
U.P.B. Sci. Bull., Series A, Vol. 74, Iss. A, 2012                                                    ISSN 1223-7027 

SYSTEMS OF DIFFERENTIAL EQUATIONS, ASSOCIATED 
PARABOLAS AND GENERALIZATIONS 

Octav OLTEANU1, Ioan SEBESAN2 

 Se propune o metoda de explicitare a solutiei aproximative a unui sistem 
diferential neomogen,neliniar. Apoi se considera sisteme mai generale de ecuati, 
rezolvabile pe baza unor contractii pe  intervale mici. Se studiaza pe scurt unele 
aspecte privind norma operatorului de derivare si sisteme ortogonale cu proprietati 
speciale adecvate acestei problematici. Se propune o forma explicita a solutiei unei 
probleme  legate de miscarea  unui fluid perfect. In fine, fiind dat un operator liniar 
marginit, se construieste un subspatiu asociat, pe care operatorul de derivare 
coincide cu cel dat.  

A method of finding explicit approximate solution for a nonlinear differential  
system is proposed. Then one considers similar more general systems, which can be 
solved by using contractions on small intervals. Some aspects concerning the 
continuity and  the norm of the derivation operator, as well as related orthogonal 
systems are briefly discussed.  

An explicit form of the solution related to the movement of a perfect fluid is 
proposed. Finally, to any linear bounded operator, one associates a subspace on 
which the derivation operator equals the given operator. 

 
Keywords: stick-slip solutions, local contractions, derivation operators, 

analyticity. 

1 Introduction 

There are several methods of solving “exactly” or approximating the 
solutions of linear and nonlinear systems of differential, partial differential  
equations and integral equations: [1]-[3], [5], [7], [10], [11],[13], [16], [18], [19], 
[21]. Some of these systems are motivated by movement equations, vibrations or 
other phenomena, having applications in several fields: [1], [3], [7], [8], [10], 
[11], [13], [18], [19], [21]. In most of the cases, it is difficult to find expressions 
of exact solutions. That is the reason of the development of general approximating 
and variation-calculus methods: [1], [8], [10], [11], [13], [18], [19], [21]. The 
approximation is local or “global”. In both of these cases, the successive 
approximation and similar iterative methods remains one of the most important 
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tools. Methods based on integral transforms, distribution theory and functional 
analysis are developed and frequently used: [1], [4], [5], [7], [8], [11], [13], [19], 
[21]. In studding stability at equilibrium points, even in the case of affine systems 
of first order equations, difficulties may occur because of the non-constant “free 
term”. That is why special methods could be useful in both problems. Complex 
functions, probabilistic, algebraic, and nonstandard methods for similar problems 
are used: [2], [7], [8], [16]. There are functional equations, discrete-type problems 
and constructive problems, optimization problems, which can be reduced to 
differential or integral equations, or which can be used in solving similar 
problems: [1], [5], [6], [9], [12], [14], [15], [19], [20]. In the first part of this work, 
we study some aspects of the following nonlinear system of equations describing 
the motion during the stick-slip phenomenon [18]: 
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                                ( )1  

Here 2,1, == jII j  is the inertia moment of each wheel. 
It is easy to see that even in the case of linear moments (see the first case ( )2 ), a 
direct computation of the explicit solution seems to be difficult. Therefore, special 
methods can be useful. This is the aim of the first part of this work. For the first 
part, the meaning of the notations, details and numerical values used are those 
from [18]. The inertia friction-moments of the wheels, respectively the traction 
motor moment are: 
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                            ( )2  

The inertia moments rIII ,, ′  are constants. Some other symbols appearing in ( )1  
and ( )2  have the meaning of constant quantities. Some of them are movement 
parameters. For sufficiently large values of velocities, the friction forces and 
moments of the wheels are decreasing, and the stick-slip does not occur any more. 
An important remark is that the moments ( ) ,/, rvyyM jjjjt −=ϕ�  are continuous 
everywhere and piecewise analytic as functions of ,2,1, =jy j  being non-
differentiable at .pjy ϕ�±=  Around any point ,0t  local solutions do exist, and they 
are ( )1C  functions. If at a point, we have  

( ) ,0 pj ty ϕ�≠  
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then there exist analytic local solutions, which are defined on a maximal 
subinterval. We have the following relation on the movement parameters, which 
show that the moments ( ) ( ) 2,1,/:~

=−= jrvMyM jjtjjt ϕ�  are continuous at :pjy ϕ�±=  
( )[ ]brarbar pp −=⇔+= μϕϕμ // ��                                                              ( )3  

Observe that jtM  are even functions of ;2,1, =jy j  slightly modifying ( )jjt yM  
around pjy ϕ�=  with the aid of a parabola, one obtains a )1(C  function on the 
whole interval, preserving the property of attaining the maximum at .pϕ�  The 
advantage of using smooth curves is that of possible applying results of 
differential calculus. The velocity pϕ�  corresponds to the adherence limit, which is 
(almost) constant on the stick-slip interval of time.  
The rest of the paper contains the following results. In Section 2, one gives 
explicit approximate solutions of system ( ).1  Section 3 contains “local solutions as 
fixed points for local contractions”. Some remarks on the norm of derivation-
operator, as well as related orthogonal systems are contained in Section 4. As an 
application of Hermite’s functions, an explicit solution for a particular case 
concerning the movement of a perfect fluid is proposed. Then one applies these 
results in solving the general case. Section 5 is devoted to subspaces associated to 
a bounded linear operator, on which the derivation operator equals the given 
operator. The end of the paper contains some conclusions. 

 
2  Explicit solutions for constrained stick-slip and stability results 
 

In the following theorems, we will call solution of the system ( ),1  functions 
{ }2,1,, ∈jrj ϕϕ ��  verifying the system. The initial conditions will be homogeneous. 

For this problem, an equilibrium point is a point et  at which we have:  
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At such point, the adherence is optimal, and it is an local extremum point for 
.,2,1, rj j ϕϕ �� =  Thus, if we have a maximum point for 1ϕ� , on a subinterval [ ]δ+ee tt ,  

the signature of 2,1,, =jrj
ϕϕ ����  will be constant, for 1ϕ��  being negative. To the left of 

,et  the signature of 1ϕ��  will be positive. In all cases, at an equilibrium point, on an 
interval situated on one side of this point, the signature of each of the second 
derivatives is constant. The first condition ( )3  is the usual equilibrium point 
definition. The rest of conditions ( )3  concern the stick-slip. A useful remark is that 
the continuous functions ( )jjt yM  can be approximated in various ways around the 
non-smooth point py ϕ�=  and on the stick-slip interval [ ]B,0  of variation of 

.2,1,/ =−= jrvy jj ϕ�  Next, we give a method of approximation. This method 
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preserves the form of the graph of ( ) 2,1,~
=jyM jjt  outside a small interval. It 

avoids rapidly decreasing moments of the wheels, realizing a smooth and almost 
flat behavior around .pϕ�  This behavior avoids the loss of adherence, and allows 
the increasing of accelerations .2,1, =jjϕ��  
Lemma 1 Let 0>ε  sufficiently small. There is ( ) 0>εδ  and a two-degree 
algebraic polynomial ( ) 01

2
222 ααα ++== yyypp  in ,/ rvy −=ϕ� ,02 <α  defined on 

( )[ ],, εδϕεϕ +− pp ��  such that: 
( ) ( ) ( )[ ]
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 is a ( )1C  function, approximating uniformly the non-derivable function ( ).~
11 yM t   

Proof. The derivative of ( )jjt yM~  with respect to jy  is constant on [ ],, pp ϕϕ ��−  being 
equal to prQ ϕμ �/  on this interval. Outside this interval, its value is 

[ ].,,/ 2
ppyyQa ϕϕ ��−∉−   

We will modify this derivative around ,1 py ϕ�=  making it linear on 
[ ] ., ,δεδϕεϕ Ipp =+− ��  The derivative must vanish at pϕ�  and be continuous on [.,0[ ∞  
Pasting the graphs of the affine functions, and integrating, one obtains its 
primitive on the positive semi- axis. It will be a second-degree algebraic 
polynomial on the interval ,,δεI  and a ( )1C  function on the positive semi-axis, with 
maximum point .pϕ�  Then one extends the obtained function to the whole ,R  such 
that to obtain an even ( )1C  function. Finally, one considers the restriction of this 
function to the interval of the values of ,jy  which is bounded for each { }.2,1∈j  
The equation of the straight line defined by the points: 

( ) ( )0,,/, ppp rQ ϕϕμεϕ ��� −  
and its intersection with the graph of the right-side derivative ( ) ( ) 2/ yaQyf −=′  are: 
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Whence, there is a unique ( ) ,0,0, →→=+=∗ εεδδδϕ py �  verifying the last 
condition. This follows from qualities of the graph of the three degree polynomial 
function involved in the last equation in .∗y  Integration on ( )[ ]εδεϕ +− yp ,�  yields: 



Systems of differential equations, associated parabolas and generalizations               109 

( ) ( )( ) ( )( )

( )( ) ( ) ( )

( )[ ].,

2
max

2
11

2
1

22

22
2

εδϕεϕ

ε
ϕ
μ

ϕ
εϕ

ϕ
εϕ

ε
μ

εϕεϕ
ϕε

μ

+−∈

==⇒
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −+
−−−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+−−−=

pp

p
p

p

p
p

pp
p

y

Qr
pyp

y
y

Qr

yy
Qr

yp

��

�
�

�
�

�

��
�

              ( )5  

To obtain our function at any point y  of [,,0[ ∞  one integrates the continuous 
function  
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on the interval [ ].,0 y  We obtain the following formula for the modified moments 
of the wheels: 

( ) [ ]

( ) ( ) ( ) ( ) ( )[ ]

( ) ( )[ ]Byb
yr

arQyf

yyp
Qr

yPyf

yy
Qr

yf

pj
j

jj

ppjjp
p

jj

pjj
p

jj

,,1

,,,:

,,0,

22

εδϕ

εδϕεϕεϕ
ϕ
μ

εϕ
ϕ
μ

+∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅=

+−∈+−==

−∈=

�

���
�

�
�

                         ( )6  

In ( )6  2p  is from ( ),5  and B  is an upper bound for the values of .2,1=jy j  By its 
construction, f ′  is continuous, so that f  is a ( )1C  function verifying the 
conditions of the lemma. Extension of f ′  to an odd function on the real axes 
preserves the continuity, since f ′  is linear around the origin. Thus, f  has an even 
extension to ,R  with the properties mentioned in the statement.     •  
Denote by ( )1′  the system obtained from ( )1  by replacing the moments of the 
wheels with the similar )1(C  functions jff =  in variables .2,1,/ =−= jrvy jj ϕ�  The 
measured data show that .04,0 2 <−< rrmm IcKK   
Corollary 1 The function from Lemma 1 has the following properties: 
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Proof. The first assertion is obvious. For the second one, we observe that εjf  is a 
concave two-degree polynomial. Its graph is tangent to that of .jtM  There are two 
tangency points, situated on different sides with respect to .pϕ�  because to the left 
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we have a linear behavior of ,jtM  while on the right we have a convex one, the 
conclusion follows. Moreover, for the right hand size, there is a common tangent 
for the two graphs, at the corresponding point. •              
Denote by ( )1′  the system obtained from ( )1  by replacing the moments of the 
wheels with the corresponding )1(C  functions jff =  in variables 

,2,1,/ =−= jrvy jj ϕ�  given by lemma 1. The measured data show that 
.04,0 2 <−< rrmm IcKK  The aim of the following result is to establish explicit 

approximate solutions of ( ).1′  
Theorem 1 The general form of the approximate solution of ( )1′  in a 
neighborhood of an equilibrium point et  is: 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )[ ]

( ) ( )( ) ( ) ( )( )( )[ ]
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( )[ ]
( ) ( )( ) ( ) ( )( )e

ttp
e

ttp

ttIttI
e

e
ttp

e
ttp

ttIttI
e

r

mrrr
rm

e
ttp

e
ttp

err

rr

ttette

eet

ttette

eet

I
KIIuIcIKp

tteatteatt

uIII

ee

ee

ee

ee

ee

−+−+

+−+=

−+−+

+−+=

−′+
==

−+−≈−

≈+′+

−−−−

−−′−′−

−−−−

−−−−

−−−−

32310

1/
12

/1
,22

32310

1/
12

/1
,11

2/122

33

3231

21

sincos

1/

,sincos

1/

2
/14,2/

,sincos

0

33

11

33

11

33

ωλωλλ

ααϕϕ

ωβωββ

ααϕϕ

ω

ωωϕϕ

ϕϕϕ

αα

αα

��

��

��

������

                        ( )7  

Proof. Addition of the three equations of ( )1 , the last one being multiplied by ,u  
leads to: 

( ) ( )rmj
j

jtrr uMMuIII ϕϕϕϕϕ �������� +−=+′+ ∑
=

2

1
21                                                    ( )8  

Because the free terms are ( )1C  functions of ,,2,1, rj j ϕϕ �� =  the solutions will be of 
class ( ),2C  obtained by local integration of composition of ( )1C  functions of .t  
Relations ( )4  and derivation in each equation ( )1′  show that the second order 
derivatives at et  vanish too, as the first ones do. Due to Lagrange’s Theorem, in a 
neighborhood of et  the first of relations ( )7  holds; these remarks yield: 

( ) ( ) 01221 / bttbIuIuIII errrr +−+′≈⇒≈′≈ ϕϕϕϕϕ ������                                          ( )9  
Inserting this in the third equation ( )1  or ( )1′  lead to the following equation in :rϕ  

( )[ ] ( ) ./1 01
2 dttdIIucKI errrrmrr +−=′+++ ϕϕϕ ���  

The explicit form of the solution rϕ�  follows. Using ( )9  once more, lemma 1, 
addition of the last two equations of ( )1′ , the third one multiplied by ,u  yield: 
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Inserting this expression in the first equation ( )1′  and using ( )9  once more, lead to: 
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Solving firstly the homogeneous Bernoulli equation, the general form of the 
solution of non-homogeneous equation in rvy /11 −=ϕ�  follows. The solution 2ϕ�  
follows in the same way. Relations ( )4  show that in the explicit form of the 
functions jϕ�  the free terms and the coefficient of the functions involving cos""  are 
the same.                                                            •  
 

3 Local solutions as fixed points 
 

This section is devoted to generalizations of the results of the previous section. 
We consider functions as elements of ( )TL ,02 , where ( )T,0  is the interval of time 
on which the phenomenon is studied. Thus, we have another method for the proof 
of the local existence and uniqueness of the solutions, with more general free 
terms. Because of slowly decreasing behavior of pϕ�  on this relatively small 
interval, this function is “almost” constant. In computations, it is used as a 
constant. Let us consider an interval on which both moments ( )jjtM ϕ�  are linear as 
functions of .jϕ�  The other notations and hypothesis are the same as those of 
Theorem 1.  
 
Theorem 2 On small intervals defined by strict inequalities ( ),2  the solution 
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vS rϕϕϕ ��� ,, 21  of the system ( )1  can be determined by the successive 

approximation method. 
Proof. Let consider an interval on which both moments ( )jjtM ϕ�  are linear. Our 
system appears below in the integral form, as well as in its “given” form: 
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In the above first matrix relation, ( ) ArvurvrvS tr
r

tr ,/,/,/: 21 −−−= ϕϕϕ ���  is the 
negative definite diagonal matrix having as entries the coefficients of  
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,/,/,/ 21 rvurvrv r −−− ϕϕϕ ���   
while B  is the linear operator defined by the matrix applied to ( )rϕϕϕ ,, 21  The 
other two linear operators are the first, respectively the second order integration 
operators, defined on the subspace of functions with compact support contained in 
our open interval. Consider the space ( )εJHH )2(

0
~
=  , the closure of the space of all 

test functions on εJ  in the Hilbert space ).()2(
εJH  One approximates any function 

from this space by functions with the support contained in ,εJ  which coincide 
with the old ones on intervals ( ) .,, 00 εεεε ↑+− nnn tt  Due to Poincaré’s inequality 
[11], for the linear part ( )3

0
~HBW ∈  of the affine operator W  defined in ( ),10  we 

have:  
122 22/1

0 <⋅+⋅≤ εε BAW , if 0>ε  is sufficiently small.  
Here trS , as well as the other vectors from ( ),10  is considered as an element of .~ 3H  
For sufficiently small ,0>ε  W  is a contraction on .~ 3H  This assertion remains true 
for any bounded linear operators ., BA  It follows that for any sequence defined by: 

30
,,,1

~(,),( εεεε HSNnSWS n
t
n

t
n ∈∈=+ arbitrary chosen), we have: .lim ,

tt
nn SS εε =∞→  

Moreover, the well known basic evaluation of absolute error for contractions 
holds.             •  
Remark 1 In the preceding proof, the presence of a “locally” constant matrix, and 
also the linearization on small intervals seem not to be essential. To illustrate this 
remark, we give the statement and the sketch of the proof for a more general 
result. However, the linearization can lead to finding explicit solutions on small 
intervals. 
Theorem 3 Let the system of nonlinear equations on a closed small  
 interval [ ]:, 00 εεε +−= ttJ  
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, and ju  are )1(C  of the set of variables. Then for 0>ε  sufficiently small, there 
exists a solution, which can be determinate by successive approximation method.  
Proof. We write the system ( )11  in a more convenient way, in a small interval on 
which the smoothness holds:  
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In the above notation ( )3
1

:
=

=Ψ
jjϕ� , while Y  is the “double integration” applied to 

appear only jϕ�  in the right hand size. The nonlinear operator Y  applies 
X 3)1( ))(( εJC=  into itself. The norm is 

∞∞∞ += hhh �
,1 . Because the functions 

3,2,1, =ju j  are smooth, with bounded first order derivatives on ),( 0tJε  we infer that 
Y  is a contraction for a sufficiently small length of the interval ( ) .2, εεε =JlJ  From 
the conditions: 
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For such a small length of the interval, the successive approximation method 
works for .Y  An important case is that of ju  having piecewise continuous, 
uniformly bounded partial derivatives with respect to jj ϕϕ �,  on the whole 
interval ],0[ T . In this case, BM ,  from above do not depend on .ε  In all cases, one 
obtains an approximating sequence of functions ( )nnΨ  from ,X  which converges 
to the solution X∈Ψ  in the norm of this space.                                 •  
Remark 2 There are different variants for a proof of Theorem 3. If we leave the 
system as in the statement, approximating the right hand size member by its affine 
part, then the solution follows as in the proof of Theorem 2.  
Remark 3 In theorems no. 2 and respectively 3, we have obtained solutions on 
non-overlapping intervals, the join of these subintervals being the whole interval. 
We extend each such local solution by taking zero value outside its small interval 
of definition. Thus one obtains an orthogonal system in )),,0((2 TL  (respectively 
in ]),0([2 TL ) of local solutions, with non-overlapping supports. A problem, which 
arises naturally, is to prove the completeness or the non-completeness of this 
system. In general, such a system is not complete. 
 

 4 On the continuity of derivation operation. Solving a partial 
differential equation 

 
In the proof of Theorem 2 we have used Poincaré’s inequality, the idea being to 
point up the fact that on small intervals, integration operation is a contraction. As 
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it is well known, for several norms, usually the real differential operators are not 
continuous. In case of continuity, it should be difficult to determine their norms. 
The following result points up a class of orthogonal systems, which generates real,  
and complex Hilbert spaces of smooth functions, such that the derivation-operator 
has norm at most one, or a norm which can be determined. Some examples are 
also given. 
Proposition 1. Let RJ ⊂  be an open interval, or respectively CA ⊂  an open 
subset. Assume that there exists an orthogonal system { } ( )JLe nn

2⊂ , (respectively in 
))(2 AL  of smooth (respectively complex analytic) functions such that the system 

formed by the derivatives { }nne′  is also orthogonal, and Nnee nn ∈∀≤′ . Then the 
derivation operator D  from { }( )nneSpclH =:~  into { }( )nneSpclH ′=1  is continuous. 
Moreover, we have: .,1 NmDm ∈≤  
Proof. Let { } Nnne ∈ be the orthogonal system from the statement of the present 
Proposition. Then for any { }nneSpf ∈ , derivation term by term in a finite sum, leads 
to: 

,,,,
)()(

j
fSj

jj
fSj

j eeffeeff ′〉〈=′〉〈= ∑∑
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 where the sum is over a finite subset NfS ⊂)( . These expansions yield: 
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, because of : jj ee ≤′ . The conclusion is: ff ≤′  on the dense subspace 
{ }( )nneSp  of H~ , which leads to the same inequality on the whole space .~H  Thus 

we reach the conclusion 1≤D .                     •  
Example 1. An example of an orthogonal system in a real Hilbert space 

 H , such that nuu nnnn ∀≤=′ 1, αα  is the following one:  
{ } { }

{ }
,:,

,,/1],/1[,)(
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000
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qp

m
mj
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j
jn
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nn
x
nn
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 H~  being the completion of the Euclidean space { }( )〉〈,nnuSp . Obviously, we have  
( )
( ) .1ln

,,,,ln
222

,
2222

nnn

jnjnnnnn

uau

uuNnuauu

=≤=′

=〉〈∈≤=′ δ
  

In this example, a stronger condition is accomplished:  
[ ]∞∈∀≤′⇒≤′ ,1puuuu

pnpnnn .  
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This is a consequence of the monotony of the norms of the ( )JLp  spaces, RJ ⊂  
being a bounded interval. Application of the Proposition 1 leads to ,1≤D  and 
because of ( ) exp,exp =D  we actually have .1=D   
Since ,],,[ 1 Nneean ∈∀∈ −  we have:  

( ) ( ) ( )( ) ,0log1)(: 2222 ≥−=′−= n
x

nnnn aaxuxuxf  
, and equality holds only for { }eean ,1−∈ . Consider the function 2)(ln1:)( ttf −= , 
which is vanishing at the ends of the interval and has as unique maximum point 

.1 1 eetm ⋅== −  Moreover, the ratio in which this maximum point divide the interval 
equals .1−e  Obviously, the complex analogue can be discussed. 
The next example refers to a not complete orthogonal system in a real Hilbert 
space, obtained by the aid of disjoint supports. 

Example 2 Let ( )( )[ ] .),(1)(),()( )1,[
22)1( ZnxxnnxxeRLRCX nnn ∈⋅−+−== +χ∩  

Obviously, the system { }nne  is orthogonal in 

( ) ( ) { }nnnnn eZneRLRCeeRL ′∈∀
×

=′∈′
×

= ,
715

2,,
4215

1),( 2222 ∩  is also an orthogonal 

system. By the proof of Proposition 1, the derivation-operator 

{ }( )( ) { }( )( ) )(: 2 RLeSpcleSpclD nnn ⊂′→  is continuous and we have .32 ⋅=
′

=
n

n

e
e

D  

 Remark 4 Let ;2=n  (for arbitrary ,n  the proof is similar). If { }nne  is a complete 
orthogonal system in ( ),2 JLρ  then { } 2).( Nmnmn ee ∈⊗  is an orthogonal complete system 
in ( )22 JLρ . 

 As an application of Remark 4, we propose a solution for a particular case 
of the modified equation describing the movement of a perfect fluid: 

( ) ( )txfvdivt ,
GG

=⋅+ ρρ                                        ( )12  
Here ),( txvv

GGG
=  is the velocity vector field, ( )tx,

G
ρρ =  its density, ),( txf

G  being the 
intensity of the sources. The unknown function is .vG   
One considers the particular case of a rotation-free field 

( ) .0,0,,, 3
0 =∈∀≤<∞→→ tRxxxvvv ρρδ

GGGGGG   
The preceding conditions assume that 0v

G  is given. Because the intensity of the 
sources converges to zero when the norm of the position vector converges to 
infinity, the natural condition is .00

GG
=v  One also assumes that f,ρ  are analytic 

functions and belong respectively to ( ) ( )4232 , RLRL . Because of the assumptions on 
f , it is possible to find a solution ( )42 RLu∈  of the following Poisson problem, 

related to the above one, for :0. >= constρ  
( )42,, RLfufu ∈=Δ⋅ρ                                        ( )13  
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The classical problem requires (by physical reasons) solving the problem in the 
case of vanishing source ,f  when ,∞→x

G  namely: 

 ( ) ( )( ) vectorconstvtxu
n
uxtxu x .,lim,0|,0, 0 ==∇=
∂
∂

Ω∉∀=Δ ∞→Ω∂

GG
G

GG
G  

Here 3R⊂Ω  is a simply connected large bounded domain. If Ω  is a parallelepiped 
centered at the origin, with faces parallel to the coordinate planes, any affine 
function in ( ) :,, zyx  

( ) ( )[ ]dczbyaxttzyxu +++= ϕ,,,  
is a trivial solution for the latter problem. Next we sketch a possible way of 
solving ( ),13 , by using Remark 4 and the continuity of the inverse of the Laplace-
operator. This computational method allows finding explicit solutions and related 
consequences. The condition of a square-integrable solution implies a vanishing at 
infinity-solution, which stands for the homogeneous boundary condition. 
Theorem 4 If the source-function { }( ) ( )42

,,,
RLhhhhSpf

qpnmqpnm ⊂⊗⊗⊗∈ , then the 
problem )13(  has a unique solution, which belongs to S . In particular, it is an 
analytic function. The solution is: 

( )./1 ρfu −Δ=  
Its coefficients with respect to the Hilbert basis associated to Hermite’s functions 
are given by ( ),15  written for the coefficients of ρ/f . 
Proof. The idea is to reduce the computations related to the Laplace operator to 
the corresponding operations related to the operator D  from below. For this 
operator, the proper numbers and “eigenvectors” are given in [13]. The sums from 
below are finite. 
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,,,
,,,

3

1

2

32

121212λ
                      ( )14  

The last relation shows that 1−D  is continuous on the dense subspace of ( )42 RL  
generated by the elements of its Hilbert basis, so it has a continuous extension 
given by ( ),14  for infinite sums which define elements of .2L  Going back to the 
explicit solution of ( ),13  we can proceed in the same way, by determining the 
coefficients of :u  
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In the above expression, the sums are finite. We have denoted by ( ) ( )fqpnm ,,,β  the 
Fourier coefficients of ρ/f  with respect to the complete orthogonal system 
related to Hermite’s functions, and by ( )qpnm ,,,α  the numbers given by: 

( ) ( )
⎥
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R j
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It is easy to observe that: 
( ) ( ) { }3

,,, 1,0,,0 ∈⇔≠ pnmqpnmα  
 There are a finite number of such numbers, which does not change the asymptotic 
behavior of ( )qpnm ,,,λ  given by (15). It follows that ( )42/ RLf ∈ρ  and that it is 
analytic. We conclude that ( )421 )/( RLfu ∈Δ= − ρ  and the inverse of the Laplace 
operator is continuous. Its norm can be determined from the preceding 
computations. Because uΔ  is analytic by hypothesis, and the series defining u  is 
absolute convergent in any point (due to Schwarz inequality), the theorem of 
term-by-term derivation holds. Hence )( 4)( RCu ∞∈  and it is analytic in 4R  (by 
using once more Schwarz inequality, this time for the remainder).         •  
The next result gives another method, which seems to work for the general 
equation ( ).12  
Theorem 5 Under the hypothesis of Theorem 5, there is a unique solution of the 
equation ( )12  in the class ,S  and it can be determined by:  

( ) ( )( )tt ffdivv ρ
ρ

ρ
ρ

−Δ∇=−= −− 11 11 DG  

The operator 1−div  has a continuous extension to the space ( ) ,42 RL  and all the 
components 3,2,1, =jv j  of the solution vG  are analytic functions on .4R  
Proof. As in the proof of Theorem 4, we will work with finite linear combinations 
of the base related to Hermite’s functions. On the vector subspace S  generated in 
this way, both operators ∇Δ,  are injective, the Laplace operator being also onto, 
by the proof of Theorem 4. If ,,0 Sss ∈=∇  then s  must be a constant. This 
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constant is zero, because of vanishing at infinity of all functions in .S  Due to the 
maximum modulus principle for harmonic functions, the Laplace operator is also 
injective. These remarks lead to: 

( ) .111 SondivRondivdiv −−− Δ∇=∃⇒∇∇Δ=⇒∇=Δ DDD  
Due to the behavior on Hermite’s functions, we have: 

( )
3)(2

1

+++

⊗⊗⊗
−=⊗⊗⊗Δ−

pnm
hhhh

hhhh qpnm
qpnm   

for all ( )qpnm ,,, , except a finite subset (see the proof of Theorem 4). For each 
component 3,2,1, =jv j  of the field ,v

G  we have: 

( ) .2,12, ,
2/1

,
2

,,, ≥+=∇⇒∇−=〉Δ〈 khkhhhh kjkjkjkjkj  
These relations yield: 
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It follows that our operator multiplies the corresponding Fourier coefficients 
respectively by the numbers ( )( ) 2/13)(2/1 +++ pnm , hence their absolute values are 
diminished. Obviously, it has an extension to the space ( ),42 RL  preserving the 
norm. From the proof of Theorem 4, we infer that 1−Δ  applies analytic functions 
from S  into analytic functions from the same class. Since the power series-
functions can be derived term by term, we infer that each of the components 

3,2,1,/ =∂∂ jx j  of ∇ , applies S  into .S  It follows that on the subspace S , the 
following conclusion holds: 

( )( ) .)( 11 SssdivSs ∈Δ∇=∃⇒∈ −− D  
In particular, ( )sdiv 1−  is analytic. Going back to the equation ( ),12  since ,Sf t ∈− ρ  

we have ( ) 31 Sfdivv t ∈−= − ρρ
G and ( ) 311 Sfdivv t ∈−= − ρ

ρ
G . 

Now the conclusion follows.                            •  
 

5 “Continuity subspaces for complex differentiation” associated to a 
linear bounded operator 

 
In this Section, we mention that the derivation operator can be continuous on 
some special subspaces of a Hilbert space, associated to an arbitrary linear 
bounded operator. Some of the following results are valid for continuous 
operators on different spaces, which contain the space of all entire functions on 
the complex plane (for examples of such spaces, see [17]). We work in the Hilbert 
space  
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( ) { }1, 11
2 ==ΓΓ= zLH , 

, endowed with the scalar product defined by: 
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For any two elements HHgf ⊂∈ 2,  ([17]), we obviously have: 
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Theorem 6 Let 
( ) ( ) ( )( )( ){ } ( ) CzzhChTzSpTSSHBT D ∈∀=∈−==∈ 1,;)(exp, 00

2 λλ .  
For all ,Ss∈ we have ( ) ( )sTsD = . In particular, derivation-operator zD  is 
continuous from S  into ( )ST . Consequently, it has a unique linear continuous 
extension ( ),,~ 2HSBD∈  preserving the norm.  
Proof. Let ,Ss∈  
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Comparing with the behavior of the derivation operator on ,S  yields: 
( )( ) ( )( )( )[ ] ( )( ) .,exp 0 CzzsThTzTczsD n

Fn
nz ∈=−=∑

∈

λ  

Consequently, if T  is continuous on ,S  so is the derivation operator 
.:

SSzz TDD =  Hence the assertions of the statement follow.                •  
Proposition 2 Let the system ( )1  be such that the moments ( ) 2,1, =jM jjt ϕ�  are 
analytic functions of .jϕ�  Assume that there exists an analytic solution and an 
equilibrium point such that ( )3  hold. Then the components ( ) rj jt ϕϕ �� ,2,1, =  are 
constant functions.  
Proof. If the functions in the right size of the equations ( )1  are analytic, then the 
solutions rj j ϕϕ �� ,2,1, =  might be also analytic functions of .t  We have already 
observed that the solution verify the relation: 

 ( ) ( ).
2

1
21 rmj

j
jtrr MMuIII ϕϕϕϕϕ �������� +−=+′+ ∑

=

 

Assume that there exist analytic solutions and an equilibrium-point ,et  with the 
qualities ( ).4  Then derivation of the last relation from above, of the equations ( ),1  
and application of relations ( )3  yield: 
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Successive derivation and application of ( )4  lead to the conclusion that all the 
derivatives of all orders greater or equal to two at et , of the functions 

,,2,1, rj j ϕϕ =  are zero. Now the conclusion follows.                             •  
Remark 5 Let H  be a Hilbert space and ( ) BAHBiBAT ,,∈+=  selfadjoint 
operators. The solution of the problem: 
 ( ) HCYuYTYY →==′ :,0, 0  
can be written as: 
 ( ) ( )( )[ ] ( )( )[ ]( )0uQIQeiPIPezY z

A
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Β∈∈

−+⋅−+=
β

ββ
μ

α
αα

λ βα  

where ( ) ( )
ββαα QP ,  are projectors associated to the decomposition of unity of the 

operator ,A  respectively .B  
As an application of the continuity of the function defining the moments: 

( ) ( ) ,2,1,/~
=−= jrvMyM jjtjjt ϕ�  

we prove the following consequence. The aim is to make another connection to 
different fields. 
Proposition 3 Let ( )ygg =  be the function: 
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Assume that pϕ�  satisfies ( ).3  There is a unique nonincreasing solution 
( ) ,,/: IbIf p →∞= μϕ�  of the equation ,fgg D=  

with the following properties: 
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See [14], [15] for related results. 
 

6 Conclusions  
 
The first part of this work gives a method of finding “local” approximate explicit 
solutions for a two order nonlinear system of differential equations, motivated by 
a practical phenomenon. We prove some generalizations, by using local linear 
approximation, local contractions and Poincaré’s inequality. Sufficient conditions 
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for the possibility of determining the norm of the derivation-operator are 
established. Related examples are given. One uses orthogonal basis of analytic 
functions in solving the movement equation of a perfect fluid. Concerning related 
aspects in complex differential equations and linear bounded operators, for an 
arbitrary bounded operator acting on { }( ),12 =zLC  one gives a constructive method 
for finding an associated infinite dimensional subspace, on which the derivation 
operator equals the given operator. A last statement concerns the “virtual” analytic 
trivial solution around an equilibrium point. 
 Some of the methods used in this work should be applicable in solving problems 
of related fields: functional equations, elements of operator theory, of complex 
analysis, optimization. 
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