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METAHEURISTIC APPROACH IN NONLINEAR SYSTEMS 
IDENTIFICATION 

Mihai CORNOIU1, Cătălin BÂRA2, Dumitru POPESCU3 

In this paper is presented a Hammerstein systems identification algorithm. 
The algorithm uses Particle Swarm Optimization firstly to approximate the 
nonlinear component, also using sigmoid type functions, and, secondly, to estimate 
the linear component’s parameters and the nonlinear functions connection 
coefficients, by solving a standard least squares problem. Due to the nature of 
Hammerstein systems, Particle Swarm Optimization was adapted with respect to 
specific constraints, which are detailed in this article. Numerical results confirm the 
accuracy of this proposed identification method.  
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1. Introduction 

It is a widely known fact that nonlinearities are generic in nature; hence 
almost all processes are nonlinear if they are considered not merely in a small 
vicinity of their working points. Also, the development of the industrial 
equipment and the desire to use it at its full potential has generated a need to 
create mathematical models, which can describe the global nonlinear behavior of 
the process. Identification is a powerful tool which allows such breakthroughs, by 
experimentally determining the structure and the parameters of the mathematical 
models, if the process is unknown, or if the describing equations are too complex 
[1].  

The two main directions in describing nonlinear systems behavior consist 
in either using nonparametric models, which theoretically need an infinite 
numbers of parameters, therefore they are restricted suitably only for 
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identification and control purposes, either by parametric models, which can be 
described by a finite number of parameters [2]. A widely used category of 
parametric models is represented by block oriented models, such as Hammerstein 
models, which are separable models consisting of a static nonlinear element 
followed by a linear dynamic component. Literature proposes several 
identification methods suitable for Hammerstein systems: [3] use instrumental 
variables methods; [4] estimates the parameters for systems having piecewise-
linear nonlinearities with asymmetric dead-zones; [5], [6] use correlation analysis 
to identify the block components, [7] use subspace methods, [8] use Bezier curves 
and Bernstein polynomials, and examples could continue. An important aspect in 
Hammerstein systems identification consists in the nonlinear function 
approximation. Many methods have been proposed in the literature; for example, 
[9] uses single input rule modules connected fuzzy inference model (SIRMs model) and 
[10] tackles the problematic of sparse function approximation. However, [11] uses 
sigmoid type functions to approximate the static nonlinear component, thus 
defining the concept of Automatic Choosing Function. The idea behind this 
concept consists in separating the input signal’s corresponding data region into 
subdomains and approximating each one with a linear function. The ACF will 
consist in the junction of these local linear functions, which are smoothly 
connected using appropriate coefficients. Connection coefficients and linear 
component parameters are estimated by using linear least-squares techniques. 
Still, it is important to note that the approximation error is strongly connected with 
the ACF parameters, namely the choice of the partitioning intervals and the shape 
of the ACF. A way for determining these parameters is given by nature, namely 
by using a stylized representation of the movement of organisms in a bird 
flock or fish school. [12] developed the Particle Swarm Optimization method, 
a metaheuristic, as it makes few or no assumptions about the problem being 
optimized and can search very large spaces of candidate solutions. Hence, by 
using PSO and adding some problem specific restrictions to it, the systems 
parameters will be successfully estimated. The measure of quality will be the 
evaluation criterion, which is given by the mean square errors between the outputs 
of the real systems and of the estimated model. 

This paper is organized as follows. The general statement of the problem 
and the ACF concept are described in section 2. Section 3 consists in the 
description of the identification method. Section 4 handles the optimization 
problem, namely adjusting the parameters of ACF by using PSO. Numerical 
results that confirm the accuracy of the algorithm are presented in section 5. 
Conclusions are drawn in section 6. 
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2. Statement of the problem 

A Hammerstein system, as depicted in Fig. 1, consists of a static nonlinear 
part, represented by ( )f ⋅ function, and of a dynamical linear component, described 
by known degrees polynomials 1( )A q−  and 1( )B q− . The problem is finding the 
system parameters ia  and jb , 1: , 0 :A Bi n j n= = , where ,A Bn n  are the 

corresponding degrees of polynomials 1( )A q−  and 1( )B q− , and approximating the 
nonlinear component ( )f ⋅ , using only input data, ( )u k , and output data, ( )y k . 
The intermediate signal, ( )x k , is not accessible to measurements, and ( )e k  
represents the measurement noise. 

 
Fig. 1. Hammerstein System 

 
The characteristic equations describing the Hammerstein system are: 
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The nonlinear function ( )f ⋅  is approximated using sigmoid type 
Automatic Choosing Functions, which are defined as follows: 

( ( ) ) ( ( ) )

1 1( ( )) 1 ,
1 1i ii H u k H u kI u k

e eα β− − −= − −
+ +

    (2) 

where H +∈\ . Considering the data region corresponding to the input 
signal ( )u k  to be min max[ , ]D u u= , this domain is divided into M partitions such 

that 
1

M

i
i

D D
=

=∪ . Each iD  can be expressed as [ , ]i iα β , where 

1 min 1 max 1, , , 1, ,i iu u i Mα β α β+= = = = " . Due to its nature,  ( ( ))iI u k  is almost 
unity only for input signals values ( ) [ , ]i iu k α β∈ , and is almost zero for values 
that do not fit the specific partition.  

Fig. 2 presents the shape of the ACF obtained using the following 
parameters: ( )u k  is a 1000 element uniformly distributed signal with amplitude 
range of [0,10], 2, 8α β= =  and {10,50,100,500}H = . It can be noticed that by 
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increasing the value of H, the shape of the ACF approximates a block-pulse 
function. 

 
Fig. 2. Shape of Automatic Choosing Function (ACF) 

 
3. Identification Procedure 
 
Assuming that the nonlinear function ( ( ))f u k  is approximated linearly on 

each partition Di as follows: 
( ( )) ( ),i i if u k c d u k≅ +        (3) 

we obtain the representation on the entire domain D: 

1
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i
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where, ( )kε  is the approximation error. By substituting equations (3) and 
(4) in the Hammerstein model recurrent equations (1) we obtain: 
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where  
1 1( ) ( ) ( ) ( ) ( 1)k A q e k B q kυ ε− −= + −      (7)  

represents the total approximation error. Equation (6) reveals the classic form: 
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( ) ( ) ( ),Ty k k kϕ θ υ= +        (8) 
with: 
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where 1, , .i M= "   
Equation (8) also permits evaluating the unknown parameter vector θ , by 

using the linear least-squares algorithm, for example: 
1ˆ [ ( ) ( )] [ ( ) ( )]Tk k k y kθ ϕ ϕ ϕ−= ∑ ∑      (11) 

 
The unknown parameter vector can be rewritten in the form: 
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Upon analyzing equation (12), it becomes obvious that the first nA 
elements of θ̂  provide exactly the estimation for the A polynomial parameters 
(linear dynamic component parameters), or âθ . However, determining the exact 
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values of the ACF approximation parameters and of the B polynomial of the linear 
dynamic part is impossible, since vector θ̂  only contains information about the 
products of these parameters. Still, a procedure which permits the evaluation of 
vectors ˆ ˆ,b cθ θ  and d̂θ  has been developed, and it is presented in the following. 

Keeping in mind that the unknown parameter vector θ̂  contains 
information from all M partitions, one idea is to count the number of appearances 
of the input signal corresponding to each partition and storing them in a weight 
vector w. Upon having this information, the next step is to repeatedly assign each 
element of b̂θ  the value 1, thus permitting the evaluation of ĉθ  and d̂θ  using again 
the least-squares technique, but with the imposed w weights, and estimating the 
remaining parameters of b̂θ . At the end of this procedure, the values for the B 
polynomial estimated coefficients are obtained by averaging the estimations 
previously provided for each coefficient. 

Since we now have b̂θ , by applying again the least-squares technique we 

estimate the ACF connection coefficients, namely vectors ĉθ  and d̂θ , which 
allows us to write the approximation equation for the nonlinear function as: 

1

ˆ ˆˆ( ( )) ( ( )) ( ( ))
M

i i i
i

f u k c d u k I u k
=

= +∑      (14) 

 
4. Particle swarm optimization of model 
 
As stated, there exists an important interdependence between the accuracy 

of the algorithm and the partitioning intervals chosen to approximate the nonlinear 
function. [13] use the metaheuristic Particle Swarm Optimization algorithm to 
determine these partitioning intervals. A variation of their method, that considers 
an additional constrain (such that the partition intervals should be disjoint and the 
partitioning points, iα , should satisfy 1 , 1,i i i Mα α− ≤ = " ) is presented in this 
current section. 

The proposed algorithm, an iterative procedure, follows the next steps: 
Step 1. Generation of an initial population of Q particles with random 

positions and velocities. 
Each particle now has an initial position 0

iX  and velocity 0
iV , where 

[{ }, ], 1,...,jX H j Mα= = and 1, ,i Q= " . 
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Step 2. Construction of candidates for ACF 
By using current particles positions, which contain information concerning 

the partitioning intervals ({ }, 1,...,j j Mα = ) and the shape of the ACF (H), by 
using equation (2) we construct ( ( ))iI u k  for each partition. 

Step 3. Running the identification procedure 
Once the candidates for ACF are constructed, the next step is to estimate 

the unknown parameters vectors, âθ , ˆ ˆ,b cθ θ  and d̂θ , as described in Section 4. 
Step 4. Evaluation of performance criterion 
The imposed performance criterion (or cost function) relies on the 

quadratic approximation error, 
2

1

1 ˆ( ) ( ( ) ( )) ,
N

i i
k

J X y k y k
N =

= −∑      (15) 

where ˆˆ ( ) ( )T
i i iy k kϕ θ=  is the output signal corresponding to each candidate 

of the estimated model, and N represents the size of input and output data vectors. 
Step 5. Updating each particle’s personal best position (pbest), and the 

global best position among all particles (gbest) 
For the first iteration, it is considered that each particle is in its personal 

best position. The global best, gbest, is chosen as the personal best position of the 
particle which has provided the smallest value for the cost function, as computed 
in Step 4. For the other iterations, the following formulas are used: 
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l l l
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i
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Step 6. Updating particles positions and velocities 
1

1 1 2 2

1 1

( ) ( )l l l l l l
i i i i i

l l l
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V w V c rand pbest X c rand gbest X

X X V

+

+ +
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⎨
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The above formula represents the standard expression for computing the 
velocities of the particles and their future positions. However, due to the particular 
nature the particle vector has (the thresholds must be in increasing order), the 
standard PSO procedure is modified, as follows. Each particle component should 
not pass its neighbor as it updates its position, so the corresponding velocity is set 
as the modulus between the primary velocity (as without the partitions limit 
constraint) and the subdomains length. Also, if the velocity is negative, it is 
treated the same as before, keeping in mind that the minimal value for the first 
threshold should not be smaller than the minimum of the input signal. An example 
of how this procedure works is shown in the next set of figures. 
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Fig. 3. Initial particle positioning 

 
In Fig. 3 is represented a particle which contains 5 elements, for example 

the first 5 thresholds that determine the partitions. 
 

 
Fig. 4. Particle velocities 

 
Each element has its own unique velocity, either positive or negative. 
 

 
Fig. 5. Future particle positioning (using standard PSO) 

 
Considering the velocities in this example, element 2 should overpass the 

third one, thus violating the boundary constraint. Hence, the velocity of element 3 
is recomputed, as well as its future position. 

 

 
Fig. 6. Future particle positioning (using modified PSO) 

 
Final particle positioning, no overpasses between any two neighboring 

elements had occurred. 
Step 7. Incrementing the iteration counter and returning to Step 2 until 

termination criterion is satisfied.  
 
The termination criterion could consist in either reaching preset maximum 

number of iteration, either obtaining smaller value for the cost function than a pre-
specified. Once the termination criterion is satisfied, the algorithm will return the 
suboptimal solution for choosing the partitioning intervals and the shape of the 



Metaheuristic approach in nonlinear systems identification                                99 

ACF. These parameters allow the estimation of the static nonlinear and linear 
dynamic components with enhanced accuracy. 

 
5. Numerical examples 
 
The algorithm was implemented in Matlab and simulated using Simulink 

environment; this section contains the obtained numerical results, which confirms 
its accuracy. Note that numerical results that are presented in Section 6 are 
normalized with b0. 

Let us consider the discrete time Hammerstein system 
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The considered input signal is uniformly distributed with amplitude range 

[-2.0, 2.0]; e(k) is considered white Gaussian noise with signal-to-noise ratio of 
1%, since simulation has revealed that increased noise power greatly affects the 
accuracy of the results. The input and output data vectors length is N = 300, the 
number of partitions is set M = 10. The input parameters of the PSO are: particle 
size of 20; maximum iteration limit of 50; inertia factor and acceleration 
coefficients of 0.8. Results (also shown in Figures 7-9):  

 
1 1 2

1 1
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( ) 0.5 0.1012

A q q q
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− −
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The adjusting parameters of the ACF are: {αi} = {-1.7332, -1.7244, -

1.5611, -0.5762, -0.4458, 0.4023, 1.1326, 1.1791, 1.2239, 1.2245}; H = 3.7825. 
The obtained quadratic approximation error was 32.8575 10 .−⋅  
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Fig. 7. Estimated nonlinear function 

 

 
Fig. 8. True and estimated outputs 

 

 
Fig. 9. Differences between true and estimated output values 
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By replacing the previously chosen nonlinear function with a sinusoid, 
( ) sin(2 ( )),x k u kπ= ⋅ ⋅  the obtained results (see Figures 10-12) are the following: 

1 1 2

1 1

( ) 1 0.3982 0.1987
( ) 0.5 0.0981

A q q q
B q q

− − −

− −

⎧ = + ⋅ + ⋅⎪
⎨

= +⎪⎩
 

The adjusting parameters of the ACF determined by the PSO are: {αi} =  
{-1.2951, -1.2944, -1.2925, -0.4884, -0.3263, -0.0869, 0.4355, 0.8598, 1.0142, 
1.0166}; H = 1.2321. The quadratic approximation error value was 32.2973 10 .−⋅   

 
Fig. 10. Estimated nonlinear function (dead-zone) 

 

 
Fig. 11. True and estimated outputs 

 
Fig. 12. Differences between true and estimated output values 
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The algorithm has also been tested on a linear analog system connected to 
a PC. The discrete model corresponding to the association of a zero-order hold 
CAN and the simulated analog system (sampling time was set to 0.1 seconds) is: 

 
1 1 2

1 1 2 3

( ) 0.0411 0.0914
( ) 1 1.662 0.9571 0.2191

B z z z
A z z z z

− − −

− − − −

− ⋅ − ⋅
=

− ⋅ + ⋅ − ⋅
   (20) 

 
The considered input signal is an uniform random signal with amplitude 

range of [-2V, 2V]. The static nonlinearity was generated 
as 3( ( )) ( ) 0.3 ( ).f u k u k u k= + ⋅  The results (also see Figures 13-15) are the 
following: 

 
1 1 2 3

1 1

( ) 1 1.6445 0.9044 0.1826
( ) 0.0411 0.0891

A q q q q
B q q

− − − −

− −

⎧ = − ⋅ + ⋅ − ⋅⎪
⎨

= − −⎪⎩
 

{αi}= {-1.9192, -1.8942, -0.8418, -0.4675, -0.3279, -0.1203, 0.0581, 
0.6942, 0.7568, 1.7065}; H = 8.3068. The quadratic approximation error 
characteristic to the estimation model was 52.5029 10 .−⋅  

 

 
Fig. 13. Estimated nonlinear function (analog system case) 
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Fig. 14. True and estimated outputs 

 

 
Fig. 15. Differences between true and estimated output values 

 
6. Conclusions 
 
This paper describes an identification method used for Hammerstein 

systems, by providing estimations for both static nonlinear and dynamic linear 
components. The main challenge in implementing this algorithm was solving the 
non-convex equation (12) and evaluating the unknown coefficients; however, 
optimizing the ACF coefficients by using PSO has greatly reduced its 
significance. Also, the PSO procedure was modified, in order to adapt this method 
to the specific restrictions generated by our identification problem. Still, for 
greater dimensional problems, PSO proves to have some disadvantages, because 
of the heavy increase of numeric effort.  
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