U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 2, 2025 ISSN 2286-3540

DECISION FUSION OF SYMMETRICALLY TRAINED CNN
CLASSIFIERS FOR DIAGNOSIS OF CHEST CT IMAGES

Gabriela-Loredana GHENEA!, Victor-Emil NEAGOE?

This paper is dedicated to decision fusion of an ensemble of M symmetrically
trained Convolutional Neural Network (CNN) classifiers with identical architectures
for chest CT image diagnosis corresponding to K classes. There are considered two
decision fusion algorithms: Dempster Fusion theory versus net maximization. The
experiments use Covid-19&Normal&Pneumonia_CT_image Kaggle dataset. This
choice corresponds to decision fusion algorithm implementation for K=3 classes and
M=1[2,3,4,5,6, 7] CNN classifier modules. The advantage of the proposed decision
fusion method as reference to a standalone classifier is obvious, leading to an average
accuracy improvement of about 2.70%. Regarding the comparison of the two decision
fusion algorithms, the D-S method obtains a slightly better accuracy than the net
maximization.

Keywords: convolutional neural networks (CNNSs), decision fusion, Dempster-
Shafer theory, net maximization, chest CT image classification,
pneumonia and COVID-19 diagnosis.

1. Introduction

The global COVID-19 pandemic came with a need for rapid and accurate
diagnostic tools. Therefore, the use of convolutional neural networks (CNNs) for
classifying chest CT images has shown significant promise. This paper explores an
innovative approach that takes advantage of the power of M CNN architectures,
combining their strengths to enhance the accuracy of chest CT images diagnosis,
distinguishing between COVID-19, pneumonia and normal cases.

Currently, research in this field provides numerous studies demonstrating
the effectiveness of CNNs in medical image analysis. Recent work has focused on
optimizing network architectures, improving data preprocessing techniques, and
integrating a metric-based approach to refine diagnostic capabilities [1][2][3].
Despite these advancements, challenges such as overfitting and data generalization
remain the subject of future research.
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The purpose of this paper is to address these challenges by proposing a
fusion model between the outputs of M classifiers that can distinguish between K
classes by applying either Dempster-Shafer theory or Net-Maximization
techniques. This fusion aims to exploit the strengths of each network, thereby
improving diagnostic accuracy and robustness. Previous papers have addressed this
area of study [4][5][6][7], providing a foundation for this research. While these
studies are a solid base, this paper introduces several innovations. First, we employ
multiple classifiers, joining their performances to improve the overall results.
Additionally, this research is focusing on a multiclass classification, while previous
studies depicted intelligent systems capable of COVID diagnosis (two-class
classification).

By providing a review of the used methodologies and presenting
experimental results, this paper contributes to the ongoing efforts to enhance
automated classification of chest CT images.

2. Proposed architecture

The proposed architecture for diagnosis of chest CT images uses multiple
concurrent CNN classifiers. For these experiments, we have chosen M =[2, 3, 4, 5,
6, 7] classifiers based on the VGG16 architecture [8]. The VGG model is known
for its effectiveness in image classification tasks and consists of thirteen
convolutional layers, three fully connected layers, followed by a SoftMax layer for
output. The secret of this architecture is represented by the combination between
convolutional layers which use receptive fields of 3x3 for feature extraction and
max-pooling layers to reduce the dimensions.

For the proposed system, we have chosen M modules with identical
architecture and identical training strategy. Each of the VGG classifiers has been
trained to classify images into three categories: COVID-19, pneumonia and normal.
Each classifier was trained with an identical number of images from each class to
ensure symmetrical learning. The A100 GPU has been used for calculations
provided by the Google Colab cloud GPU provider. Training parameters include a
64-batch size, 50 epochs, and Adam as the optimizer with a 0.0001 learning rate.
After several tests, we have reached the conclusion that these settings were the best
choice. Once trained, the outputs from these classifiers are fed into the decision
fusion system. The decision fusion process combines the individual predictions to
improve the overall classification accuracy. We employ two decision fusion
techniques: Dempster-Shafer Theory (D-S Theory) [9] and Net Maximization
Theory. A block diagram of the presented architecture is depicted in Fig. 1.
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Fig. 1. Block diagram of proposed architecture

In the following sections, we will further present and detail the database,
each decision fusion algorithm and highlight experimental results.

3. Dempster-Shafer theory for decision fusion of CNN classifiers

As presented in chapter 2, the proposed system uses M different CNN
classifiers and combines their outputs to provide a final decision. One of the
algorithms used for the decision fusion is the Dempster-Shafer theory.

Prior research has demonstrated that this theory of evidence is a good
candidate for computing the belief in uncertain cases [5][7][10][11]. We will further
present the general equations for this algorithm, for K classes and M classifiers. For
this application we have used K = 3 classes (COVID, Pneumonia and Normal) and
M =1[2, 3, 4,5, 6, 7] classifiers.

Considering z as the input image fed to the system, we compute the evidence
belief for class k and classifier n (1):

(= 3

1+ e

(1)

—netl(cn) (2)

After computing the evidence of belief for each class, we apply the
Dempster-Shafer theory to deduce (2):
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Image z will be classified as class j according to the following relation (3)
m;(z) = MAX{m(2)} 3
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4. Net maximization theory

To explore multiple decision fusion algorithms, we have chosen to combine
the outputs of the three modules using two different methods. Net maximization
theory is a simple, but powerful technique that can improve classification accuracy
significantly. This method has proven to be a strong technique for decision fusion
between two classifiers on X-Ray and CT images classified in two classes [4][6].
In this paper the theory has been extended to a decision fusion between M classifiers
used for multi-class diagnosis.

Net-Maximization theory aims to compute a final decision based on the net
function for each CNN classifier.

Considering z = the input image and M = number of classifiers, it will be
classified as class j according to the following relation (4):

m;(z) = MAX{net, net,, ..., nety} 4)

In the equation above, net; is the net output for CNN;, where i=1,..M. The
output of a CNN represents the weighted sum of the input values.

5. Database

Within this paper we have used the "COVID-19, Normal, and Pneumonia
Chest CT Images” dataset [12]. This is a public resource that is available online on
Kaggle website. It provides CT images classified into three categories: 2035
COVID-19 scans, 3390 pneumonia scans and 2119 normal scans. To increase the
diversity of the images, the data for each class has been increased by 50% by
performing a simple data augmentation technique consisting in random horizontal
and vertical flips and random rotation with 0.2. After this key step has been applied,
we made sure that the dataset is balanced, having an equal number of images from
each class. To accomplish this, after the data augmentation has been performed,
some images were removed from the classes that had more images than the smallest
class (COVID-19). This has resulted in 3052 images from each class.

One important challenge when dealing with medical image classification is
the data availability. To highlight the efficiency of our classification system, we
have chosen to use a smaller subset of images and diminish the database up to 40
times (3052 / 40 = 76 images per class) from which 75% (76 * 0.75 = 57 images
per class) were used as training data and 25 % (76 * 0.25 = 19 images per class)
were used as validation data in the training process.

For this experiment, we have chosen to diminish the database to [4, 5, 6, 8,
10,12, 16, 20, 40] times, resulting in the following number of training images per
class for each experiment: 572, 457, 381, 286, 228, 190, 143, 114, 57.
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For all experiments that were mentioned above, the number of test images
per class is 500. Fig. 2, Fig. 3, and Fig. 4 depict some examples of images from the
database.

h e

Fig. 2. COVID CT image Fig. 3. Pneumonia CT image Fig. 4. Normal CT image

6. Experimental results

This section will depict a comprehensive analysis of the experimental
results. To present the performance of the system, we have computed the overall
accuracy (OA), using True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN).

0A =100 x ——= __ (5)
TP+TN+FP+FN

In tables 1-6 we have presented the detailed results for each experiment. For
each case we have also computed the percent of improvement after decision fusion
with respect to the average results of individual CNN modules.

Tables 1 and 2 present the experimental results for two different setups:
Table 1 with M = 2 classifiers and Table 2 with M = 3 classifiers. Setup presented
in Table 1 uses two classifiers (CNN1 and CNNZ2). The accuracy for Max-Net (OA
MAX) and D-S accuracy (OA D-S) are consistently higher than the individual
classifiers' OAs. The D-S method shows improvement over Max-Net in all cases,
with the highest improvement (5.914%) observed for 57 test images per class.

The system from Table 2 uses three classifiers (CNN1, CNN2, CNN3). Like
Table 1, the OA MAX and OA D-S values are higher than individual classifier
accuracies. The D-S combination method also shows an improvement over OA
MAX, with the highest improvement (8.135%) observed for 57 test images per
class.

The results in both tables suggest that the Dempster-Shafer (D-S)
combination method is effective in improving overall accuracy compared to
individual classifiers and Max-Net fusion method (OA MAX). The improvements
are more pronounced in scenarios with fewer train images per class, and the
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improvement is greater when using three classifiers compared to two. This indicates
that increasing the number of classifiers in an ensemble setup may lead to better
classification performance and more robust results, especially when the dataset size
is small.

Table 1
Experimental results for M = 2 classifiers
Train Test OA OA OAMAX | OAD-S | Average D-S
images images CNN1 CNN2 [90] [%0] improvement
per class | per class [%6] [%6] [%6]
572 500 95.46 96.33 97.66 97.73 1.914
457 500 94.6 94.06 96.53 96.74 2.555
381 500 93.8 94.6 96.4 96.88 2.845
286 500 94.06 94.13 96.2 96.66 2.726
228 500 91.86 92.13 94.4 94.53 2.756
190 500 90.53 88.26 93.33 93.34 4.413
143 500 89.8 90.06 92.53 92.66 3.036
114 500 89 88.26 90.93 91.13 2.821
57 500 81.6 78.53 84.66 84.8 5.914
Table 2
Experimental results for M = 3 classifiers
Train Test OA OA OA OA OA Average D-S
images images CNN1 | CNN2 | CNN3 MAX D-S improvement
per class | per class [%6] [%6] [%] [%] [%0] [%0]
572 500 95.66 95.86 96.06 96.73 | 97.86 1.98
457 500 95.06 94.53 95 96.4 97.26 2.633
381 500 95.13 90.73 95.2 96.73 96.8 4.125
286 500 94.6 92.8 93.33 95.26 95.8 2.939
228 500 91.8 92 93.26 95.06 | 95.86 3.487
190 500 91.13 91.33 92.13 93.8 94.86 3.412
143 500 89.2 89.8 90.26 92.06 93.2 3.521
114 500 88.66 89.4 90.66 91.73 | 91.93 2.11
57 500 80.93 82.06 83.4 87.46 | 89.46 8.135

Tables 3 and 4 present experimental results for M = 4 and 5 classifiers. In
both tables, the accuracy (OA) decreases as the number of training images per class
decreases, which is expected due to reduced training data. However, the D-S
(Dempster-Shafer) combination method consistently outperforms individual
classifiers (CNN1 through CNN4 or CNN5) and the Max-Net fusion method,
demonstrating an improved accuracy, especially as the training set size reduces.
This statement is sustained by Table 3 (M = 4 classifiers) with a maximum
improvement of 9.1% when the training images per class drop to 57. Table 4 (M =
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5 classifiers) further supports this trend, with even better results for D-S, achieving
a maximum improvement of 6.231% for the smallest dataset (57 images per class).

Table 3
Experimental results for M = 4 classifiers

Train Test OA OA OA OA OA OA | Average D-S
images | images CNN1 CNN2 | CNN3 | CNN4 | MAX | D-S | improvement

per per o] | [0 | [l | [%] | [%] | [%] [%]

class class

572 500 95.66 | 95.86 | 96.06 96 97.13 | 98.13 2.187

457 500 93.6 03.6 | 95.95 | 94.13 | 96.93 | 97.13 2.199

381 500 93.33 | 942 | 92.66 | 92.73 | 96.2 | 96.86 4.493

286 500 93.93 | 922 92.8 93.6 | 95.26 96 3.004

228 500 94 93.26 | 92.26 | 92.93 | 95.73 | 96.26 3.958

190 500 89.93 | 90.73 | 90.8 89.8 | 9393 | 944 4.54

143 500 90.2 89.2 | 89.66 | 88.86 | 93.4 | 93.53 4.784

114 500 88.2 | 87.73 | 86.2 | 87.93 | 90.73 | 914 4.979

57 500 78.26 | 80.8 | 80.86 | 82.66 | 86.4 89.2 9.1

Table 4
Experimental results for M =5 classifiers

Train | Test OA [%0] Average D-S
image | image improvemen
sper | sper CNN | CNN | CNN | CNN | CNN MAX | D-S t [%6]
class class 1 5

572 500 | 96.73 | 96.46 | 96.2 | 97.06 | 95.93 | 98.33 | 98.86 2.451
457 500 | 94.86 | 94.8 | 94.86 | 94.93 | 944 | 96.93 | 97.86 3.375
381 500 | 94.73 | 9453 | 93.46 | 94.6 | 94.53 | 95.93 97 2.575
286 500 | 9293 | 924 | 94.2 | 93.93 | 9293 | 954 | 96.13 2.89
228 500 | 9133 | 918 | 91.8 | 92.26 | 91.53 | 94.8 | 95.53 3.956
190 500 | 91.73 | 89.66 | 90.53 | 91.26 | 91.13 94 94.93 4.096
143 500 | 88.66 | 88.33 | 89.93 | 89.8 | 90.26 | 92.8 | 93.73 411
114 500 87.6 | 89.06 | 85.73 | 88.93 | 854 | 91.73 | 92.2 5.776

57 500 83.2 | 80.33 | 81.53 | 82.26 | 84.66 | 88.33 | 88.66 6.231

Tables 5 and 6 show the experimental results with M = 6 and M = 7
classifiers, respectively. The trend in both tables continues to confirm that
combining multiple classifiers, particularly using the D-S (Dempster-Shafer)
method, leads to higher overall accuracy (OA), especially as the number of training

images per class decreases.

In Table 5 (M = 6 classifiers) the D-S approach shows an increasing
percentage of improvement as the training set size decreases, peaking at 9.078%
improvement for the smallest dataset (57 images per class). Table 6 (M = 7
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classifiers) further emphasizes the benefits of using more classifiers, with the D-S
method achieving even higher improvement rates, reaching up to 10.85% for 57
training images per class. These results highlight the scalability and efficacy of the
D-S combination in multi-classifier ensembles.

Table 5
Experimental results for M = 6 classifiers
Train | Test OA [%0] Average
imag | imag D-S
€s esper | CNN | CNN | CNN | CNN | CNN | CNN | MA D-S improve
per class 1 2 3 4 5 6 X B ment
class [%]
572 500 | 96.93 | 96.33 | 96.53 | 95.66 | 96.2 | 96.6 | 98.06 | 98.8 2.49
457 500 | 94.26 | 956 | 94.8 | 9546 | 95.8 | 94.93 | 96.93 | 97.6 2.344
381 500 | 94.66 | 944 | 94.46 | 9526 | 95 | 9253 | 964 | 97.33 3.802
286 500 | 93.46 | 92.46 | 92.26 | 92.13 | 93.563 | 92.73 | 95.46 | 96.2 3.296
228 500 89 [90.73 19133 | 9153 | 91.26 | 91.2 | 93.93 | 95.2 4.352
190 500 |89.86 | 89.6 | 90.73 | 91.13 | 89.6 | 91.66 | 93.33 | 94.93 4.745
143 500 | 89.53 | 88.86 | 89 89.2 | 88.66 | 88.4 | 93.86 | 94.26 6.472
114 500 | 88.13 | 87.73 | 88 86.2 | 86.6 | 88.86 | 92.2 | 92.53 5.471
57 500 |84.33 ] 794 | 83.6 | 81.46 | 82.06 | 81.86 | 87.93 | 89.4 9.078
Table 6
Experimental results for M = 7 classifiers
Tra | Tes OA [%] Aver
in t age
ima | ima D-S
ges | ges | CNN | CNN | CNN | CNN | CNN | CNN | CNN | MA D-S impr
per | per 1 2 3 4 5 6 7 X ovem
clas | clas ent
S S [%]
572 | 500 | 96.8 | 96.33 | 96.86 | 96 92.4 | 96.53 | 95.73 | 97.66 | 98.46 | 2.424
457 | 500 | 95.73 | 95.46 | 94.8 | 9593 | 95.33 | 96.06 | 958 | 974 | 976 | 1.741
381 | 500 | 94.93 | 94.8 | 94.73 | 94.26 | 94.06 | 95.93 | 95.53 | 96.8 | 97.26 | 1.598
286 | 500 | 92.73 | 94.06 | 93.2 | 92.66 | 93.93 | 94.33 | 93.8 | 95.66 | 96.66 | 2.759
228 | 500 | 91.73 | 92.33 | 91.46 | 91.13 | 92.2 | 91.93 | 90.66 | 94.33 | 95.73 | 4.858
190 | 500 | 88.66 | 91.33 | 90.86 | 90.86 | 89.6 | 90.6 | 90.2 | 94.06 | 95.66 | 5.819
143 | 500 | 88.66 | 87.53 | 91.26 | 90.06 | 90.13 | 87.73 | 89.06 | 93.06 | 93.66 | 5.956
114 | 500 | 88.13 | 86.66 | 88.33 | 89.26 | 87.33 | 87.53 | 89.6 | 92.06 | 93.8 | 5.911
57 | 500 | 82.26 | 814 | 8533 | 86.4 | 80.4 | 8446 | 814 | 89.8 | 91.93 | 10.85

Table 7 and the corresponding graph (Fig. 5) present the maximum overall
accuracy (OA) achieved by three methods — MAX, D-S, and single module — as
the number of CNN modules (M) increases from 2 to 7. Dempster-Shafer
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method consistently provides the highest accuracy across all values of M. The
accuracy reaches its peak at M =5 with an OA of 98.86% before slightly decreasing
at M =6 and M =7, still maintaining the highest performance across methods. Max-
Net method performs second best, with its peak accuracy of 98.33% at M = 5. It
fluctuates slightly for different values of M but remains lower than D-S. The graph
visually confirms this trend, with D-S consistently leading, followed by MAX,
while the individual module accuracy remains lower.

Table 7
Experimental results — maximum accuracy for each M value
M OA MAX OADS OA per module
2 97.66 97.73 96.33
3 96.73 97.86 96.06
4 97.13 98.13 96.06
5 98.33 98.86 97.06
6 98.06 98.8 96.93
7 97.66 98.46 96.86
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Fig. 5. Overall Accuracy as a function of number of CNN modules

In the next graph (Fig. 6) we have highlighted the results for M = 5
classifiers, combination for which we have obtained the best performance. We can
observe that the D-S method consistently performs the best across most of the range,
followed by the Max-Net method. It highlights the conclusion that Dempster-Shafer
is the most robust method to the reduction in training data.
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Fig. 6. Overall Accuracy as a function of number of train images for M =5 classifiers

Some other important parameters when classifying medical images are
specificity, sensitivity, miss alarm rate (MAR) and false alarm rate (FAR). There
parameters were computed for the optimum case with M = 5 and the results are
depicted in table 8. To compute these parameters, we have considered two classes:
sick (comprised of COVID and Pneumonia samples) and healthy (Normal samples).

Table 8

Experimental results — specificity, sensitivity, MAR and FAR for M =5

Nr img 572 457 381 286 228 190 143 114 57

Sensitivity | 0.659 | 0.660 | 0.655 | 0.661 | 0.664 | 0.658 | 0.657 | 0.645 | 0.617
Specificity | 0.990 | 0.970 | 0.970 | 0.954 | 0.914 | 0.928 | 0.880 | 0.920 | 0.932
CNN1 MAR 0.044 | 0.059 | 0.079 | 0.071 | 0.095 | 0.107 | 0.157 | 0.165 | 0.250
FAR 0.010 | 0.030 | 0.030 | 0.046 | 0.086 | 0.072 | 0.120 | 0.080 | 0.068
OA 96.73 | 94.86 | 94.73 | 9293 | 91.33 | 91.73 | 88.66 | 87.6 83.2
Sensitivity | 0.661 | 0.657 | 0.651 | 0.645 | 0.651 | 0.646 | 0.653 | 0.624 | 0.635
Specificity | 0.982 | 0.984 | 0.976 | 0.972 | 0.970 | 0.970 | 0.910 | 0.938 | 0.840
CNN2 MAR 0.044 | 0.059 | 0.090 | 0.118 | 0.096 | 0.116 | 0.143 | 0.222 | 0.270
FAR 0.018 | 0.016 | 0.024 | 0.028 | 0.030 | 0.030 | 0.090 | 0.062 | 0.160
OA 96.46 94.8 94.53 92.4 91.8 89.66 | 88.33 | 89.06 | 80.33
Sensitivity | 0.660 | 0.660 | 0.655 | 0.655 | 0.662 | 0.655 | 0.649 | 0.649 | 0.619
Specificity | 0.982 | 0.964 | 0.966 | 0.958 | 0.932 | 0.940 | 0.946 | 0.938 | 0.914
CNN3 MAR 0.048 | 0.063 | 0.081 | 0.089 | 0.088 | 0.107 | 0.126 | 0.134 | 0.258
FAR 0.018 | 0.036 | 0.034 | 0.042 | 0.068 | 0.060 | 0.054 | 0.062 | 0.086
OA 96.2 94.86 | 93.46 94.2 91.8 90.53 | 89.93 | 85.73 | 81.53
Sensitivity | 0.662 | 0.656 | 0.657 | 0.664 | 0.658 | 0.660 | 0.642 | 0.621 | 0.635
Specificity | 0.984 | 0.986 | 0.974 | 0.890 | 0.950 | 0.946 | 0.964 | 0.986 | 0.910
CNN4 MAR 0.036 | 0.058 | 0.068 | 0.121 | 0.086 | 0.082 | 0.135 | 0.193 | 0.207
FAR 0.016 | 0.014 | 0.026 | 0.110 | 0.050 | 0.054 | 0.036 | 0.014 | 0.090
OA 97.06 | 94.93 94.6 93.93 | 92.26 | 91.26 89.8 88.93 | 82.26
Sensitivity | 0.660 | 0.659 | 0.661 | 0.657 | 0.652 | 0.665 | 0.652 | 0.629 | 0.643
Specificity | 0.978 | 0.974 | 0.964 | 0.956 | 0.948 | 0.900 | 0.940 | 0.974 | 0.886
CNN5 MAR 0.050 | 0.058 | 0.060 | 0.083 | 0.111 | 0.105 | 0.118 | 0.173 | 0.203
FAR 0.022 | 0.026 | 0.036 | 0.044 | 0.052 | 0.100 | 0.060 | 0.026 | 0.114
OA 95.93 94.4 9453 | 9293 | 9153 | 91.13 | 90.26 | 854 | 84.66
MAX | Sensitivity | 0.664 | 0.663 | 0.660 | 0.661 | 0.660 | 0.661 | 0.658 | 0.645 | 0.650
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Specificity | 0.990 | 0.990 | 0.984 | 0.978 | 0.982 | 0.968 | 0.964 | 0.982 | 0.916
MAR 0.020 | 0.024 | 0.044 | 0.048 | 0.046 | 0.056 | 0.074 | 0.108 | 0.150
FAR 0.010 | 0.010 | 0.016 | 0.022 | 0.018 | 0.032 | 0.036 | 0.018 | 0.084

OA 98.33 | 96.93 | 9593 | 954 94.8 94 92.8 | 91.73 | 88.33

Sensitivity | 0.663 | 0.661 | 0.660 | 0.659 | 0.660 | 0.663 | 0.654 | 0.633 | 0.638

Specificity | 0.988 | 0.990 | 0.974 | 0.964 | 0.966 | 0.954 | 0.960 | 0.988 | 0.934

DS MAR 0.026 | 0.033 | 0.053 | 0.069 | 0.061 | 0.061 | 0.093 | 0.147 | 0.177
FAR 0.012 | 0.010 | 0.026 | 0.036 | 0.034 | 0.046 | 0.040 | 0.012 | 0.066
OA 98.86 | 97.86 97 96.13 | 95.53 | 9493 | 93.73 | 92.2 | 88.66

7. Conclusions

In this paper, we have explored the decision fusion of an ensemble of M
symmetrically trained CNN classifiers with identical architectures for chest CT
image diagnosis corresponding to three classes: COVID-19, pneumonia and
normal. By implementing two decision fusion algorithms, Dempster-Shafer theory
and net maximization, we have demonstrated the effectiveness of combining
multiple CNN classifiers. Using a public dataset, our experiments showed that the
proposed decision fusion method improved the average accuracy by approximately
2.70% compared to a standalone classifier. Furthermore, the Dempster-Shafer
method achieved slightly better accuracy than the net maximization approach.

Comparing to existing classification systems using the same dataset, we
have managed to improve the performance by using this decision fusion system. In
[13] Asif et al. have used the same dataset with a customized convolutional neural
network. Their architecture used the entire dataset for the training, 80% as training
data (6035 images) and 20% as testing data (1509 images) The same database was
used in [14] where Rani and Bharadwaj have used the same database with a custom
architecture called Deep CT-NET. Results in [14] are based on a big database, since
they have merged five databases to improve the accuracy of classification. Our
system has obtained a higher performance than both references even if it has been
trained on a diminished dataset (572 per class for training). Compared to the other
two papers, this makes the architecture even more performant.

Future work will involve conducting more experiments with different types
of classifiers to validate and extend the robustness of the decision fusion approach.
Additionally, we plan to explore the performance of asymmetrically trained
classifiers and while varying the number of CNN modules. These efforts aim to
refine the decision fusion method, enhancing its applicability and accuracy in
automated chest CT image diagnosis. Another potential improvement involves
applying Generative Adversarial Networks (GANSs) for data augmentation, which
could enhance the diversity and volume of the dataset, leading to further
improvements in classification performance.
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