
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 2, 2017 ISSN 2286-3540

IMPLEMENTATION OF CRYPTOGRAPHICALLY

ENFORCED RBAC

Valentin Ghiță1, Sergiu Costea2, Nicolae Țăpuș3

RBAC (Role-based access control) is an efficient method for sharing objects

between different groups of users. If RBAC is implemented using ABE (Attribute

Based Encryption), then the resulting system enforces access control indirectly,

through cryptography. We propose a new multi-user system based on

Cryptographically Enforced RBAC. To improve performance, our system combines

existing work on Cryptographically Enforced RBAC with symmetric cryptography.

From the best of our knowledge, we are the first to implement and experimentally

evaluate the feasibility of such a system, which was previously only analyzed

theoretically. We describe the architecture of our system, its implementation and

evaluate performance. Our solution can be used to implement secure storage in

clouds where the service provider is untrusted.

Keywords: access control, RBAC, ABE, secure storage

1. Introduction

Users often want to be certain that their stored data is confidential, with

others unable to read their files. This is commonly achieved using encryption,

where each user generates a key and encrypts their files before writing them to

disk. However, confidentiality becomes more difficult to enforce in shared

company networks and cloud storage, where multiple users need access to the

same files. Classic access control methods [1, 2] describe how to enforce

restrictions in complex systems with many users. However, if someone gets direct

access to the storage device itself (either through software configuration errors or

physical access), they compromise the security of the entire access control system

[3]. Additionally, the storage service provider might be untrustworthy (for

example, in the case of cloud services). Users must either trust the service

provider to not disclose their data, or store their data encrypted with a secret

decryption key. However, if they want to share the data with other users, the

system scales poorly, because they must use a different key for each group of

users they shared a file with.

RBAC (Role-Based Access Control) [4] provides better access control by

allowing a user to be part of multiple roles (which are like groups) and roles to

have access to multiple resources. This access control method is suited for

1 Faculty Automatic Control and Computer Science, University POLITEHNICA of Bucharest, e-

mail: sergiu.costea@cs.pub.ro
2 Faculty Automatic Control and Computer Science, University POLITEHNICA of Bucharest
3 Faculty Automatic Control and Computer Science, University POLITEHNICA of Bucharest

mailto:sergiu.costea@cs.pub.ro

94 Valentin Ghiță, Sergiu Costea, Nicolae Țăpuș

organizations, where each user has one or more roles, and each role has different

permissions. Ferrara et al. described a new method of implementing RBAC [5],

called Cryptographically Enforced RBAC (Crypto RBAC), using a new

cryptographic method called Attribute Based Encryption [6]. Using this method,

the access control operations also enforce encryption of files. Crypto RBAC can

be used as an access control method in shared storage providers as it ensures both

confidentiality, through encryption, and a better access control model than classic

Linux systems. However, prior work on Crypto RBAC was only theoretical, with

the most relevant performance evaluations relying on simulations and estimations

[7].

We introduce a new Crypto RBAC system that offers a standard RBAC

interface and exposes a simplified storage interface to users. We describe the

architecture of our system and the implementation of our working prototype.

While currently a proof of concept, our system can be used as the foundation for

creating cloud-based secure storages which scale to large numbers of users and

complex access control requirements. Our system exposes an API which closely

follows the cryptographic primitives described in [5], and thus achieves strong

security guarantees. We only look at the security of storage access; the issue of

secure key distribution is orthogonal to our work and can be easily implemented

in practice with user passwords and TLS.

We also evaluate the performance of the system. As we describe later,

Crypto RBAC is not suitable for systems where the resources (files) change often,

because write operations have a high cost. Instead, it is useful when the resources

are modified rarely.

Our contribution is twofold. First, we implement Crypto RBAC as a

standalone library which developers can use to quickly build interfaces to

storages, while having strong security guarantees for access control. To improve

performance, we combine Crypto RBAC with a symmetric encryption scheme;

this allows us to run efficient symmetric encryption and decryption operations on

stored data (which can contain very large files), while using expensive ABE

encryption only on small keys. Second, we evaluate the security and performance

of our implementation. Our paper is organized as follows. In Section 2 we give a

brief overview of the main access control models. In Section 3 we include the

background on the main technologies used in our implementation, while Sections

4 and 5 describe the system architecture and implementation. Section 6 illustrates

a working example of our system.

2. Related Work

Multiple models for access to resources have been proposed in addition to

RBAC, including Discretionary Access Control (DAC) and Mandatory Access

Control (MAC) [1, 2]. DAC states that users having some rights over an object

Implementation of cryptographically enforced RBAC 95

can delegate that right to others. It is useful in scenarios with few users and where

resources have a specific owner; for example, Linux systems use DAC for access

control. MAC is more rigid and states that a user can use an object only if they

have specific rights for that exact object; it is used in security-critical scenarios

such as military applications or operating systems with a focus on security (e.g.

SELinux [8]).

The flexibility of RBAC [4] makes it suitable for large scale organizations,

and studies have shown that most organizations opt for this method of access

control. However, classical RBAC implementations lack formal proofs of security

and are commonly implemented using both trusted resource managers and

storage. Recent work by Ferrara et al. [5] proposed to implement RBAC using

strong cryptography, where each resource is encrypted using ABE keys. The

privilege to read resources is replaced by the ability to decrypt them. Their work

includes formal proofs which show that it is unfeasible for an adversary to retrieve

information they should not have access to. While the work of Ferrara et al. is

mostly theoretical, newer papers [9] have evaluated the performance of Crypto

RBAC. Their estimations suggest that implementations based on ABE should be

efficient enough to be used in production environments; however, their estimates

are based on simulations and not an actual implementation.

3. Access Control Models

Role Based Access Control (RBAC) is a method used to decide which

users have access to various resources. It is best suited for organizations where

users are organized in roles and each role has a set of permissions to access

resources.

In a system using RBAC, each transaction is made through a system

manager. The manager implements the following functions:

• Create and delete new roles, users and resources;

• Assign users to roles

• Withdraw roles from users

• Grant and revoke permissions for roles to resources;

• Checks permissions for read and write operations when users try to access

resources.

The manager holds the state of the entire system, including the

associations between users and roles and between roles and permissions. As a

simplification, we assume in this paper that the roles list is static and cannot be

modified after the system is created. Therefore, we do not describe the operations

that involve changes to the roles list.

Each RBAC system, regardless the implementation, must include

functions for the operations described above:

96 Valentin Ghiță, Sergiu Costea, Nicolae Țăpuș

Init(). Initializes the state of the whole system; the lists of users and

resources, the user – role assignment table and the role – resource permission

assignments table are set to empty. The (static) roles list is initialized with the

predefined list.

AddUser(name). If a user having the same name does not exist, then

the user is added to the list of users. Note that the new user has no permissions

yet.

AddResource(name, contents). If the resource having the same

name does not exist yet, a new resource is created with the given contents. Note

that no role has access to the resource yet.

AssignUser(user, role). Assigns the given user to the given role.

After this step, the user has access to all the resources specified in the role –

resource permission assignments table.

GrantPerm(role, resource). Grants permission for the given role

to the given resource. After this operation, the resource can be accessed by all the

users in the given role.

DeassignUser(user, role). Withdraws the given user from the

given role.

DelUser(user). Delete the given user. Before actually deleting the

user, the manager must first withdraw it from all the roles he was assigned to.

RevokePerm(role, resource). Revokes permission to the given

resource for the given role.

DelResource(resource). Deletes the given resource. Prior to

deletion, the manager must revoke the permissions of all the roles that had access

to the deleted resource.

Write(resource, user, contents). Writes the given contents

in the given file, on behalf of the given user. The operation succeeds only if the

user has access to the file (e.g. is member of at least one role which has access to

the file).

Read(resource, user). Reads the given resource on behalf of the

given user. The operation succeeds only if the user has access to the file

Attribute Based Encryption (ABE) is a cryptographic primitive that

redefines the public-key cryptography approach. In a standard public-key system,

the user public key is generally a random key that must satisfy a set of properties

to match the private key. In ABE, the public key of a user contains strings, known

as user attributes.

In ABE, plain text is encrypted for a set of attributes. The generated

ciphertext can only be decrypted by users having attributes that match the ones

under which the text was encrypted. The keys, in this case, are issued by a trusted

Implementation of cryptographically enforced RBAC 97

entity. As we will use ABE together with RBAC, the trusted entity will be the

RBAC manager. ABE defines four functions [6]:

Setup(). Initializes the ABE algorithm with a random state, providing a

global private key (master key – MK) and a set of public parameters – PK.

KeyGen(attributes, MK, PK). Generates a user private key based

on his public attributes. The user can decrypt the resources encrypted under the

given attributes.

Encrypt(plainText, attributes, PK). Encrypts the given

plain text under the given attributes. The function outputs a ciphertext that can be

decrypted by private keys generated for the given attributes.

Decrypt(ciphertext, privateKey, PK). Decrypts the given

ciphertext using the given user private key. The operation succeeds only if the

attributes under which the ciphertext was encrypted match the attributed for which

the private key was generated.

Advanced implementations of ABE allow defining access policies to

specify the way key attributes are matched with ciphertext attributes. An access

policy is an expression that is applied to a set of attributes and returns true of

false. As the access policy is an expression, it is convenient to represent it as a

tree, called tree access structure. Figure 1 shows an example of an access policy

represented as a tree structure that specifies that the attributes set must contain the

Teacher attribute or both the Student and Lab assistant attributes. Depending on

where the access policy is stored, Attribute Based Encryption can be either Key-

Policy ABE or Ciphertext-Policy ABE.

Fig. 1. Example of a tree access structure

In Key-Policy ABE (KP-ABE), the access policy structure is attached to

user private keys and the ciphertext is computed using a list of attributes. When a

private key tries to decrypt a ciphertext, the attributes of the ciphertext must match

the access policy of the ciphertext.

98 Valentin Ghiță, Sergiu Costea, Nicolae Țăpuș

In Ciphertext-Policy ABE (CP-ABE), the access policy is stored in the

ciphertext. This is a more natural model, because at the decryption the attributes

under which the private key was generated must match the access policy for the

ciphertext.

4. CryptoRBAC System Architecture

We implemented Cryptographically Enforced RBAC using Attribute

Based Encryption methods. The core of our architecture consists of a trusted

Manager which handles user keys, encryption, and decryption. Additionally, the

Manager translates generic read and write requests from clients to the appropriate

storage API calls (e.g. local storage or remote storage in the cloud).

We make the following correlations between the entities in RBAC and

ABE:

• The roles in RBAC become the attributes in ABE. We do this by defining

attributes with role names. A user in the system has as attributes in ABE

the roles he is a part of in RBAC.

• The resources in RBAC are the ciphertext resulting from ABE operations.

The contents written to resources are plain texts.

• The users in RBAC are given ABE private keys.

The system is designed as an intermediary between the users and the

storage provider. The users make all the read and write operations through the

manager.

The system is best suited for organizations. A system administrator with

access to the trusted Manager must create the users and assign them to

corresponding roles.

Users can either access the storage through the Manager, or read data

directly; when direct access is desired, users can receive read access to the entire

storage space. However, since privacy is enforced through encryption, their

private key will only allow them to decrypt the contents specified in the RBAC

policy. The storage provider is considered untrusted, if the private keys are not

stored on the same storage. The manager has access to every user’s data. Also, all

the communication between the users and the manager is made on secure

channels, for example by using Transport Layer Security [10]. Figure 2 shows the

overall design of the implemented system. The users can be both on the same

machine as the manager, or access the manager remotely, through the Internet.

Also, as the storage can be invisible for the users, the system can use multiple

storage systems (both local and remote).

Implementation of cryptographically enforced RBAC 99

Fig. 2. System architecture.

The user’s private keys are regenerated each time the user is assigned or

withdrawn from a role or when a role the user is part of is updated. This leads to a

key freshness problem: the keys can be changed even when the users are not

online. The stale, out of date, keys on offline clients can no longer decrypt any

content.

One possibility is to store the keys entirely on the system manager.

However, this means that all read operations must pass through the Manager.

Additionally, for each read the manager must first find the private key

corresponding to the user. Both these issues lead to poor scalability. Another issue

relates to security. If all the keys are stored on the manager, if it is compromised,

then all user data is compromised. To avoid storing private keys for long periods

of time on the Manager and to avoid stale key issues, we use a mixed approach:

the keys are stored on the manager until the users are online. Whenever users join

the system they first check to see if there are newer keys available; if true, they

download the new keys and can access the storage directly. Because our

implementation matches the algorithm descriptions in [6], security immediately

follows; only users whose roles allow access to a specific file can read that file. In

our case, a read attempt from a user without valid access rights causes the library

to output an error. For efficiency, we do not encrypt and decrypt files using ABE

directly. Instead, we use ABE to secure AES keys, which are in turn used to

encrypt and decrypt the files. The security properties of the Cryptographic RBAC

100 Valentin Ghiță, Sergiu Costea, Nicolae Țăpuș

algorithms guarantee that the AES keys can only be obtained by valid users (i.e.,

those that have been granted the correct access rights).

5. Implementation

The system is implemented in C, using the open-source ABE library

libbswabe2. The library handles all the ABE operations and exposes the ABE

interface described in Section 3.

The library is an implementation of CP-ABE, meaning that an access

policy must be created for each encrypted file. As the attributes in the system are

user roles, the access policy tells that the private key attributes must match one of

the access policy attributes. As the ABE operations are slower than AES, the

library only encrypts and decrypts a random key that will be used for AES [11]. A

ciphertext generated by the ABE library contains the AES key encrypted using

ABE under some attributes and the plaintext encrypted using AES with the key

described before. To decrypt the ciphertext, the library first decrypts the key using

ABE, if the private key matches the policy and the plain text results after a normal

AES decryption. When the set of roles that have access to a file changes, the file

must be re-encrypted using the attributes corresponding to the new set of roles.

This also happens when a user is withdrawn from a role. Because the user keys

are stored locally, the manager must generate a new attribute for the role and re-

encrypt all the files the role has access to using the new attribute.

As the changes in the organization structure (roles, roles permission and

user-role assignments) involve reencryption of files, Crypto RBAC is not well-

suited for such systems. Reads are fast, so the system can be used efficiently for

systems where the reads are frequent, but the changes are not.

Fig 3. Performance of read and write operations for a 1024-byte file owned by different numbers

of roles.

Implementation of cryptographically enforced RBAC 101

6. Performance Evaluation

We implemented a system in which access control is enforced indirectly,

using cryptographic methods. This means that there are no explicit checks for

permissions when a user tries to decrypt a resource. The system takes the user’s

private key and the encrypted resource and tries to decrypt the resource using the

key. If the decryption process is successful, then the user has access to file, in the

RBAC sense. If the decryption of an encrypted resource using a user private key

successful, it means that the key contains attributes that satisfy the policy under

which the resource was encrypted using ABE. As attributes correspond to user

roles, it means that the user has the necessary roles to access the resource. The

implementation resulted in an experimental system that can execute all the RBAC

commands described in Section 2. We evaluated performance by measuring the

average duration of library functions. We assume real systems will rarely modify

access controls, so assign and grant operations will be much rarer than reads and

writes. Therefore, we only include results for reads and writes. We ran the

experiments on a 64-bit Ubuntu machine with a 2.7GHz Intel Core i5 CPU with

hardware support for AES operations. Figure 3 shows the duration of read and

write operations for 1024-byte files. Because the performance of writes depends

on the number of roles that have access to the written file, we varied the number

of roles from 1 to 4. To measure the performance of the algorithms, the tests were

run without parallelization, and performed single reads or writes. Performance for

reads remained constant, with 2.7ms on average for one read. However,

performance for writes rapidly degrades with an increase in the number of users,

ranging from 9.2ms when a single role had file access, to 25.87ms for 4 roles. For

the latter, our library serves 36 write requests per second using a single core,

which is insufficient for large systems. Most of the time was spent in ABE code,

with AES and filesystem operations negligible in comparison. The results suggest

that the library is usable in small scale systems where the number of writes is

lower than the number of reads (e.g., small organizations). However, for systems

with many roles and write operations the solution is not currently feasible. More

efficient ABE schemes and implementations are necessary in this case.

7. Conclusions

We described the implementation of a Cryptographic RBAC system,

which is used to enforce access control policies indirectly, through cryptography.

The implemented system is a functional prototype of Crypto RBAC that can run

all the RBAC operations in the Section 2, hiding the implementation and the

underlying storage to the users. For this system to work, the manager must be

trusted by the users. The system can work with untrusted or shared storage

providers, where other users can read the stored files, if the users keep their

102 Valentin Ghiță, Sergiu Costea, Nicolae Țăpuș

private keys private. To minimize the risk of revealing all the user data when the

manager is compromised, we proposed a hybrid key management method where

the manager keeps generated user private keys until the users are online (when the

manager pushes the keys to users).

We evaluated experimentally the performance of our implementation, and

showed that it is efficient enough for systems containing a small number of users

or few write operations. However, performance rapidly degrades with an increase

in the number of users. For such cases, further work on optimizing the ABE

algorithms is needed.

R E F E R E N C E S

[1]. S. Osborn, R. Sandhu, and Q. Munawer, Configuring role-based access control to enforce

mandatory and discretionary access control policies. ACM Transactions on Information and

System Security (TISSEC) 3, no. 2 (2000): 85-106.

[2]. R. Sandhu, and Q. Munawer. How to do discretionary access control using roles. In

Proceedings of the third ACM workshop on Role-based access control, pp. 47-54. ACM,

1998.

[3]. D. Harnik, B. Pinkas, and A. Shulman-Peleg, Side channels in cloud services: Deduplication

in cloud storage. IEEE Security & Privacy 8, no. 6: 40-47, 2010.

[4]. D. Ferraiolo, J. Cugini, and D. R. Kuhn, Role-based access control (RBAC): Features and

motivations. In Proceedings of 11th annual computer security application conference, pp.

241-48. 1995.

[5]. A. L. Ferrara, G. Fuchsbauer, and B. Warinschi, Cryptographically enforced RBAC, 26th

Computer Security Foundations Symposium, IEEE, 2013.

[6]. V. Goyal, O. Pandey, A. Sahai, and B. Waters, Attribute-based encryption for fine-grained

access control of encrypted data, In Proceedings of the 13th ACM conference on Computer

and communications security, pp. 89-98. ACM, 2006.

[7]. W. C. Garrison, A. Shull, S. Myers, and A. J. Lee, On the practicality of cryptographically

enforcing dynamic access control policies in the cloud. In IEEE Symposium on Security

and Privacy (SP), 2016.

[8]. P. Loscocco, Integrating flexible support for security policies into the Linux operating system.

In Proceedings of the FREENIX Track: USENIX Annual Technical Conference, p. 29. The

Association, 2001.

[9]. W. C. Garrison III, A. Shull, S. Myers, and A. J. Lee, On the Practicality of Cryptographically

Enforcing Dynamic Access Control Policies in the Cloud, IEEE Symposium on Security

and Privacy, 2016.

[10]. T. Dierks, The transport layer security (TLS) protocol version 1.2, RFC 5246, 2008.

[11]. J. Daemen, and V. Rijmen, AES proposal: Rijndael, 1999.

