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This paper describes the application of the homotopy perturbations method
(HPM) in the computation of invariant measures (IMs) of the non-linear dynamical

systems which are characterized by the complex, chaotic behavior. The convergence of
the HPM is formally investigated and confirmed, and its efficiency is illustrated in sev-
eral examples of widely used chaotic maps.
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1. Introduction

One of the main problems in the study of nonlinear dynamical models consists in
the determination of their potential stochastic characteristics. Even in the case of the
nonlinear models of a deterministic type, particular attention is dedicated to analysis of the
statistical properties of their realizations (orbits). As the basic indicators of their asymptotic
behavior, for different choices of starting points, the invariant (probabilistic) measures (IMs)
are commonly used. The importance of IMs is particularly apparent in the precise analyses of
the so-called chaotic dynamical models. However, the determination of IMs is usually based
on the famous Frobenius-Perron equation, for which there exists no general procedure. In
this aim, here is described one of the possible ways of solving these kinds of problems, based
on homotopy perturbations method (HPM).

The HPM, proposed by He [1]-[4], is a general approximate-analytical approach, often
used to obtain the solutions of nonlinear equations of various types. In the recent years,
this method has been subject of extensive studies [5]-[7], and has been applied in solving of
the different kinds of problems such as various types of nonlinear differential and partial-
differential equations [8]-[10], Fredholm and Volterra integral equations [11]-[13], as well as
the different kinds of physical problems [14]-[16]. On the other side, the HPM has not
found significantly applications in the theory of chaos, as well as in the stochastic theory
in general. We point out that one similar, Homotopy Analysis Method (HAM) has been
applied in approximation of infinity convolutions of mixed stochastic distributions in [17].

This paper is organized as follows. A brief theoretical background, i.e., definitions
and the basic facts about chaotic maps and their invariant measures are given in following
Section 2. The main results, compared to the application of HPM in solving the Frobenius-
Perron equation, are presented in Section 3. In Section 4, we consider practical applications
of the HPM procedure in finding IMs of some typical, widely used chaotic maps. Finally,
Section 5 contains some concluding remarks.
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2. Preliminaries & definition of the problem

In general form, the non-linear dynamical model can be defined by the operator
T : A → A, where A ⊆ Rm and m is a dimension of operator T . More precisely, the
operator T generates the recurrence sequence:

x
(m)
n+1 = T (x(m)

n ), n = 0, 1, 2, . . . (1)

where x
(m)
n = (xn, xn−1, . . . , xn−m+1) ∈ A, and the properties of this sequence depend on

the mathematical structure of operator T . If for example the sequence (x
(m)
n ) converges, its

limit x∗ := limn→∞ x
(m)
n is uniquely determined by the equation x∗ = T (x∗). The value

x∗ is the fixed point of the operator T , and sufficient conditions for its existence give a

well-known Banach fixed point theorem. On the other hand, the sequence (x
(m)
n ) can have

two or more accumulation points, while in a limit case the number of such points becomes
infinite. Thus, these sequences are called chaotic, and they can be formally defined in the
following way (for more details, see for instance [18, 19]):

Definition 2.1. The operator T : A → A, A ⊆ Rm generates a dynamical chaos if:
(i) T is sensitive to the initial conditions, i.e. there exist δ > 0 such that for all x ∈ A

and any neighborhood U ∋ x, there exist y ∈ U and integer n ≥ 0 such that inequality
∥Tn(x)− Tn(y)∥ > δ holds;

(ii) T is topologically transitive, i.e. if for all open sets U, V ⊆ A exists integer n > 0
such that Tn(U) ∩ V ̸= ∅.

In free interpretation, the sensitivity of the operator T (x) implies existence of trajec-
tories with “closely” starting points, which become significantly different during subsequent
realizations. Left panel in Fig. 1 shows typical behavior of the one dimensional operator
T (x) = 1 − |1− 2x|, defined in the interval A = (0, 1). On the other hand, a property of
transitivity means that the trajectories of chaotic dynamical systems will take a values in
each open “part” of the set A in which they are defined. Such situation is shown in right
panel in the Fig 1, where A = (−1, 1) and the corresponding operator is T (x) = 1− 2

√
|x|.

Figure 1. Graphical illustration of the properties of sensitivity (panel left)
and transitivity (panel right) of the operator T (x).

Now, we introduce another term which is close to sensitivity conditions, and represents
important indicator of chaotic behavior of dynamical systems.

Definition 2.2. Let {x(m)
n }∞n=0 and {y(m)

n }∞n=0 be a sequences in A ⊆ Rm, defined by

recurrence relation (1), i.e. x
(m)
n = T (x

(m)
n−1) and yn = T (y

(m)
n−1), n ≥ 1. Then, the maximum

Lyapunov exponent of the operator T (x) is

λ := lim
n→∞

lim
d0→0

1

n
ln

dn
d0

, (2)
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where dn :=
∥∥∥x(m)

n − y
(m)
n

∥∥∥, n = 0, 1, 2 . . .

It was shown that Eq.(2), under certain conditions, uniquely determines Lyapunov

exponent λ independent of the choice of initial values x
(m)
0 ,y

(m)
0 . Also, if the operator T (x)

is a Frećhet-differentiable, then

x(m)
n − y(m)

n = Tn(x
(m)
0 )− Tn(y

(m)
0 ) ≈ DTn(x

(m)
0 )(x

(m)
0 − y

(m)
0 ), dn → 0,

where DTn(x
(m)
0 ) is the Jacobian of Tn(x) at x = x

(m)
0 . Thus, the limit in Eq.(2) can be

rewritten as

λ := lim
n→∞

1

n
ln
∥∥∥DTn(x

(m)
0 )

∥∥∥ . (3)

As is already mentioned, for chaotic dynamical systems, characterized by sensitivity to the
initial conditions, there exist very rapid, exponential changes of their trajectories, even for

“closely” initial values x
(m)
0 ≈ y

(m)
0 . Thus, positive values λ > 0 indicates the chaotic

structure of the sequence {x(m)
n }, i.e., of the operator T (x).

In the following, we assume that m = 1, and we define some relevant concepts related
to the definition of the problem of invariant measures (IMs) determination.

Definition 2.3. Let (A,F , µ) be a probability space on A ⊆ R, and let T : A → A be a
measurable operator, i.e. T−1(B) ∈ F for all B ∈ F . Then, T is a measure-preserving or,
equivalently, µ is a T -invariant measure, if µ(T−1(B)) = µ(B) for all B ∈ F .

Now, suppose that the invariant measure µ is absolutely continuous with respect to
the Lebesgue measure, i.e. that exist a density f : R → R such that

µ(B) =

∫
B

f(x) dx, ∀B ∈ F .

Then, the properties of measure-preserving for T (x) can be rewritten by the equality∫
B

T ◦ f(x) dx =

∫
B

f(x) dx, ∀B ∈ F .

Definition 2.4. Let (A,F , µ) be a probability space on bounded set A ⊂ R, and T : A → A
measure-preserving operator. In addition, assume that T (x) is piecewise smooth, i.e. there
exist a finite set of disjoint open intervals I1, . . . , Is such that A ⊆ I1 ∪ · · · ∪ Is, where Ij
is the closure form of Ij , and T (x) is C∞ map on each Ij , j = 1, . . . , s. Then, T (x) is
expanding map if there are finite numbers β > α > 1 such that β ≥ |T ′(x)| ≥ α, for each
x ∈ Ij , j = 1, . . . , s.

It can be shown (see, for instance [20]) that for piecewise smooth and expanding
map T (x), the density f(x) of the absolutely continuous T -invariant measure µ obeys the
well-known Frobenius-Perron equation:

f(x) =
∑

y∈T−1(x)

f(y)

|T ′(y)|
. (4)

Here, T−1(x) = {g1(x), . . . , gℓ(x)} is a finite set of inverse branches of the operator T (x).
The existence of the solution of the Eq.(4), in the case of piecewise monotonic, continuous
and convex maps on the unit interval [0, 1] is proved in [21, 22]. On the other hand, the
approximate solutions of Eq.(4) are mainly based on some finite approximation methods
[23]-[25], or random perturbations based methods [26]-[28].
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3. HPM Solution of the Frobenius-Perron Equation

In order to effective solve the Frobenius-Perron Eq.(4), here we propose a procedure
based on the HPM. Firstly, we construct the following homotopy equation:

(1− p)
[
F (x; p)− f0(x)

]
+ h p

F (x; p)−
∑

y∈T−1(x)

F (y; p)

|T ′(y)|

 = 0, (5)

where p ∈ (0, 1) is the embedding parameter, and h ̸= 0 is the auxiliary parameter. When
p = 0, the homotopy Eq.(5) has the so-called initial solution F (x; 0) = f0(x), which can be
chosen arbitrarily. On the other hand, when p = 1, the solution of the homotopy Eq.(5)
becomes equivalent to original Eq.(4). The basic assumption of HPM is that the solution of
the homotopy Eq.(5) can be expressed as the power series in p:

F (x; p) =
∞∑
k=0

pk fk(x). (6)

In accordance to Eq.(5) and the condition of convergence the power series in Eq.(6), solution
of the Frobenius-Perron Eq.(4) can be obtain as:

f(x) := lim
p→1−

F (x; p) =
∞∑
k=0

fk(x). (7)

Now, substituting the power series defined by Eq.(6) in Eq.(5), and after rearranging of
some terms, the following equation holds:

+∞∑
k=1

pk fk(x) + h pf0(x) = (1− h)
+∞∑
k=2

pkfk−1(x) + h
+∞∑
k=1

pk
∑

y∈T−1(x)

fk−1(y)

|T ′(y)|
. (8)

Equating expressions in Eq.(8) with the identical powers pk, k = 1, 2, . . . , we obtain the
following equations:

f1(x) =
∑

y∈T−1(x)

f0(y)

|T ′(y)|
− h f0(x), (9)

fk(x) = (1− h) fk−1(x) + h
∑

y∈T−1(x)

fk−1(y)

|T ′(y)|
, k ≥ 2. (10)

Using Eqs.(9)–(10), functions {fk(x)} can be obtained recursively for an arbitrary k =
1, 2, . . . . According to these, the so-called HPM-approximations of unknown function f(x)
will be:

f̂k(x) :=

k∑
j=0

fj(x), k = 0, 1, 2, . . . (11)

The convergence of this iterative procedure, under certain necessary conditions, will be
proven in the following.

Theorem 3.1. Let {fk(x)}∞k=0 be the sequence of the non-negative functions defined on
the bounded set A ⊂ R by recurrence relations in Eqs.(9)–(10). In addition, let assume that
the following conditions are satisfied:

(i) The function f0(x) is bounded on A, i.e. there existM > 0 such that the inequality

∥f0(x)∥ := max
x∈A

|f0(x)| ≤ M

holds.
(ii) T (x) is a bounded, piecewise smooth and expanding operator on A, with finite

set of ℓ inverse branches.
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(iii) There exist q > 0 such that the inequalities
∥∥T ′(x)−1

∥∥ ≤ q and 0 < h(1−q ℓ) < 1
hold.

Then, the sequence {f̂k(x)}∞k=0, defined by Eq.(11), uniformly converges on A to the
function f(x), i.e. to the solution of the Eq.(4).

Proof. According to assumptions of theorem, as well as Eqs.(9)-(10), for fixed but an arbi-
trary x ∈ A we have:

|f1(x))| =

∣∣∣∣∣∣
∑

y∈T−1(x)

f0(y)

|T ′(y)|
− h f0(x)

∣∣∣∣∣∣ ≤
∑

y∈T−1(x)

|f0(y)|
|T ′(y)|

≤ q ℓM,

|f2(x)| ≤ (1− h) |f1(x)|+ h
∑

y∈T−1(x)

|f1(y)|
|T ′(y)|

≤ q ℓMB,

where B := 1− h(1− q ℓ) ∈ (0, 1). In general, using the induction method, it can be easily
proved that inequalities:

|fk(x)| ≤ q ℓMBk−1 (12)

hold for each k = 1, 2, . . . Now, let r(x) be the radius of convergence of the power series in
Eq.(6). Applying the Cauchy-Hadamard theorem and Eq.(12), it follows:

r(x) =

[
lim sup
k→∞

|fk(x)|1/k
]−1

≥ lim
k→∞

(q ℓM)−1/kB−1+1/k = B−1 > 1.

Thus, this power series converges at p = 1. On the other hand, according to Eqs.(9)-(11)
we obtain: ∣∣∣f̂0(x)∣∣∣ = |f0(x)| ≤ M,∣∣∣f̂1(x)∣∣∣ ≤

∣∣∣f̂0(x)∣∣∣+ |f1(x)| = M(1 + q ℓ),∣∣∣f̂2(x)∣∣∣ ≤
∣∣∣f̂1(x)∣∣∣+ |f2(x)| = M(1 + q ℓ+ q ℓB),

and, in general,

∣∣∣f̂k(x)∣∣∣ ≤ M

1 + q ℓ

k−1∑
j=0

Bj

 = M

(
1 + q ℓ

1−Bk

1−B

)
, k = 1, 2, . . .

In the limite case, when k → ∞, it follows that:∣∣∣∣∣∣
∞∑
j=0

fj(x)

∣∣∣∣∣∣ = lim
k→∞

∣∣∣f̂k(x)∣∣∣ ≤ M lim
k→∞

(
1 + q ℓ

1−Bk

1−B

)

= M

(
1 +

q ℓ

h(1− q ℓ)

)
< +∞.

Therefore, the power series
∑∞

j=0 p
jfj(x) is absolutely and uniformly convergent at p = 1.

According to Abel’s theorem, function F (x, p), defined by Eq.(6), is continuous from the left
at p = 1, i.e. the Eq.(7) holds. Thus, the series

∑∞
j=0 fj(x) is a solution of the homotopy

equation Eq.(5) when p = 1, i.e. it is solution of the Frobenius-Perron Eq.(4). �

Using the previous theorem, the errors of HPM-approximations can be estimate in
the following way:
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Corollary 3.1. The error of k-th HPM approximation Ek(x) :=
∣∣∣f(x)− f̂k(x)

∣∣∣ for an

arbitrary x ∈ A satisfies inequality:

Ek(x) ≤
q ℓM [1− h(1− q ℓ)]

k

h(1− q ℓ)
.

Proof. This statement follows immediately from the inequalities:

Ek(x) =

∣∣∣∣∣∣
∞∑
j=0

fj(x)−
k∑

j=0

fj(x)

∣∣∣∣∣∣ ≤
∞∑

j=k+1

|fj(x)| ≤ qM

∞∑
j=k

Bj =
qMBk

1−B
.

�

Remark 3.1. Thanks to the appropriate choice of the initial approximation f0(x), such

that normalized condition
∫ b

a
f0(x) dx = 1 hold, the boundary condition (i) of the previous

theorem can be easily fulfilled. On the other hand, condition (ii) ensures the existence of
finite set T−1(x) of ℓ inverse branches, which are bounded on A ⊂ R. Finally, notice that for
chaotic maps, in accordance to Eq.(3), the condition minx∈A |T ′(x)| > 1 ensures the positive
value of Lyapunov exponent λ. Moreover, if ∥T ′(x)∥ > ℓ, the condition (iii) will be satisfied
for an arbitrary h ∈ (0, 1], and q such that∥∥T ′(x)−1

∥∥ =
∥∥(T−1(x))′

∥∥ ≤ q < 1/ℓ.

In the following, we give some application of the aforementioned HPM procedure, where
these conditions will be examined.

4. Application of the HPM procedure

In this section, the practical application of the HPM in determining IMs is described
on a several examples of widely used chaotic maps.

Example 4.1 (Tent map). Consider on the unit interval (0, 1) the following map (Fig. 2,
left panel):

T (x) = 1− |1− 2x| =

{
2x, 0 ≤ x ≤ 1/2,

2(1− x), 1/2 ≤ x ≤ 1.

Here, we have |T ′(x)| = ℓ = 2 and T−1(x) = {x/2, 1 − x/2}, so the Frobenius-Perron
equation is

f(x) =
1

2

[
f
(x
2

)
+ f

(
1− x

2

)]
.

Although the condition (iii) of Theorem 3.1 is not fulfilled, taking h = 1, f0(x) ≡ 1, and
applying Eq.(9), it is obtained:

f1(x) =
1

2

[
f0

(y
2

)
+ f0

(
1− y

2

)]
− f0(x) =

1

2
(1 + 1)− 1 ≡ 0.

Then, Eq.(10) immediately gives fk(x) ≡ 0, for all k = 2, 3, . . . Thus, the initial approx-
imation f0(x) ≡ 1 is the exact solution of Eq.(4), i.e. it is the invariant measure for this
map.

Example 4.2 (Baker’s map). Now, consider the closed unit interval [0, 1] and the map
(Fig. 2, right panel):

T (x; a) =


x

a
, 0 ≤ x < a,

a(x− a)

(1− a)
, a ≤ x ≤ 1,
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Figure 2. Graphics of the tent map (panel left) and the Baker’s map (panel right).

where a ∈ (0, 1) is a predefined parameter. In this case, we have:

|T ′(x)| =


1

a
, 0 ≤ x < a,

a

1− a
, a ≤ x ≤ 1,

and T−1(x) = {g1(x), g2(x)}, where g1(x) = ax, 0 ≤ x ≤ 1, and

g2(x) =


1− a

a
x+ a, 0 ≤ x < a,

0, a ≤ x ≤ 1,

are the inverse branches of the operator T (x; a). Thus, the Frobenius-Perron Eq.(4) takes a
form:

f(x) =

 a f(g1(x)) +
1− a

a
f(g2(x)), 0 ≤ x < a,

a f(g1(x)), a ≤ x ≤ 1.

If we take, as in the previous example, h = 1 and f0(x) ≡ 1, by applying Eqs.(9)-(10)
we obtain:

f1(x) =

 a f0(g1(x)) +
1− a

a
f0(g2(x))− 1, 0 ≤ x < a,

a f0(g1(x))− 1, a ≤ x ≤ 1,

=


(a− 1)2

a
, 0 ≤ x < a,

a− 1, a ≤ x ≤ 1,

f2(x) =

 a f1(g1(x)) +
1− a

a
f1(g2(x)), 0 ≤ x < a,

a f1(g1(x)), a ≤ x ≤ 1,

=


(a− 1)3

a
, 0 ≤ x < a,

(a− 1)2, a ≤ x ≤ 1.
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In general, for each k = 1, 2 . . . we have:

fk(x) =


(a− 1)

k+1

a
, 0 ≤ x < a,

(a− 1)
k
, a ≤ x ≤ 1,

and according to these, it follows:

f(x) :=

∞∑
k=0

fk(x) =


1 +

(a− 1)
2

a

∞∑
k=0

(a− 1)k, 0 ≤ x < a,

1 + (a− 1)

∞∑
k=0

(a− 1)k, a ≤ x ≤ 1,

=


1

a(2− a)
, 0 ≤ x < a,

1

2− a
, a ≤ x ≤ 1.

It can be easily proved that the last expression is exact solution of the Frobenius-
Perron equation. Thus, using the HPM is obtained the IM of the Baker’s map. Notice that,
as in the previous example, the condition (iii) of Theorem 3.1 cannot be fulfilled, but the
HPM procedure converges for an arbitrary a ∈ (0, 1).

Example 4.3 (Logistic map). At last, consider the map T (x) = 4x(1 − x), x ∈ (0, 1),
for which the set of inverse branches is T−1(x) = {g1(x), g2(x)}, with g1,2(x) = (1±

√
x)/2.

Then, |T ′ (g1,2(x))| = 4
√
1− x, and the Frobenius-Perron equation is

f(x) =
f(g1(x)) + f(g2(x))

4
√
1− x

.

If starting again with h = 1 and f0(x) ≡ 1, the Eqs.(9)–(10) give:

f1(x) =
f0(g1(x)) + f0(g2(x))

4
√
1− x

− f0(x) =
1

2
√
1− x

− 1,

f2(x) =
f1(g1(x)) + f1(g2(x))

4
√
1− x

=

√
2− 2

√
1− x+

√
2 + 2

√
1− x− 2

√
x

4
√

x(1− x)
,

etc.

In general, by using the induction method, it can be prove that:

fk(x) =
Qk(x)

2k
√
x(1− x)

− f̂k−1(x), k = 2, 3, . . .

where

Qk(x) :=
∑

(j1,j2,...,jk)

√
2 + (−1)j1

√
2 + (−1)j2

√
2 + · · ·+ (−1)jk−12

√
1− x,

(j1, j2, . . . , jk−1) are the (k − 1)-element variations of {0, 1} with repetition, and f̂k(x) are
the HPM-approximations defined by Eq.(11). Thus, when k → ∞,

Qk(x) ∼ 2k−1

√
2 +

√
2 +

√
2 + · · ·+ 2

√
1− x︸ ︷︷ ︸

k times

.
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and applying Vieta formula, it follows Qk/2
k ∼ 1/π, k → ∞. Finally,

f(x) = lim
k→∞

f̂k(x) = lim
k→∞

k∑
j=1

fj(x) = lim
k→∞

Qk(x)

2k
√

x(1− x)
=

1

π
√
x(1− x)

,

where the limit function thus obtained is a exact solution of the Frobenius-Perron equation,
i.e. represents the IM of the logistic map. Let us remark that this IM belongs to the
well-known class of beta distributions, whose density, as well as the histogram of empirical
distribution is shown in the left panel of Fig. 3. In the right panel of the same figure,
convergence of the HPM-approximations can be seen. Notice that already for k ≥ 3, the

functions f̂k(x) give precise approximations of the IM f(x).

Figure 3. Histogram of 5.000 realizations of the logistic map (panel left)
and the HPM-approximations of its invariant measure (panel right).

5. Conclusion

In this work the Homotopy Perturbation Method (HPM) has been used for solving
Frobenius-Perron equation, i.e. for determination of the invariant measures in chaotic dy-
namical systems. Presented theoretical and practical results indicate the convergence of the
HPM to the exact solution. Namely, the invariant measures are analytically determined in
several examples of chaotic mappings, what confirm the suitability and the applicability of
the HPM in solving this kind of problem.
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