction step is complete. Using standard properties of determi-
nants, from (3.3) it follows that

F1,D(x1, . . . , xD) =
1

D!

∏
2≤j≤D

(xj − x1)

∣∣∣∣∣∣∣∣∣
B1(x1) 1 · · · 1
B2(x1) B2(x1, x2) · · · B2(x1, xD)

...
...

...
...

BD(x1) BD(x1, x2) · · · BD(x1, xD)

∣∣∣∣∣∣∣∣∣ =

= · · · = 1

D!

∏
1≤i<j≤D

(xj − xi)

∣∣∣∣∣∣∣∣∣
B1(x1) B1(x1, x2) · · · B1(x1, . . . , xD)
B2(x1) B2(x1, x2) · · · B2(x1, . . . , xD)

...
...

...
...

BD(x1) BD(x1, x2) · · · BD(x1, . . . , xD)

∣∣∣∣∣∣∣∣∣ , (3.9)

hence the last determinant is D! ·GD(x1, . . . , xD). Note that (3.8) implies that

B`(x1, . . . , xj) = 0, (∀)1 ≤ ` ≤ j−2 ≤ D−2, B`(x1, . . . , x`+1) = 1, (∀)1 ≤ ` ≤ D−1.
(3.10)

From (3.9) and (3.10) it follows that F1,D(x1, . . . , xD) = 1
D!

∏
1≤i<j≤D(xj−xi)·

·

∣∣∣∣∣∣∣∣∣∣∣

B1(x1) 1 0 · · · 0
B2(x1) B2(x1, x2) 1 · · · 0

...
...

...
. . .

...
BD−1(x1) BD−1(x1, x2) · · · BD−1(x1, . . . , xD−1) 1
BD(x1) BD(x1, x2) · · · BD(x1, . . . , xD−1) BD(x1, . . . , xD)

∣∣∣∣∣∣∣∣∣∣∣
. (3.11)

Also, from (3.8), we have B`(0, . . . , 0) =
(

`
j−1

)
B`−j+1, hence, from (3.5) and

(3.11), we get

MD := D!G1,D(0, . . . , 0) =

∣∣∣∣∣∣∣∣∣∣∣

B1 1 0 · · · 0
B2

(
2
1

)
B1 1 · · · 0

...
...

...
. . .

...
BD−1

(
D−1
1

)
BD−2 · · ·

(
D−1
D−2

)
B1 1

BD

(
D
1

)
BD−1 · · ·

(
D
D−2

)
B2

(
D
D−1

)
B1

∣∣∣∣∣∣∣∣∣∣∣
.

(3.12)
Since MD is the determinant of a lower Hessenberg matrix, according to [4,
pag.222,Theorem], we have the recursive relation

MD =

(
D

D − 1

)
B1MD−1 +

D−1∑
`=1

(−1)D−`
(

D

D + 1− `

)
BD+1−`M`−1, (∀)D ≥ 1,

(3.13)
where M0 := 1. We prove that

MD =
(−1)D

D + 1
, (∀)D ≥ 1, (3.14)

using induction on D ≥ 1. For D = 1 we have M1 = B1 = −1
2
, hence the

(3.14) holds. If D ≥ 2 then from induction hypothesis and (3.14) it follows
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that

MD = (−1)D−1B1 +

D−1∑
`=1

(−1)D−`

(
D

D − `+ 1

)
BD+1−`

(−1)`−1

`
= (−1)D−1

D∑
`=1

1

`

(
D

`− 1

)
BD+1−`.

(3.15)

Since
(
D+1
`

)
= D+1

`

(
D
`−1

)
, (∀)1 ≤ ` ≤ D, from (3.15) it follows that

MD =
(−1)D−1

D + 1

D∑
`=1

(
D + 1

`

)
BD+1−` =

(−1)D−1

D + 1

(
D+1∑
`=1

(
D + 1

`

)
BD+1−` − 1

)
(3.16)

On the other hand
∑D+1

`=1

(
D+1
`

)
BD+1−` = BD+1(1) − BD+1(0) = 0, hence

(3.16) completes the induction step. Therefore, we proved (3.14) and thus

GD(0, . . . , 0) = (−1)D
(D+1)!

, as required. �

For any integer n ≥ 1, we denote En,0(x1, . . . , xn) := 1, En,1(x1, . . . , xn) :=
x1 + · · ·+xn, . . . , En,n(x1, . . . , xn) := x1x2 · · ·xn, the elementary symmetric polyno-
mials in Q[x1, . . . , xn].

Theorem 3.1. With the above notations, we have that

F1,D(x1, . . . , xD) =
1

D!

∏
1≤i<j≤D

(xj − xi)
D∑
t=0

(−1)t
ED,D−t(x1, . . . , xD)

t+ 1
.

Proof. We use induction on D ≥ 1. For D = 1 we have

F1,1(x1) = B1(x) = x1 −
1

2
= E1,1(x1)−

E1,0(x1)

2
,

hence the required formula holds. For D ≥ 2, from (3.3) it follows that

F1,D(x1, . . . , xD) =
1

D

D∑
k=1

(−1)D+kBD(xk)F1,D−1(x1, . . . , x̂k, . . . , xD), (3.17)

where x̂k means that the variable xk is omitted. From the induction hypothesis and
(3.17) it follows that F1,D(x1, . . . , xD) =

=
1

D!

D∑
k=1

(−1)D+kBD(xk)
∏

1≤i<j≤D
i,j 6=k

(xj−xi)
D−1∑
`=0

(−1)`
ED−1,D−1−`(x1, . . . , x̂k, . . . , xD)

`+ 1
.

(3.18)

The relation (3.18) is equivalent to
D!F1,D(x1,...,xD)∏
1≤i<j≤D(xj−xi) =

=

D∑
k=1

(−1)D−1
1∏

j 6=k(xj − xk)
BD(xk)

D−1∑
`=0

(−1)`
ED−1,D−1−`(x1, . . . , x̂k, . . . , xD)

`+ 1
.

(3.19)
From (3.19), in order to complete the proof it is enough to show that
D∑
t=0

(−1)t
ED,D−t(x1, . . . , xD)

t+ 1
=

D∑
k=1

D−1∑
`=0

(−1)D−1−`BD(xk)ED−1,D−1−`(x1, . . . , x̂k, . . . , xD)

(`+ 1)
∏

j 6=k(xj − xk)
.

(3.20)
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Since BD(xk) =
∑D

s=0

(
D
s

)
BD−sx

s, it follows that (3.20) is equivalent to

(−1)t
ED,D−t(x1, . . . , xD)

t+ 1
=

D∑
k=1

min{t,D−1}∑
`=0

(−1)D−1−`
(

D
t−`

)
Bt−`x

D−t+`
k ED−1,D−1−`(x1, . . . , x̂k, . . . , xD)

(`+ 1)
∏

j 6=k(xj − xk)
,

(3.21)

for any 0 ≤ t ≤ D. Since, by Proposition 3.2(3), we have that

D!F1,D(x1, . . . , xD)∏
1≤i<j≤D(xj − xi)

|x1=···=xD=0 =
(−1)D

D + 1
=

(−1)DED,0(x1, . . . , xD)

D + 1
,

it is enough to prove (3.21) for 0 ≤ t ≤ D−1. Similarly, by Proposition 3.2(2)
we can dismiss the case t = 0. Assume in the following that 1 ≤ t ≤ D − 1.
As the both sides in (3.21) are symmetric polynomials, it is enough to prove
that (3.21) holds when we evaluate it in xD−t+1 = · · · = xD = 0. Moreover, in
this case, ED−1,D−1−`(x1, . . . , x̂k, . . . , xD) = 0 for any ` < t. Therefore, (3.21)
is equivalent to

(−1)t
x1 · · · xD−t
t+ 1

=
D−t∑
k=1

(−1)txDk x1 · · · x̂k · · · xD−t
(t+ 1)

∏
j 6=k, j≤D−t(xk − xj)xtk

,

hence it is equivalent to
∑D−t

k=1

xD−t−1
k∏

j 6=k, j≤D−t(xk−xj)
= 1, which can be easily proved

by expanding a Vandermonde determinant of order D − t. �

Corollary 3.1. We have that

∆1,D = (−1)
D(D+1)

2
(D − 1)!(D − 2)! · · · 1!

D!

D∑
t=0

(−1)t
ED,D−t(

D−1
D , . . . , 1

D , 0)

t+ 1
.

Proof. From (3.2) and Theorem 3.1 it follows that

∆1,D = (−1)
D(D+1)

2 D
D(D−1)

2
1

D!

∏
1≤i<j≤D

(
j − i
D

) D∑
t=0

(−1)t
ED,D−t(

D−1
D , . . . , 1

D , 0)

t+ 1
.

(3.22)
On the other hand ∏

1≤i<j≤D

(
j − i
D

)
=

(D − 1)!(D − 2)! · · · 1!

D
D(D−1)

2

, (3.23)

hence, from (3.22) and (3.23) we get the required result. �

Unfortunately, in the general, it seems to be very difficult to give an exact
formula for Fr,D(x1, . . . , xD). We prove the following generalization of Proposition
3.2(1):

Proposition 3.3. For any integers r,D ≥ 1, there exists a symmetric polynomial
Gr,D of degree ≤ r2

(
D+1
2

)
− r
(
D
2

)
such that

Fr,D(x1, . . . , xD) =
∏

1≤i<j≤D
(xj − xi)rGr,D(x1, . . . , xD),
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where, with the notations from (3.7), we have that Gr,D(x1, . . . , xD) =

=

∣∣∣∣∣∣∣∣∣∣

B1(x1)
1 · · · B1(x1,...,xD)

1 · · · Br(x1)
r · · · Br(x1,...,xD)

r
B2(x1)

2 · · · B2(x1,...,xD)
2 · · · Br+1(x1)

r+1 · · · Br+1(x1,...,xD)
r+1

...
...

...
...

...
...

...
BrD(x1)
rD · · · BrD(x1,...,xD)

rD · · · BrD+r−1(x1)
rD+r−1 · · · BrD+r−1(x1,...,xD)

rD+r−1

∣∣∣∣∣∣∣∣∣∣
.

Proof. Using standard properties of determinants, as in the proof of formula (3.9),
we get the required decomposition. The fact that Gr,D(x1, . . . , xD) is symmetric
follows from the identity Fr,D(xσ(1), . . . , xσ(D)) = ε(σ)rFr,D(x1, . . . , xr), (∀)σ ∈ SD
and the decomposition Fr,D(x1, . . . , xD) =

∏
1≤i<j≤D(xj−xi)rGr,D(x1, . . . , xD). �

4. An approach to compute pa(n)

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, r ≥ 1. Let D be a
common multiple of a1, . . . , ar. Using the notations and definitions from the second
section, according to [7, Proposition 2.4] and (2.3), the function ζa(s) is meromorphic
in the whole complex plane with poles at most in the set {1, . . . , r} which are all
simple with residues

Rm+1 = Ress=m+1ζa(s) =
1

D

D−1∑
v=0

da,m(v), (∀)0 ≤ m ≤ r − 1. (4.1)

On the other hand, according to [7, Theorem 2.10] or [11, Formula (3.9)] and (2.2),
we have that

Rm+1 =
(−1)r−1−m

m!(r − 1−m!)
Br−1−m(a1, . . . , ar), (∀)0 ≤ m ≤ r − 1. (4.2)

It follows that

D−1∑
v=0

(−D)mda,m(v) =
(−1)r−1Dm+1

m!(r − 1−m!)
Br−1−m(a), (∀)0 ≤ m ≤ r − 1. (4.3)

On the other hand, from (2.4) it follows that

r−1∑
m=0

D∑
v=1

da,m(v)Dn+mBn+m+1(
v
D )

n+m+ 1
=

(−1)r−1n!

(n+ r)!
Br+n(a)−δ0n, (∀)0 ≤ n ≤ rD−r−1.

(4.4)
If we see da,m(v) as indeterminates, (4.3) and (4.4) form a system of linear equations
with the determinant ∆̄r,D :=

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
0 · · · 0 · · · (−D)r−1 · · · (−D)r−1

B1( 1
D ) · · · B1(1) · · · Dr−1Br(

1
D )

r · · · Dr−1Br(1)
r

...
...

...
...

...
DrD−r−1BrD−r(

1
D )

rD−r · · · DrD−r−1BrD−r(1)
rD−r · · · DrD−2BrD−1(

1
D )

rD−1 · · · DrD−2BrD−1(1)
rD−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(4.5)
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From (4.5) and the identity Bn(1− x) = (−1)nBn(x) it follows that

∆̄r,D = (−D)D(r
2)+(rD−r

2 )·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
0 · · · 0 · · · 1 · · · 1

B1(D−1
D ) · · · B1(0) · · · Br(

D−1
D )

r · · · Br(0)
r

...
...

...
...

...
BrD−r(

D−1
D )

rD−r · · · BrD−r(0)
rD−r · · · BrD−1(

D−1
D )

rD−1 · · · BrD−1(0)
rD−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(4.6)

Remark 4.1. Similarly to Proposition 2.1, if ∆̄r,D 6= 0, then da,m(v), 0 ≤
m ≤ r − 1, 1 ≤ v ≤ D are the solutions of the system of linear equations
consisting in (4.3) and (4.4).

Now, we consider the polynomial F̄r,D ∈ Q[x1, . . . , xD] defined as

F̄r,D(x1, . . . , xD) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
0 · · · 0 · · · 1 · · · 1

B1(x1) · · · B1(xD) · · · Br(x1)
r · · · Br(xD)

r
...

...
...

...
...

BrD−r(x1)
rD−r · · · BrD−r(xD)

rD−r · · · BrD−1(x1)
rD−1 · · · BrD−1(xD)

rD−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.7)

From (4.6) and (4.7) it follows that

∆̄r,D = (−D)D(r
2)+(rD−r

2 )F̄r,D(
D − 1

D
, . . . ,

1

D
, 0). (4.8)

Note that if D = 1 then (4.5) and (4.7) implies

∆̄r,1 = (−D)(
r
2) and F̄r,1(x1, . . . , xr) = 1,

therefore, in the following we assume D ≥ 2.
Using elementary operations in (4.7) and the notations (3.7) it follows

that (−1)(D+1)(r
2)F̄r,D(x1, . . . , xD) =

=
∏

2≤j≤D

(xD−x1)r

∣∣∣∣∣∣∣∣
B1(x1, x2) · · · B1(x1, xD) · · · Br(x1,x2)

r · · · Br(x1,xD)
r

...
...

...
...

BrD−r(x1,x2)
rD−r · · · BrD−r(x1,xD)

rD−r · · · BrD−1(x1,x2)
rD−1 · · · BrD−1(x1,xD)

rD−1

∣∣∣∣∣∣∣∣ =

∏
1≤i<j≤D

(xj−xi)r

∣∣∣∣∣∣∣∣
B1(x1, x2) · · · B1(x1, . . . , xD) · · · Br(x1,x2)

r · · · Br(x1,...,xD)
r

...
...

...
...

BrD−r(x1,x2)
rD−r · · · BrD−r(x1,...,xD)

rD−r · · · BrD−1(x1,x2)
rD−1 · · · BrD−1(x1,...,xD)

rD−1

∣∣∣∣∣∣∣∣
(4.9)

We denote the last determinant in (4.9) with Ḡr,D(x1, . . . , xD) and we note
that Ḡr,D is a symmetric polynomial with

deg(Ḡr,D) ≤ r

(
rD − r

2

)
+D

(
r

2

)
− r
(
D

2

)
.
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Proposition 4.1. For any D ≥ 2 we have that

(1) F1,D(x1, . . . , xD) =
1

(D − 1)!

∏
1≤i<j≤D

(xj − xi), (2) ∆̄1,D =
1!2! · · · (D − 2)!

(−D)D
.

Proof. (1) Using the method from [9, Page 262], we get

F̄1,D(x1, . . . , xD) =
1

(D − 1)!

∣∣∣∣∣∣∣∣
1 · · · 1

B1(x1) · · · B1(xD)
...

...
...

BD−1(x1) · · · BD−1(xD)

∣∣∣∣∣∣∣∣ =

=
1

D!

∣∣∣∣∣∣∣∣∣
B0 0 · · · 0(
2
1

)
B1 B0 · · · 0
...

...
...

...(
D−1
1

)
BD−1

(
D−1
2

)
B2 · · · B0

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 · · · 1
x1 · · · xD
...

...
...

xD−11 · · · xD−1D

∣∣∣∣∣∣∣∣∣ =
1

(D − 1)!

∏
1≤i<j≤D

(xj − xi).

(4.10)

(2) The last identity follows from (1), (4.8) and (4.9). �

Remark 4.2. For D = 2, according to (4.9) we have that

F̄r,2(x1, x2) = (−1)(
r
2)(x2 − x1)rḠr,2(x1, x2), where (4.11)

Ḡr,2(x1, x2) =

∣∣∣∣∣∣∣
B1(x1, x2)

B2(x1,x2)
2

· · · Br(x1,x2)
r

...
...

...
...

Br(x1,x2)
r

Br+1(x1,x2)
r+1

· · · B2r−1(x1,x2)
2r−1

∣∣∣∣∣∣∣ . (4.12)

On the other hand, according to (3.8), we have that

Bk(x1, x2) =
k−1∑
t=0

(
k

t+ 1

)
Bk−1−t

t∑
s=0

xt−s1 xt2, (∀)1 ≤ k ≤ 2r − 1. (4.13)

In particular, from (4.12) and (4.13) it follows that

Ḡr,2(x1, 0) =

∣∣∣∣∣∣∣
1 x1

2
· · · xr−1

r
...

...
...

...
xr−1
1

r

xr1
r+1

· · · x2r−2
1

2r−1

∣∣∣∣∣∣∣+ terms of lower degree. (4.14)

From Lemma 3.1 and (4.14) it follows that

Ḡr,2(x1, 0) =
[1!2! · · · (r − 1)!]3

r!(r + 1)! · · · (2r − 1)!
x
r(r−1)
1 + terms of lower degree.

Our computer experiments in Singular [6] and Remark 4.2 yield us to
the following:

Conjecture 4.1. For any r ≥ 1, it holds that

F̄r,2(x1, x2) = (−1)(
r
2) [1!2! · · · (r − 1)!]3

r!(r + 1)! · · · (2r − 1)!
(x2 − x1)r

r−1∏
j=0

((x2 − x1)2 − j2)r−j.
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We checked Conjecture 4.1 for r ≤ 4 and we believe that the formula
holds in general. Our computer experiments in Singular [6] yield us to:

Conjecture 4.2. For any D ≥ 2, it holds that

F̄2,D(x1, . . . , xD) = K(D)
∏

1≤i<j≤D

(xj − xi)2
∑

1≤i<j≤D

((xj − xi)2 − 1),

where K(D) ∈ Q. Moreover, K(D) 6= 0, hence ∆̄2,D 6= 0.

We checked Conjecture 4.2 for D ≤ 4 and we believe it is true in general.
Unfortunately, we are not able to “guess” a general formula for F̄r,D, the
situation being difficult even for D = r = 3 as Ḡ3,3 is an irreducible polynomial
of degree 18.
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