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PROCEDURE FOR ASSESSING NORMALITY IN SMALL
SIZE SAMPLES OF PHYSIOLOGICAL DATA

Ileana BARAN!?, Cristina SAVASTRU?

This paper reports an experimental study for physiological signals
acquisition, using artery applanation tonometry method. The records acquired from
a small size sample (20 subjects) were measured with Omron HEM 9000 Al device.
Results are analysed at univariate level in order to identify, estimate the statistical
model of data and validate the parameters inferred for each of the proposed
theoretical distribution laws.
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1. Introduction

Cardiovascular diseases are known as the main cause of mortality,
influenced by stress, age, heredity, cholesterol, physical inactivity and diabetes.
To prevent the development of arterial stiffness, stroke or myocardial infarctions,
is important to monitor the parameters (central systolic pressure, systolic -
diastolic pressure, pulse pressure etc.) that triggers such diseases [1]. Among
modern methods for determining these parameters is the arterial applanation
tonometry conducted with specific instruments for arterial pulse measurements
(SphygmoCor, Omron HEM 9000 Al, Watchpat, etc.).

Inspired by intraocular tonometry, the arterial applanation tonometry is
useful to analyze and capture the pulse wave in a noninvasive manner. Although
most of the measurements are taken from the peripheral radial artery, the
brachial-radial-ulnar artery system is also an eligible area because there is a rigid
structure (the bones) near the blood vessel that facilitate the uniform compression
and occlusion [2].

In this study, records of vital physiological parameters (blood pressure,
augmentation index - Al, heart rate, etc.) where made with Omron HEM 9000Al
device, for an experimental group of 20 subjects, aged between 21-58 years.
Statistical analysis of acquired data is performed using a procedure tailored for
small size samples.
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2. Physiological signals acquisition

The achieved data set, gives information about systolic pressure (SYS),
diastolic pressure (DIA), pulse pressure (PP), central systolic blood pressure
(cSBP), augmentation index (Al) and also about normal pulse values (PULSE).
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Flg 1. Results generated by HEM Omron Al 9000

The right side of Fig. 1 is a diagram that evaluates if the recorded results
are within normal limits for the patient age.

The first step for signal acquisition is adjusting the patient posture. Placing
the tonometer on the wrist can sometimes be problematic. An angle of 30 degrees
between the arm and the device, the existence of a rigid holder makes it easier for
sensing the pulse [3].

One of the important advantages offered by HEM Omron 9000 Al is the
simultaneous recording of the physiological variables listed above, opening
therefore the way to multivariate techniques for the statistical analysis of the
acquired data.

3. Structure of the acquired data

The experimental study targeted the population of healthy subjects without
diagnosed cardiovascular diseases. The units included in the sample have been
selected using a non-probability sampling technique namely the convenience
sampling, made up of people who were easy to reach in the time frame of the
experiment [4]. The main limitation of such a technique consists in the risk to
obtain a sampling bias (i.e. the units selected from the population for inclusion in
the sample does not reflect the population, and therefore, the sample could be
unrepresentative of the population). The characteristics of the population that are
of interest to this study are three anthropometric variables: the age (AGE), the
height (H) and the weight (G) of the units.

The physiological variables recorded using HEM Omron Al 9000 {SYS,
DIA, cSBP, PULS, Al} have been associated to the anthropometric variables of
each unit. Both physiological and anthropometric variables are direct observable
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variables (variables that can be observed and measured) [5] and together they
form a random vector with 8 entries. The sample under study consists of 20
realizations of the observed random vector, as a single record has been performed
for each of the 20 subjects of the experiment. Consequently, the data form a
sample of n = 20 points in a space with p = 8 dimensions.

Table 1
Sample size structure
dimensions 1 2 3 4 5 6 7 8
observations AGE H G cSBP | SYS DIA Al PULS
1 yu Y12 Y13 Y14 Y15 Y16 Y17 Y18
k Y1 Yie Y3 Yia Yis Ve Yk ks
n Ynl yn2 Yn3 ym yn5 YHG Yn7 yn8

The structure of the sample is made explicit in the table above. All the
random variables are numerical and continuous, which implies the continuity of
the random vector. All the entries of the random vector taken together have a
multivariate distribution described by the joint probability density function. When
isolated, each of the entries of the random vector has a univariate probability
distribution that can be described by its own probability density function. This is
called marginal probability density function, in order to distinguish it from the
joint probability density function associated to the random vector. A more formal
definition follows.

Let Y1,..., Yp be p continuous random variables forming a “p x 1”” random
vector. Then, the probability density function for each of the Y; random variables
with i = 1,..., p denoted by fv,(y) is called marginal probability density function

and can be obtained from the joint probability density function by integrating with
respect to all variables except Yi

—+00 —+o0
=] [ (Vo Yt VicarYp) Ay Ay g Ay 5.0y (1)

Many of the statistical procedures [6] performed on multivariate data are
based on the assumption that the data follow a multivariate normal distribution
(MVN) but, assessing multivariate normality is difficult in high dimension. A
rational approach consists in analyzing the univariate marginal probability density
functions followed by a bivariate analysis because if Y ~ MVN, all the marginal
and conditionals density functions are normal (MVN stands for Multivariate
Normal Distribution). Consequently, the first step in any statistical analysis of
multivariate data is to check if the marginal probability density functions defined
in (1) are normal for each entry of the random vector, and if not, which deviations
from normality can be identified. If for large enough sample sizes (> 30 or 40) the
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violation of the normality assumption should not cause major problems (i.e.
parametric procedures can be however used), for small samples such as the
present one, verification of the normality assumption should be mandatory
otherwise it would be difficult to draw accurate and reliable conclusions about
reality [7], [8].

There are several approaches to check for normality but, for the purposes
of this paper, two approaches have been selected: a graphic-analytical method
based on the empirical cumulative distribution function and the use of
goodness of fit tests.

4. Fitting a Univariate Distribution Using QQ Plots

When sample sizes are small, simply creating a histogram from the
available data cannot be qualified as an objective method to judge the assumption
of normality, because highlighting the shape of the theoretical distribution
function using the sample histogram is difficult, mainly because the shape of the
histogram can change significantly by simply changing the width of the class
intervals [9]. For small sample sizes the quantile-quantile plots (QQ plots) may be
used to assess more objectively whether data comes from a normal distribution.

For the univariate random variable Yk « - 1, 2 ...p) the available sample is
formed by n observations {yka,...,yxi,-.., ykn} Which rearranged in ascending order
will produce the raw of sample order statistics ykq) <...< Ykg) <-...< Ykn) , Where Yk
is called the i order statistic [10]. Special cases includes the minimum
Yk@ = Min {yx}j - 1...n and the maximum yin) = max {yxj}j - 1..n. When the sample
quantiles are distinct (which, in general will be true for a continuous variable),
exactly i observations will be smaller than or equal to yx).

The sample quantiles are plotted as a function of the corresponding normal
order statistic medians which are defined as:

X =N"HU;) @)

where U; are the uniform order statistic medians, defined in [11] and N is the
percent point function of the normal distribution i.e. the inverse of the normal
distribution function. It should be mentioned that when the sample quantiles are
represented as a function of theoretical quantiles computed using a given
distribution (normal distribution in this case), the QQ plot becomes a Probability
Plot (PP plot), as it will be referred hereafter.

The uniform order statistic medians can be approximated by:
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U; =1-U, fori=1
U; = (i—0.3175)/(n+0.365) fori=23...,(n~1) 3)
U; =0.5%" fori=n

If the hypothesis of normality holds, the points {xi, yk} in the PP plot will
fall along a straight line, because a PP plot compares the actual positions of the
observed quantiles to their corresponding positions in the theoretical population.
Departures from this straight line indicate departures from the specified statistical
model in this case the normal distribution.

The advantages of working with PP plots are:

a) a quick check of the agreement between the proposed theoretical model
(the normal distribution in this case) and the sample distribution,

b) it allows an easy detection of outliers and extreme values (sample values
which are not within the normal behavior of the analyzed variable),

c) in case of lack of fit with the theoretical model, the PP plot highlights the
nature of the deviations (for example different skewness, shorter or longer
than expected tails).

A straight line can be fit to the points and added as a reference line. The
intercept and slope of the fitted line are in fact estimators for the location and
scale parameters of the normal distribution in a least square approach. The
correlation coefficient associated with the linear fit to the data in the probability
plot PP plot, i.e. the Probability Plot Correlation Coefficient (PPCC) [12] can be
considered as a measure of the goodness of fit with the statistical model.
Reference [11] offers a table of critical values that can be used as a formal test of
the hypothesis that the sample comes from a normal distribution.

To find which statistical model provides the best fit for the data, different
theoretical distribution functions can be used to generate PP plots; the probability
plot with the highest correlation coefficient will be the best choice since it
generates the straightest probability plot.

When applying the least square method, the independent variable or the
regressor is the theoretical quantile from (2) while the dependent variable is the

sample order statistic y). The regression line is the model function:
k(i) = f(Xi;b) =bg +by - X +1 4)

where b = (b1, bo) is the vector of parameters, and riis a random variable named
residual which captures all other factors influencing the dependent variable yx
other than the regressor xi. The parameters estimated from the available data
applying the least square method (LSM) contains all the information needed to
identify the parameters of the normal distribution function used as statistical
model. The correspondence between the vector of parameters b in (4) and the
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parameters of the normal distribution is the following: by or the slope of the
regression line represents in this case the scale parameter o (or standard deviation)
of the normal distribution while bo the intercept of the regression line represents
the location parameter (or theoretical mean) u of the normal distribution.

PP plots have been drawn for all the random variables under study. The
results are summarized in fig. 2. The figure includes also a table with the least
squares estimates of the normal model’s parameters (location and scale) together
with the value of the sample PPCC. The visual analysis of the PP plots has not
revealed the presence of extreme values or outliers, consequently, all available
observations were kept. The point with G > 90 kg which seems to be an outlier
was accepted after being checked using Grubb’s test for outliers [14].

Variable AGE - (years) ' __Variable G - (kg) ' _Variable H - (cm)
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Fig. 2. — Probability plots for the the random variables
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The stronger sample linear correlation corresponds to the variable DIA,
which also exhibits the best agreement with the normal distribution in the PP plot.
The variables with a weaker correlation such as SYS and cSBP have also PP
plots, which suggest that the data distribution has a longer left tail than would be
expected under the theoretical distribution (i. e. normal) being considered. In
conclusion, the interpretation of the PP plots shows that the variables have not
outliers or extreme values and the null hypothesis that the data came from
populations with a normal distribution cannot be rejected, even for the variables
cSBP and SY'S without an objective measure of the departure from normality.

4. Goodness of fit tests

As already was stated, an objective approach to check the normal
distribution of data is to apply a goodness-of-fit test which, in general, refers to
measuring how well do the observed data correspond to the fitted (assumed)
model. Given a sample y1, V2, ..., yn Of observations on a random variable, a
goodness of fit test operates with the following hypothesis:

Ho:Y e F(y), the null hypothesis - the model F(y) fits

Versus
Ha:Y e F(y), the alternative hypothesis - the model F(y) does not fit
where F(y) is the assumed model.

4.1 Shapiro — Wilk (SW) test for normality

The test, introduced in [15] for small samples, is based on the distribution
of the following statistic:

2 2
n n B _ &

W {Zain yk(i)} {Z(Yk(i) - yk)} Yk :szk(i) (%)
i—1

i=1 i=1

where ki), 1 = 1...n are the order statistics associated to the sample yxj, j=1...n
from the random variable Yk, ain are suitably chosen constant coefficients, and y,

is the mean of the sample. It may be noted that if one is indeed sampling from a
normal population then the numerator and the denominator of W are both, up to a
constant, estimating the same quantity, namely o2, i. e. the variance of the
population. On the contrary, for non-normal populations, these quantities would
not in general estimate the same thing. The W statistic can also be interpreted as
the square of the correlation coefficient between the coefficients ain and the terms
Yk having the same rank in the order statistics raw; consequently, W will take
values between 0 and 1. For small values of the W statistic the null hypothesis is
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rejected while for values approaching 1 the null hypothesis is accepted. The
outcome of the SW test performed for the variables under study is given in table
2. The second and the third column display the sample mean and the sample
standard deviation which are the maximum likelihood estimators for the mean and
scale parameter of the normal distribution function F(y) assumed as statistical
model.

As it can be seen from the results summarized in table 2, the null
hypothesis is accepted with a significance level going up to o = 0.10 except for
two variables, namely systolic (SYS) and central systolic (cSBP) pressure. For
this two variables, the sample value of the statistic W is placed in the critical
region of the test, so that the validation of the normal model requires further
analysis, especially as the shapes of the PP plots and the PPCC values closer to
the critical value, have already signalled possible deviations from normality.

Table 2
Shapiro Wilk test - results
. W20;0.01 W20;0.05 W20;0.10
Variable | Mean SD w — 0.868 — 0.905 ~0.920
AGE 38.95 | 11.546 | 0.940 Ho accepted | Ho accepted Ho accepted
H 165.80 | 9.283 | 0.979 Ho accepted | Ho accepted Ho accepted
G 65.90 | 11.493 | 0.941 Ho accepted | Ho accepted Ho accepted

SYS 122.65 | 19.562 | 0.910 | Hoaccepted | Hoaccepted Ho rejected
cSBP 125.15 | 20.376 | 0.919 | Hoaccepted | Hoaccepted Ho rejected
DIA 73.35 | 9.388 | 0.984 Ho accepted | Ho accepted Ho accepted
Al 76.60 | 12.779 | 0.960 Ho accepted | Ho accepted Ho accepted
PULS 81.55 | 10.904 | 0.979 | Hoaccepted | Hoaccepted Ho accepted

4.2 The Filliben test of normality

To refine the analysis concerning the validity of the normal model, a
second goodness of fit test has been applied, the PPCC test for normality
introduced in [11] and referred as the Filliben test for normality. The approach
make use of a new test statistic for the composite hypothesis of normality (i. e.
location and scale of the distribution both unspecified and therefore replaced by
estimates of this two parameters), namely the probability plot correlation
coefficient PPCC, which had been already introduced in relation with the PP plots.
The test statistics is computed using relation (6), where ykq) is the i-th order
statistic for the sample on the random variable. Yk and xi, computed with (2) is a
measure of location loc(Xi) of the i-th order statistic from a standardized normal
distribution. The Filliben test uses as a measure of location the order statistic
medians for reasons which are argued in [11]:
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_n (Vk(i)—g)'(xi ‘g) gD _qm
po_ =l . Y :HZ Yi(i) X:HZXi (6)
é(yk(i)_y)?ﬂ(xi - = -

If the hypothesis Ho is true, the theoretical distribution function of the r
statistic (i. e. the probability to have r < rp) depends upon the sample size n. This
particular distribution function has been taken over from [11] and given in table 3.

Table 3
Theoretical distribution function of the r statistic for n = 20 observations
p=Pr(r<r)
rp 0.452 | 0.912 | 0.925 | 0.939 | 0.950 | 0.960 | 0.972
p 0.000 | 0.005 | 0.010 | 0.025 | 0.050 | 0.100 | 0.250
rp 0.981 | 0.987 | 0.991 | 0.992 | 0.994 | 0.995 | 0.995
p 0.500 | 0.750 | 0.900 | 0.950 | 0.975 | 0.990 | 0.995

The test results for the Omron data set are summarized in table 4. The
sample mean value reported in the second column of the table and the sample
standard deviation (SD) reported in the third column are point estimates of the
location and scale parameters of the populations under study.

Table 4
Results for the Filliben Test

Variable Mean SD S;;n (? CI:e I'n=20;0=0.05 I'm=20:0=0.10 Observation
AGE 38.95 11.721 0.9789 0.950 0.960
H 165.80 9.530 0.9887 0.950 0.960
G 65.90 11.601 0.9721 0.950 0.960

DIA 73.35 9.679 0.9933 0.950 0.960 PPCC > e

Al 76.60 13.061 0.9852 0.950 0.960 Ho is accepted
PULS 81.55 11.201 0.9894 0.950 0.960
SYS 122.65 19.562 0.9605 0.950 0.960
cSBP 125.15 20.376 0.9652 0.950 0.960

The decision is to accept the hypothesis Ho at a significance level o. = 0.10
for all the random variables tested, even for the variables SYS and cSBP which
failed to pass the SW test for the o = 0.10 significance level. The acceptance of
the hypothesis Ho is justified, because for alternative asymmetrical function to the
normal distribution, characterized by sample asymmetry coefficients between 0.6
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and 1.0, the power of the Filliben test is higher than the power of SW test, as has
been demonstrated in reference [11]. For the variables SYS and cSBP, the Pearson
asymmetry coefficients are 0.725 respectively 0.689, and consequently, the
decision to accept Ho is covered by the power of the Filliben test.

5. Conclusion

Subjects who participated in this experiment form a relatively
representative group for the population of interest in terms of anthropometric
characteristics (age, weight, height). Next to the anthropometric variables, five
physiological variables (cSBP, SYS, DIA, Al and PULSE), considered as
cardiovascular indicators, have been observed and simultaneously recorded using
an Omron HEM 9000AI device. The advantage of simultaneity offered by the
device, creates the opportunity to apply to the sample formed by the records,
different multivariate analysis techniques.

The main contribution of the paper consists in the solutions proposed for
performing the univariate analysis of data (the first necessary step of any
multivariate approach) based on the empirical cumulative distribution function
and not on the empirical density function. Although frequently used in other areas,
techniques based on the empirical cumulative function are not common in
biostatistics even though they present a number of advantages outlined in the
paper. This approach allows the assessment, with a good confidence level, of the
normality of small correlated data samples, a goal difficult to achieve by other
means.

The normality of the marginal univariate distributions was checked using
probability plots (PP) combined with the Filliben goodness of fit test (based on
the probability plot correlation coefficient, PPCC), as an alternative to the more
commonly used Shapiro-Wilk test. The proposed procedure can be used for small
size samples and can discriminate between the normal model and other alternative
asymmetric models. The use of PP plots facilitates the identification of extreme
values and outliers, if any, and reveals the presence and causes of deviations from
the normal distribution.

Further research will perform the bivariate analysis of the same data, to
see if partial correlations can be considered as normal, followed by a factor
analysis or a principal components analysis. These techniques are directed
towards clarifying the nature and the structure of the correlations between the
random variables under study (i.e. the entries of the random vector formed by the
anthropometric and physiological variables put together).
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