U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 2, 2017 ISSN 2286-3540

IMPLEMENTATION OF CRYPTOGRAPHICALLY
ENFORCED RBAC

Valentin Ghiti?!, Sergiu Costea?, Nicolae Tapus®

RBAC (Role-based access control) is an efficient method for sharing objects
between different groups of users. If RBAC is implemented using ABE (Attribute
Based Encryption), then the resulting system enforces access control indirectly,
through cryptography. We propose a new multi-user system based on
Cryptographically Enforced RBAC. To improve performance, our system combines
existing work on Cryptographically Enforced RBAC with symmetric cryptography.
From the best of our knowledge, we are the first to implement and experimentally
evaluate the feasibility of such a system, which was previously only analyzed
theoretically. We describe the architecture of our system, its implementation and
evaluate performance. Our solution can be used to implement secure storage in
clouds where the service provider is untrusted.

Keywords: access control, RBAC, ABE, secure storage
1. Introduction

Users often want to be certain that their stored data is confidential, with
others unable to read their files. This is commonly achieved using encryption,
where each user generates a key and encrypts their files before writing them to
disk. However, confidentiality becomes more difficult to enforce in shared
company networks and cloud storage, where multiple users need access to the
same files. Classic access control methods [1, 2] describe how to enforce
restrictions in complex systems with many users. However, if someone gets direct
access to the storage device itself (either through software configuration errors or
physical access), they compromise the security of the entire access control system
[3]. Additionally, the storage service provider might be untrustworthy (for
example, in the case of cloud services). Users must either trust the service
provider to not disclose their data, or store their data encrypted with a secret
decryption key. However, if they want to share the data with other users, the
system scales poorly, because they must use a different key for each group of
users they shared a file with.

RBAC (Role-Based Access Control) [4] provides better access control by
allowing a user to be part of multiple roles (which are like groups) and roles to
have access to multiple resources. This access control method is suited for

! Faculty Automatic Control and Computer Science, University POLITEHNICA of Bucharest, e-
mail: sergiu.costea@cs.pub.ro

2 Faculty Automatic Control and Computer Science, University POLITEHNICA of Bucharest

3 Faculty Automatic Control and Computer Science, University POLITEHNICA of Bucharest


mailto:sergiu.costea@cs.pub.ro

94 Valentin Ghita, Sergiu Costea, Nicolae Tapus

organizations, where each user has one or more roles, and each role has different
permissions. Ferrara et al. described a new method of implementing RBAC [5],
called Cryptographically Enforced RBAC (Crypto RBAC), using a nhew
cryptographic method called Attribute Based Encryption [6]. Using this method,
the access control operations also enforce encryption of files. Crypto RBAC can
be used as an access control method in shared storage providers as it ensures both
confidentiality, through encryption, and a better access control model than classic
Linux systems. However, prior work on Crypto RBAC was only theoretical, with
the most relevant performance evaluations relying on simulations and estimations

[7].

We introduce a new Crypto RBAC system that offers a standard RBAC
interface and exposes a simplified storage interface to users. We describe the
architecture of our system and the implementation of our working prototype.
While currently a proof of concept, our system can be used as the foundation for
creating cloud-based secure storages which scale to large numbers of users and
complex access control requirements. Our system exposes an APl which closely
follows the cryptographic primitives described in [5], and thus achieves strong
security guarantees. We only look at the security of storage access; the issue of
secure key distribution is orthogonal to our work and can be easily implemented
in practice with user passwords and TLS.

We also evaluate the performance of the system. As we describe later,
Crypto RBAC is not suitable for systems where the resources (files) change often,
because write operations have a high cost. Instead, it is useful when the resources
are modified rarely.

Our contribution is twofold. First, we implement Crypto RBAC as a
standalone library which developers can use to quickly build interfaces to
storages, while having strong security guarantees for access control. To improve
performance, we combine Crypto RBAC with a symmetric encryption scheme;
this allows us to run efficient symmetric encryption and decryption operations on
stored data (which can contain very large files), while using expensive ABE
encryption only on small keys. Second, we evaluate the security and performance
of our implementation. Our paper is organized as follows. In Section 2 we give a
brief overview of the main access control models. In Section 3 we include the
background on the main technologies used in our implementation, while Sections
4 and 5 describe the system architecture and implementation. Section 6 illustrates
a working example of our system.

2. Related Work

Multiple models for access to resources have been proposed in addition to
RBAC, including Discretionary Access Control (DAC) and Mandatory Access
Control (MAC) [1, 2]. DAC states that users having some rights over an object



Implementation of cryptographically enforced RBAC 95

can delegate that right to others. It is useful in scenarios with few users and where
resources have a specific owner; for example, Linux systems use DAC for access
control. MAC is more rigid and states that a user can use an object only if they
have specific rights for that exact object; it is used in security-critical scenarios
such as military applications or operating systems with a focus on security (e.g.
SELinux [8]).

The flexibility of RBAC [4] makes it suitable for large scale organizations,
and studies have shown that most organizations opt for this method of access
control. However, classical RBAC implementations lack formal proofs of security
and are commonly implemented using both trusted resource managers and
storage. Recent work by Ferrara et al. [5] proposed to implement RBAC using
strong cryptography, where each resource is encrypted using ABE keys. The
privilege to read resources is replaced by the ability to decrypt them. Their work
includes formal proofs which show that it is unfeasible for an adversary to retrieve
information they should not have access to. While the work of Ferrara et al. is
mostly theoretical, newer papers [9] have evaluated the performance of Crypto
RBAC. Their estimations suggest that implementations based on ABE should be
efficient enough to be used in production environments; however, their estimates
are based on simulations and not an actual implementation.

3. Access Control Models

Role Based Access Control (RBAC) is a method used to decide which
users have access to various resources. It is best suited for organizations where
users are organized in roles and each role has a set of permissions to access
resources.

In a system using RBAC, each transaction is made through a system
manager. The manager implements the following functions:

Create and delete new roles, users and resources;

Assign users to roles

Withdraw roles from users

Grant and revoke permissions for roles to resources;

Checks permissions for read and write operations when users try to access
resources.

The manager holds the state of the entire system, including the
associations between users and roles and between roles and permissions. As a
simplification, we assume in this paper that the roles list is static and cannot be
modified after the system is created. Therefore, we do not describe the operations
that involve changes to the roles list.

Each RBAC system, regardless the implementation, must include
functions for the operations described above:



96 Valentin Ghita, Sergiu Costea, Nicolae Tapus

Init (). Initializes the state of the whole system; the lists of users and
resources, the user — role assignment table and the role — resource permission
assignments table are set to empty. The (static) roles list is initialized with the
predefined list.

AddUser (name). If a user having the same name does not exist, then
the user is added to the list of users. Note that the new user has no permissions
yet.

AddResource (name, contents). If the resource having the same
name does not exist yet, a new resource is created with the given contents. Note
that no role has access to the resource yet.

AssignUser (user, role). Assigns the given user to the given role.
After this step, the user has access to all the resources specified in the role —
resource permission assignments table.

GrantPerm(role, resource). Grants permission for the given role
to the given resource. After this operation, the resource can be accessed by all the
users in the given role.

DeassignUser (user, role). Withdraws the given user from the
given role.

DelUser (user). Delete the given user. Before actually deleting the
user, the manager must first withdraw it from all the roles he was assigned to.

RevokePerm(role, resource). Revokes permission to the given
resource for the given role.

DelResource (resource). Deletes the given resource. Prior to
deletion, the manager must revoke the permissions of all the roles that had access
to the deleted resource.

Write (resource, user, contents). Writes the given contents
in the given file, on behalf of the given user. The operation succeeds only if the
user has access to the file (e.g. is member of at least one role which has access to
the file).

Read (resource, user). Reads the given resource on behalf of the
given user. The operation succeeds only if the user has access to the file

Attribute Based Encryption (ABE) is a cryptographic primitive that
redefines the public-key cryptography approach. In a standard public-key system,
the user public key is generally a random key that must satisfy a set of properties
to match the private key. In ABE, the public key of a user contains strings, known
as user attributes.

In ABE, plain text is encrypted for a set of attributes. The generated
ciphertext can only be decrypted by users having attributes that match the ones
under which the text was encrypted. The keys, in this case, are issued by a trusted



Implementation of cryptographically enforced RBAC 97

entity. As we will use ABE together with RBAC, the trusted entity will be the
RBAC manager. ABE defines four functions [6]:

Setup (). Initializes the ABE algorithm with a random state, providing a
global private key (master key — MK) and a set of public parameters — PK.

KeyGen (attributes, MK, PK). Generates a user private key based
on his public attributes. The user can decrypt the resources encrypted under the
given attributes.

Encrypt (plainText, attributes, PK). Encrypts the given
plain text under the given attributes. The function outputs a ciphertext that can be
decrypted by private keys generated for the given attributes.

Decrypt (ciphertext, privateKey, PK). Decrypts the given
ciphertext using the given user private key. The operation succeeds only if the
attributes under which the ciphertext was encrypted match the attributed for which
the private key was generated.

Advanced implementations of ABE allow defining access policies to
specify the way key attributes are matched with ciphertext attributes. An access
policy is an expression that is applied to a set of attributes and returns true of
false. As the access policy is an expression, it is convenient to represent it as a
tree, called tree access structure. Figure 1 shows an example of an access policy
represented as a tree structure that specifies that the attributes set must contain the
Teacher attribute or both the Student and Lab assistant attributes. Depending on
where the access policy is stored, Attribute Based Encryption can be either Key-
Policy ABE or Ciphertext-Policy ABE.

10f 2

h h

Teacher ‘ 2of 2

v v

‘ Student ‘ Lab assistant ‘

Fig. 1. Example of a tree access structure

In Key-Policy ABE (KP-ABE), the access policy structure is attached to
user private keys and the ciphertext is computed using a list of attributes. When a
private key tries to decrypt a ciphertext, the attributes of the ciphertext must match
the access policy of the ciphertext.



98 Valentin Ghita, Sergiu Costea, Nicolae Tapus

In Ciphertext-Policy ABE (CP-ABE), the access policy is stored in the
ciphertext. This is a more natural model, because at the decryption the attributes
under which the private key was generated must match the access policy for the
ciphertext.

4. CryptoRBAC System Architecture

We implemented Cryptographically Enforced RBAC using Attribute
Based Encryption methods. The core of our architecture consists of a trusted
Manager which handles user keys, encryption, and decryption. Additionally, the
Manager translates generic read and write requests from clients to the appropriate
storage API calls (e.g. local storage or remote storage in the cloud).

We make the following correlations between the entities in RBAC and
ABE:

e The roles in RBAC become the attributes in ABE. We do this by defining
attributes with role names. A user in the system has as attributes in ABE
the roles he is a part of in RBAC.

e The resources in RBAC are the ciphertext resulting from ABE operations.
The contents written to resources are plain texts.

e The users in RBAC are given ABE private keys.

The system is designed as an intermediary between the users and the
storage provider. The users make all the read and write operations through the
manager.

The system is best suited for organizations. A system administrator with
access to the trusted Manager must create the users and assign them to
corresponding roles.

Users can either access the storage through the Manager, or read data
directly; when direct access is desired, users can receive read access to the entire
storage space. However, since privacy is enforced through encryption, their
private key will only allow them to decrypt the contents specified in the RBAC
policy. The storage provider is considered untrusted, if the private keys are not
stored on the same storage. The manager has access to every user’s data. Also, all
the communication between the users and the manager is made on secure
channels, for example by using Transport Layer Security [10]. Figure 2 shows the
overall design of the implemented system. The users can be both on the same
machine as the manager, or access the manager remotely, through the Internet.
Also, as the storage can be invisible for the users, the system can use multiple
storage systems (both local and remote).



Implementation of cryptographically enforced RBAC 99

Manager

- T f )
Storage 1 Storage 2

Client 1 Client 2
Fig. 2. System architecture.

The user’s private keys are regenerated each time the user is assigned or
withdrawn from a role or when a role the user is part of is updated. This leads to a
key freshness problem: the keys can be changed even when the users are not
online. The stale, out of date, keys on offline clients can no longer decrypt any
content.

One possibility is to store the keys entirely on the system manager.
However, this means that all read operations must pass through the Manager.
Additionally, for each read the manager must first find the private key
corresponding to the user. Both these issues lead to poor scalability. Another issue
relates to security. If all the keys are stored on the manager, if it is compromised,
then all user data is compromised. To avoid storing private keys for long periods
of time on the Manager and to avoid stale key issues, we use a mixed approach:
the keys are stored on the manager until the users are online. Whenever users join
the system they first check to see if there are newer keys available; if true, they
download the new keys and can access the storage directly. Because our
implementation matches the algorithm descriptions in [6], security immediately
follows; only users whose roles allow access to a specific file can read that file. In
our case, a read attempt from a user without valid access rights causes the library
to output an error. For efficiency, we do not encrypt and decrypt files using ABE
directly. Instead, we use ABE to secure AES keys, which are in turn used to
encrypt and decrypt the files. The security properties of the Cryptographic RBAC



100 Valentin Ghita, Sergiu Costea, Nicolae Tapus

algorithms guarantee that the AES keys can only be obtained by valid users (i.e.,
those that have been granted the correct access rights).

5. Implementation

The system is implemented in C, using the open-source ABE library
libbswabe2. The library handles all the ABE operations and exposes the ABE
interface described in Section 3.

The library is an implementation of CP-ABE, meaning that an access
policy must be created for each encrypted file. As the attributes in the system are
user roles, the access policy tells that the private key attributes must match one of
the access policy attributes. As the ABE operations are slower than AES, the
library only encrypts and decrypts a random key that will be used for AES [11]. A
ciphertext generated by the ABE library contains the AES key encrypted using
ABE under some attributes and the plaintext encrypted using AES with the key
described before. To decrypt the ciphertext, the library first decrypts the key using
ABE, if the private key matches the policy and the plain text results after a normal
AES decryption. When the set of roles that have access to a file changes, the file
must be re-encrypted using the attributes corresponding to the new set of roles.
This also happens when a user is withdrawn from a role. Because the user keys
are stored locally, the manager must generate a new attribute for the role and re-
encrypt all the files the role has access to using the new attribute.

As the changes in the organization structure (roles, roles permission and
user-role assignments) involve reencryption of files, Crypto RBAC is not well-
suited for such systems. Reads are fast, so the system can be used efficiently for
systems where the reads are frequent, but the changes are not.

30

N J
m .
.o
2 20-
§ Operation
g L4 — Read
£ -+ Write
(0]
g 101 o
l_
0 : : : .
1 2 3 4

Number of roles with access to file

Fig 3. Performance of read and write operations for a 1024-byte file owned by different numbers
of roles.



Implementation of cryptographically enforced RBAC 101

6. Performance Evaluation

We implemented a system in which access control is enforced indirectly,
using cryptographic methods. This means that there are no explicit checks for
permissions when a user tries to decrypt a resource. The system takes the user’s
private key and the encrypted resource and tries to decrypt the resource using the
key. If the decryption process is successful, then the user has access to file, in the
RBAC sense. If the decryption of an encrypted resource using a user private key
successful, it means that the key contains attributes that satisfy the policy under
which the resource was encrypted using ABE. As attributes correspond to user
roles, it means that the user has the necessary roles to access the resource. The
implementation resulted in an experimental system that can execute all the RBAC
commands described in Section 2. We evaluated performance by measuring the
average duration of library functions. We assume real systems will rarely modify
access controls, so assign and grant operations will be much rarer than reads and
writes. Therefore, we only include results for reads and writes. We ran the
experiments on a 64-bit Ubuntu machine with a 2.7GHz Intel Core i5 CPU with
hardware support for AES operations. Figure 3 shows the duration of read and
write operations for 1024-byte files. Because the performance of writes depends
on the number of roles that have access to the written file, we varied the number
of roles from 1 to 4. To measure the performance of the algorithms, the tests were
run without parallelization, and performed single reads or writes. Performance for
reads remained constant, with 2.7ms on average for one read. However,
performance for writes rapidly degrades with an increase in the number of users,
ranging from 9.2ms when a single role had file access, to 25.87ms for 4 roles. For
the latter, our library serves 36 write requests per second using a single core,
which is insufficient for large systems. Most of the time was spent in ABE code,
with AES and filesystem operations negligible in comparison. The results suggest
that the library is usable in small scale systems where the number of writes is
lower than the number of reads (e.g., small organizations). However, for systems
with many roles and write operations the solution is not currently feasible. More
efficient ABE schemes and implementations are necessary in this case.

7. Conclusions

We described the implementation of a Cryptographic RBAC system,
which is used to enforce access control policies indirectly, through cryptography.
The implemented system is a functional prototype of Crypto RBAC that can run
all the RBAC operations in the Section 2, hiding the implementation and the
underlying storage to the users. For this system to work, the manager must be
trusted by the users. The system can work with untrusted or shared storage
providers, where other users can read the stored files, if the users keep their



102 Valentin Ghita, Sergiu Costea, Nicolae Tapus

private keys private. To minimize the risk of revealing all the user data when the
manager is compromised, we proposed a hybrid key management method where
the manager keeps generated user private keys until the users are online (when the
manager pushes the keys to users).

We evaluated experimentally the performance of our implementation, and
showed that it is efficient enough for systems containing a small number of users
or few write operations. However, performance rapidly degrades with an increase
in the number of users. For such cases, further work on optimizing the ABE
algorithms is needed.

REFERENCES

[1]. S. Osborn, R. Sandhu, and Q. Munawer, Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Transactions on Information and
System Security (TISSEC) 3, no. 2 (2000): 85-106.

[2]. R. Sandhu, and Q. Munawer. How to do discretionary access control using roles. In
Proceedings of the third ACM workshop on Role-based access control, pp. 47-54. ACM,
1998.

[3]. D. Harnik, B. Pinkas, and A. Shulman-Peleg, Side channels in cloud services: Deduplication
in cloud storage. IEEE Security & Privacy 8, no. 6: 40-47, 2010.

[4]. D. Ferraiolo, J. Cugini, and D. R. Kuhn, Role-based access control (RBAC): Features and
motivations. In Proceedings of 11th annual computer security application conference, pp.
241-48. 1995.

[5]. A. L. Ferrara, G. Fuchsbauer, and B. Warinschi, Cryptographically enforced RBAC, 26th
Computer Security Foundations Symposium, IEEE, 2013.

[6]. V. Goyal, O. Pandey, A. Sahai, and B. Waters, Attribute-based encryption for fine-grained
access control of encrypted data, In Proceedings of the 13th ACM conference on Computer
and communications security, pp. 89-98. ACM, 2006.

[7]. W. C. Garrison, A. Shull, S. Myers, and A. J. Lee, On the practicality of cryptographically
enforcing dynamic access control policies in the cloud. In IEEE Symposium on Security
and Privacy (SP), 2016.

[8]. P. Loscocco, Integrating flexible support for security policies into the Linux operating system.
In Proceedings of the FREENIX Track: USENIX Annual Technical Conference, p. 29. The
Association, 2001.

[9]. W. C. Garrison I11, A. Shull, S. Myers, and A. J. Lee, On the Practicality of Cryptographically
Enforcing Dynamic Access Control Policies in the Cloud, IEEE Symposium on Security
and Privacy, 2016.

[10]. T. Dierks, The transport layer security (TLS) protocol version 1.2, RFC 5246, 2008.

[11]. J. Daemen, and V. Rijmen, AES proposal: Rijndael, 1999.



