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DECISION FUSION OF SYMMETRICALLY TRAINED CNN 

CLASSIFIERS FOR DIAGNOSIS OF CHEST CT IMAGES 

Gabriela-Loredana GHENEA1, Victor-Emil NEAGOE2 

This paper is dedicated to decision fusion of an ensemble of M symmetrically 

trained Convolutional Neural Network (CNN) classifiers with identical architectures 

for chest CT image diagnosis corresponding to K classes. There are considered two 

decision fusion algorithms: Dempster Fusion theory versus net maximization. The 

experiments use Covid-19&Normal&Pneumonia_CT_image Kaggle dataset. This 

choice corresponds to decision fusion algorithm implementation for K=3 classes and 

M = [2, 3, 4, 5, 6, 7] CNN classifier modules. The advantage of the proposed decision 

fusion method as reference to a standalone classifier is obvious, leading to an average 

accuracy improvement of about 2.70%. Regarding the comparison of the two decision 

fusion algorithms, the D-S method obtains a slightly better accuracy than the net 

maximization.  

 

Keywords: convolutional neural networks (CNNs), decision fusion, Dempster-

Shafer theory, net maximization, chest CT image classification, 
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1. Introduction 

The global COVID-19 pandemic came with a need for rapid and accurate 

diagnostic tools. Therefore, the use of convolutional neural networks (CNNs) for 

classifying chest CT images has shown significant promise. This paper explores an 

innovative approach that takes advantage of the power of M CNN architectures, 

combining their strengths to enhance the accuracy of chest CT images diagnosis, 

distinguishing between COVID-19, pneumonia and normal cases. 

Currently, research in this field provides numerous studies demonstrating 

the effectiveness of CNNs in medical image analysis. Recent work has focused on 

optimizing network architectures, improving data preprocessing techniques, and 

integrating a metric-based approach to refine diagnostic capabilities [1][2][3]. 

Despite these advancements, challenges such as overfitting and data generalization 

remain the subject of future research. 
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The purpose of this paper is to address these challenges by proposing a 

fusion model between the outputs of M classifiers that can distinguish between K 

classes by applying either Dempster-Shafer theory or Net-Maximization 

techniques. This fusion aims to exploit the strengths of each network, thereby 

improving diagnostic accuracy and robustness. Previous papers have addressed this 

area of study [4][5][6][7], providing a foundation for this research. While these 

studies are a solid base, this paper introduces several innovations. First, we employ 

multiple classifiers, joining their performances to improve the overall results. 

Additionally, this research is focusing on a multiclass classification, while previous 

studies depicted intelligent systems capable of COVID diagnosis (two-class 

classification). 

By providing a review of the used methodologies and presenting 

experimental results, this paper contributes to the ongoing efforts to enhance 

automated classification of chest CT images.  

2. Proposed architecture 

The proposed architecture for diagnosis of chest CT images uses multiple 

concurrent CNN classifiers. For these experiments, we have chosen M = [2, 3, 4, 5, 

6, 7] classifiers based on the VGG16 architecture [8]. The VGG model is known 

for its effectiveness in image classification tasks and consists of thirteen 

convolutional layers, three fully connected layers, followed by a SoftMax layer for 

output. The secret of this architecture is represented by the combination between 

convolutional layers which use receptive fields of 3x3 for feature extraction and 

max-pooling layers to reduce the dimensions. 

For the proposed system, we have chosen M modules with identical 

architecture and identical training strategy. Each of the VGG classifiers has been 

trained to classify images into three categories: COVID-19, pneumonia and normal. 

Each classifier was trained with an identical number of images from each class to 

ensure symmetrical learning. The A100 GPU has been used for calculations 

provided by the Google Colab cloud GPU provider. Training parameters include a 

64-batch size, 50 epochs, and Adam as the optimizer with a 0.0001 learning rate. 

After several tests, we have reached the conclusion that these settings were the best 

choice. Once trained, the outputs from these classifiers are fed into the decision 

fusion system. The decision fusion process combines the individual predictions to 

improve the overall classification accuracy. We employ two decision fusion 

techniques: Dempster-Shafer Theory (D-S Theory) [9] and Net Maximization 

Theory. A block diagram of the presented architecture is depicted in Fig. 1. 
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Fig. 1. Block diagram of proposed architecture 

 

In the following sections, we will further present and detail the database, 

each decision fusion algorithm and highlight experimental results. 

3. Dempster-Shafer theory for decision fusion of CNN classifiers 

As presented in chapter 2, the proposed system uses M different CNN 

classifiers and combines their outputs to provide a final decision. One of the 

algorithms used for the decision fusion is the Dempster-Shafer theory.  

Prior research has demonstrated that this theory of evidence is a good 

candidate for computing the belief in uncertain cases [5][7][10][11]. We will further 

present the general equations for this algorithm, for K classes and M classifiers. For 

this application we have used K = 3 classes (COVID, Pneumonia and Normal) and 

M = [2, 3, 4, 5, 6, 7] classifiers. 

Considering z as the input image fed to the system, we compute the evidence 

belief for class k and classifier n (1): 
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(𝑛)
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1
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After computing the evidence of belief for each class, we apply the 

Dempster-Shafer theory to deduce (2): 
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Image z will be classified as class j according to the following relation (3) 

𝑚𝑗(𝑧) = 𝑀𝐴𝑋{𝑚𝑘(𝑧)}                                          (3) 
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4. Net maximization theory 

To explore multiple decision fusion algorithms, we have chosen to combine 

the outputs of the three modules using two different methods. Net maximization 

theory is a simple, but powerful technique that can improve classification accuracy 

significantly. This method has proven to be a strong technique for decision fusion 

between two classifiers on X-Ray and CT images classified in two classes [4][6]. 

In this paper the theory has been extended to a decision fusion between M classifiers 

used for multi-class diagnosis.  

Net-Maximization theory aims to compute a final decision based on the net 

function for each CNN classifier. 

Considering z = the input image and M = number of classifiers, it will be 

classified as class j according to the following relation (4): 
 

𝑚𝑗(𝑧) = 𝑀𝐴𝑋{𝑛𝑒𝑡1, 𝑛𝑒𝑡2, … , 𝑛𝑒𝑡𝑀}                                   (4) 

 In the equation above, neti is the net output for CNNi, where i=1,..M. The 

output of a CNN represents the weighted sum of the input values. 

5. Database 

Within this paper we have used the "COVID-19, Normal, and Pneumonia 

Chest CT Images" dataset [12]. This is a public resource that is available online on 

Kaggle website. It provides CT images classified into three categories: 2035 

COVID-19 scans, 3390 pneumonia scans and 2119 normal scans. To increase the 

diversity of the images, the data for each class has been increased by 50% by 

performing a simple data augmentation technique consisting in random horizontal 

and vertical flips and random rotation with 0.2. After this key step has been applied, 

we made sure that the dataset is balanced, having an equal number of images from 

each class. To accomplish this, after the data augmentation has been performed, 

some images were removed from the classes that had more images than the smallest 

class (COVID-19). This has resulted in 3052 images from each class.  

One important challenge when dealing with medical image classification is 

the data availability. To highlight the efficiency of our classification system, we 

have chosen to use a smaller subset of images and diminish the database up to 40 

times (3052 / 40 = 76 images per class) from which 75% (76 * 0.75 = 57 images 

per class) were used as training data and 25 % (76 * 0.25 = 19 images per class) 

were used as validation data in the training process.  

For this experiment, we have chosen to diminish the database to [4, 5, 6, 8, 

10,12, 16, 20, 40] times, resulting in the following number of training images per 

class for each experiment: 572, 457, 381, 286, 228, 190, 143, 114, 57. 
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For all experiments that were mentioned above, the number of test images 

per class is 500. Fig. 2, Fig. 3, and Fig. 4 depict some examples of images from the 

database. 
 

                       

Fig. 2. COVID CT image           Fig. 3. Pneumonia CT image                Fig. 4. Normal CT image 

6. Experimental results 

This section will depict a comprehensive analysis of the experimental 

results. To present the performance of the system, we have computed the overall 

accuracy (OA), using True Positives (TP), True Negatives (TN), False Positives 

(FP) and False Negatives (FN). 

𝑂𝐴 = 100 × 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                         (5) 

 In tables 1-6 we have presented the detailed results for each experiment. For 

each case we have also computed the percent of improvement after decision fusion 

with respect to the average results of individual CNN modules.  

Tables 1 and 2 present the experimental results for two different setups: 

Table 1 with M = 2 classifiers and Table 2 with M = 3 classifiers. Setup presented 

in Table 1 uses two classifiers (CNN1 and CNN2). The accuracy for Max-Net (OA 

MAX) and D-S accuracy (OA D-S) are consistently higher than the individual 

classifiers' OAs. The D-S method shows improvement over Max-Net in all cases, 

with the highest improvement (5.914%) observed for 57 test images per class. 

The system from Table 2 uses three classifiers (CNN1, CNN2, CNN3). Like 

Table 1, the OA MAX and OA D-S values are higher than individual classifier 

accuracies. The D-S combination method also shows an improvement over OA 

MAX, with the highest improvement (8.135%) observed for 57 test images per 

class. 

The results in both tables suggest that the Dempster-Shafer (D-S) 

combination method is effective in improving overall accuracy compared to 

individual classifiers and Max-Net fusion method (OA MAX). The improvements 

are more pronounced in scenarios with fewer train images per class, and the 
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improvement is greater when using three classifiers compared to two. This indicates 

that increasing the number of classifiers in an ensemble setup may lead to better 

classification performance and more robust results, especially when the dataset size 

is small. 
Table 1 

Experimental results for M = 2 classifiers 

Train 

images 

per class 

Test 

images 

per class 

OA 

CNN1 

[%] 

OA 

CNN2 

[%] 

OA MAX 

[%] 

OA D-S 

[%] 

Average D-S 

improvement 

[%] 

572 500 95.46 96.33 97.66 97.73 1.914 

457 500 94.6 94.06 96.53 96.74 2.555 

381 500 93.8 94.6 96.4 96.88 2.845 

286 500 94.06 94.13 96.2 96.66 2.726 

228 500 91.86 92.13 94.4 94.53 2.756 

190 500 90.53 88.26 93.33 93.34 4.413 

143 500 89.8 90.06 92.53 92.66 3.036 

114 500 89 88.26 90.93 91.13 2.821 

57 500 81.6 78.53 84.66 84.8 5.914 

 

Table 2 

Experimental results for M = 3 classifiers 

Train 

images 

per class 

Test 

images 

per class 

OA 

CNN1 

[%] 

OA 

CNN2 

[%] 

OA 

CNN3 

[%] 

OA 

MAX 

[%] 

OA 

D-S 

[%] 

Average D-S 

improvement 

[%] 

572 500 95.66 95.86 96.06 96.73 97.86 1.98 

457 500 95.06 94.53 95 96.4 97.26 2.633 

381 500 95.13 90.73 95.2 96.73 96.8 4.125 

286 500 94.6 92.8 93.33 95.26 95.8 2.939 

228 500 91.8 92 93.26 95.06 95.86 3.487 

190 500 91.13 91.33 92.13 93.8 94.86 3.412 

143 500 89.2 89.8 90.26 92.06 93.2 3.521 

114 500 88.66 89.4 90.66 91.73 91.93 2.11 

57 500 80.93 82.06 83.4 87.46 89.46 8.135 

 

Tables 3 and 4 present experimental results for M = 4 and 5 classifiers. In 

both tables, the accuracy (OA) decreases as the number of training images per class 

decreases, which is expected due to reduced training data. However, the D-S 

(Dempster-Shafer) combination method consistently outperforms individual 

classifiers (CNN1 through CNN4 or CNN5) and the Max-Net fusion method, 

demonstrating an improved accuracy, especially as the training set size reduces. 

This statement is sustained by Table 3 (M = 4 classifiers) with a maximum 

improvement of 9.1% when the training images per class drop to 57. Table 4 (M = 
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5 classifiers) further supports this trend, with even better results for D-S, achieving 

a maximum improvement of 6.231% for the smallest dataset (57 images per class).  
 

Table 3 

Experimental results for M = 4 classifiers 

Train 

images 

per 

class 

Test 

images 

per 

class 

OA 

CNN1 

[%] 

OA 

CNN2 

[%] 

OA 

CNN3 

[%] 

OA 

CNN4 

[%] 

OA 

MAX 

[%] 

OA 

D-S 

[%] 

Average D-S 

improvement 

[%] 

572 500 95.66 95.86 96.06 96 97.13 98.13 2.187 

457 500 93.6 93.6 95.95 94.13 96.93 97.13 2.199 

381 500 93.33 94.2 92.66 92.73 96.2 96.86 4.493 

286 500 93.93 92.2 92.8 93.6 95.26 96 3.004 

228 500 94 93.26 92.26 92.93 95.73 96.26 3.958 

190 500 89.93 90.73 90.8 89.8 93.93 94.4 4.54 

143 500 90.2 89.2 89.66 88.86 93.4 93.53 4.784 

114 500 88.2 87.73 86.2 87.93 90.73 91.4 4.979 

57 500 78.26 80.8 80.86 82.66 86.4 89.2 9.1 

 

Table 4 

Experimental results for M = 5 classifiers 

Train 

image

s per 

class 

Test 

image

s per 

class 

OA [%] Average D-S 

improvemen

t [%] CNN

1 

CNN

2 

CNN

3 

CNN

4 

CNN

5 
MAX D-S 

572 500 96.73 96.46 96.2 97.06 95.93 98.33 98.86 2.451 

457 500 94.86 94.8 94.86 94.93 94.4 96.93 97.86 3.375 

381 500 94.73 94.53 93.46 94.6 94.53 95.93 97 2.575 

286 500 92.93 92.4 94.2 93.93 92.93 95.4 96.13 2.89 

228 500 91.33 91.8 91.8 92.26 91.53 94.8 95.53 3.956 

190 500 91.73 89.66 90.53 91.26 91.13 94 94.93 4.096 

143 500 88.66 88.33 89.93 89.8 90.26 92.8 93.73 4.11 

114 500 87.6 89.06 85.73 88.93 85.4 91.73 92.2 5.776 

57 500 83.2 80.33 81.53 82.26 84.66 88.33 88.66 6.231 

 

Tables 5 and 6 show the experimental results with M = 6 and M = 7 

classifiers, respectively. The trend in both tables continues to confirm that 

combining multiple classifiers, particularly using the D-S (Dempster-Shafer) 

method, leads to higher overall accuracy (OA), especially as the number of training 

images per class decreases. 

In Table 5 (M = 6 classifiers) the D-S approach shows an increasing 

percentage of improvement as the training set size decreases, peaking at 9.078% 

improvement for the smallest dataset (57 images per class). Table 6 (M = 7 
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classifiers) further emphasizes the benefits of using more classifiers, with the D-S 

method achieving even higher improvement rates, reaching up to 10.85% for 57 

training images per class. These results highlight the scalability and efficacy of the 

D-S combination in multi-classifier ensembles. 
Table 5 

Experimental results for M = 6 classifiers 

Train 

imag

es 

per 

class 

Test 

imag

es per 

class 

OA [%] Average 

D-S 

improve

ment 

[%] 

CNN

1 

CNN

2 

CNN

3 

CNN

4 

CNN

5 

CNN

6 

MA

X 
D-S 

572 500 96.93 96.33 96.53 95.66 96.2 96.6 98.06 98.8 2.49 

457 500 94.26 95.6 94.8 95.46 95.8 94.93 96.93 97.6 2.344 

381 500 94.66 94.4 94.46 95.26 95 92.53 96.4 97.33 3.802 

286 500 93.46 92.46 92.26 92.13 93.53 92.73 95.46 96.2 3.296 

228 500 89 90.73 91.33 91.53 91.26 91.2 93.93 95.2 4.352 

190 500 89.86 89.6 90.73 91.13 89.6 91.66 93.33 94.93 4.745 

143 500 89.53 88.86 89 89.2 88.66 88.4 93.86 94.26 6.472 

114 500 88.13 87.73 88 86.2 86.6 88.86 92.2 92.53 5.471 

57 500 84.33 79.4 83.6 81.46 82.06 81.86 87.93 89.4 9.078 

 

Table 6 

Experimental results for M = 7 classifiers 

Tra

in 

ima

ges 

per 

clas

s 

Tes

t 

ima

ges 

per 

clas

s 

OA [%] Aver

age 

D-S 

impr

ovem

ent 

[%] 

CNN

1 

CNN

2 

CNN

3 

CNN

4 

CNN

5 

CNN

6 

CNN

7 

MA

X 
D-S 

572 500 96.8 96.33 96.86 96 92.4 96.53 95.73 97.66 98.46 2.424 

457 500 95.73 95.46 94.8 95.93 95.33 96.06 95.8 97.4 97.6 1.741 

381 500 94.93 94.8 94.73 94.26 94.06 95.93 95.53 96.8 97.26 1.598 

286 500 92.73 94.06 93.2 92.66 93.93 94.33 93.8 95.66 96.66 2.759 

228 500 91.73 92.33 91.46 91.13 92.2 91.93 90.66 94.33 95.73 4.858 

190 500 88.66 91.33 90.86 90.86 89.6 90.6 90.2 94.06 95.66 5.819 

143 500 88.66 87.53 91.26 90.06 90.13 87.73 89.06 93.06 93.66 5.956 

114 500 88.13 86.66 88.33 89.26 87.33 87.53 89.6 92.06 93.8 5.911 

57 500 82.26 81.4 85.33 86.4 80.4 84.46 81.4 89.8 91.93 10.85 

 

Table 7 and the corresponding graph (Fig. 5) present the maximum overall 

accuracy (OA) achieved by three methods — MAX, D-S, and single module — as 

the number of CNN modules (M) increases from 2 to 7. Dempster-Shafer 
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method consistently provides the highest accuracy across all values of M. The 

accuracy reaches its peak at M = 5 with an OA of 98.86% before slightly decreasing 

at M = 6 and M = 7, still maintaining the highest performance across methods. Max-

Net method performs second best, with its peak accuracy of 98.33% at M = 5. It 

fluctuates slightly for different values of M but remains lower than D-S. The graph 

visually confirms this trend, with D-S consistently leading, followed by MAX, 

while the individual module accuracy remains lower. 
 

Table 7 

Experimental results – maximum accuracy for each M value 

M OA MAX OA DS OA per module 

2 97.66 97.73 96.33 

3 96.73 97.86 96.06 

4 97.13 98.13 96.06 

5 98.33 98.86 97.06 

6 98.06 98.8 96.93 

7 97.66 98.46 96.86 

 

 
Fig. 5. Overall Accuracy as a function of number of CNN modules 

 

In the next graph (Fig. 6) we have highlighted the results for M = 5 

classifiers, combination for which we have obtained the best performance. We can 

observe that the D-S method consistently performs the best across most of the range, 

followed by the Max-Net method. It highlights the conclusion that Dempster-Shafer 

is the most robust method to the reduction in training data. 
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Fig. 6. Overall Accuracy as a function of number of train images for M = 5 classifiers 

 

Some other important parameters when classifying medical images are 

specificity, sensitivity, miss alarm rate (MAR) and false alarm rate (FAR). There 

parameters were computed for the optimum case with M = 5 and the results are 

depicted in table 8. To compute these parameters, we have considered two classes: 

sick (comprised of COVID and Pneumonia samples) and healthy (Normal samples). 
 

Table 8 

Experimental results – specificity, sensitivity, MAR and FAR for M = 5 
 Nr img 572 457 381 286 228 190 143 114 57 

CNN1 

Sensitivity 0.659 0.660 0.655 0.661 0.664 0.658 0.657 0.645 0.617 

Specificity 0.990 0.970 0.970 0.954 0.914 0.928 0.880 0.920 0.932 

MAR 0.044 0.059 0.079 0.071 0.095 0.107 0.157 0.165 0.250 

FAR 0.010 0.030 0.030 0.046 0.086 0.072 0.120 0.080 0.068 

OA 96.73 94.86 94.73 92.93 91.33 91.73 88.66 87.6 83.2 

CNN2 

Sensitivity 0.661 0.657 0.651 0.645 0.651 0.646 0.653 0.624 0.635 

Specificity 0.982 0.984 0.976 0.972 0.970 0.970 0.910 0.938 0.840 

MAR 0.044 0.059 0.090 0.118 0.096 0.116 0.143 0.222 0.270 

FAR 0.018 0.016 0.024 0.028 0.030 0.030 0.090 0.062 0.160 

OA 96.46 94.8 94.53 92.4 91.8 89.66 88.33 89.06 80.33 

CNN3 

Sensitivity 0.660 0.660 0.655 0.655 0.662 0.655 0.649 0.649 0.619 

Specificity 0.982 0.964 0.966 0.958 0.932 0.940 0.946 0.938 0.914 

MAR 0.048 0.063 0.081 0.089 0.088 0.107 0.126 0.134 0.258 

FAR 0.018 0.036 0.034 0.042 0.068 0.060 0.054 0.062 0.086 

OA 96.2 94.86 93.46 94.2 91.8 90.53 89.93 85.73 81.53 

CNN4 

Sensitivity 0.662 0.656 0.657 0.664 0.658 0.660 0.642 0.621 0.635 

Specificity 0.984 0.986 0.974 0.890 0.950 0.946 0.964 0.986 0.910 

MAR 0.036 0.058 0.068 0.121 0.086 0.082 0.135 0.193 0.207 

FAR 0.016 0.014 0.026 0.110 0.050 0.054 0.036 0.014 0.090 

OA 97.06 94.93 94.6 93.93 92.26 91.26 89.8 88.93 82.26 

CNN5 

Sensitivity 0.660 0.659 0.661 0.657 0.652 0.665 0.652 0.629 0.643 

Specificity 0.978 0.974 0.964 0.956 0.948 0.900 0.940 0.974 0.886 

MAR 0.050 0.058 0.060 0.083 0.111 0.105 0.118 0.173 0.203 

FAR 0.022 0.026 0.036 0.044 0.052 0.100 0.060 0.026 0.114 

OA 95.93 94.4 94.53 92.93 91.53 91.13 90.26 85.4 84.66 

MAX Sensitivity 0.664 0.663 0.660 0.661 0.660 0.661 0.658 0.645 0.650 

84
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Specificity 0.990 0.990 0.984 0.978 0.982 0.968 0.964 0.982 0.916 

MAR 0.020 0.024 0.044 0.048 0.046 0.056 0.074 0.108 0.150 

FAR 0.010 0.010 0.016 0.022 0.018 0.032 0.036 0.018 0.084 

OA 98.33 96.93 95.93 95.4 94.8 94 92.8 91.73 88.33 

DS 

Sensitivity 0.663 0.661 0.660 0.659 0.660 0.663 0.654 0.633 0.638 

Specificity 0.988 0.990 0.974 0.964 0.966 0.954 0.960 0.988 0.934 

MAR 0.026 0.033 0.053 0.069 0.061 0.061 0.093 0.147 0.177 

FAR 0.012 0.010 0.026 0.036 0.034 0.046 0.040 0.012 0.066 

OA 98.86 97.86 97 96.13 95.53 94.93 93.73 92.2 88.66 

7. Conclusions 

In this paper, we have explored the decision fusion of an ensemble of M 

symmetrically trained CNN classifiers with identical architectures for chest CT 

image diagnosis corresponding to three classes: COVID-19, pneumonia and 

normal. By implementing two decision fusion algorithms, Dempster-Shafer theory 

and net maximization, we have demonstrated the effectiveness of combining 

multiple CNN classifiers. Using a public dataset, our experiments showed that the 

proposed decision fusion method improved the average accuracy by approximately 

2.70% compared to a standalone classifier. Furthermore, the Dempster-Shafer 

method achieved slightly better accuracy than the net maximization approach. 

Comparing to existing classification systems using the same dataset, we 

have managed to improve the performance by using this decision fusion system. In 

[13] Asif et al. have used the same dataset with a customized convolutional neural 

network. Their architecture used the entire dataset for the training, 80% as training 

data (6035 images) and 20% as testing data (1509 images) The same database was 

used in [14] where Rani and Bharadwaj have used the same database with a custom 

architecture called Deep CT-NET. Results in [14] are based on a big database, since 

they have merged five databases to improve the accuracy of classification. Our 

system has obtained a higher performance than both references even if it has been 

trained on a diminished dataset (572 per class for training). Compared to the other 

two papers, this makes the architecture even more performant. 

Future work will involve conducting more experiments with different types 

of classifiers to validate and extend the robustness of the decision fusion approach. 

Additionally, we plan to explore the performance of asymmetrically trained 

classifiers and while varying the number of CNN modules. These efforts aim to 

refine the decision fusion method, enhancing its applicability and accuracy in 

automated chest CT image diagnosis. Another potential improvement involves 

applying Generative Adversarial Networks (GANs) for data augmentation, which 

could enhance the diversity and volume of the dataset, leading to further 

improvements in classification performance. 
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