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A DISTRIBUTED EVOLUTIONARY ALGORITHM FOR 

SOLVING THE GREEN SUPPLY CHAIN NETWORK DESIGN 

PROBLEM 

Xinyuan LI1, Dan WANG2*, Yanji JIANG3, Maojun CAO4 

This paper proposes an extended Multi-objective Mathematical Model for the 

Green Supply Chain (GSC) network design problem, taking green procurement, 

production, distribution, and transportation into consideration. The triple-bottom-

line in GSC is defined and assigned indicators to evaluate potential partners for 

further operations. In addition, an efficient and flexible Self-Adaptive Distributed 

Evolutionary Algorithm (SADEA) is developed to undertake strategic, tactical, and 

operational decision making. The algorithm employs a hybrid tree coding structure 

with a self-adaptive operator selection pool and is paralleled and implemented in 

Spark to further improve its efficiency. Our results demonstrate that the algorithm 

can solve the GSC network design problem efficiently and provide high quality 

solutions compared to other algorithms for the multi-objective optimization. The 

study results provide an important reference to guide future research.  

Keywords: green supply chain; evolutionary algorithm; distributed algorithm; 

selection pool; genetic algorithm; hybrid tree 

1. Introduction 

With a gradual recognition of the need to become sustainable, green 

supply chain management (GSCM) has received increasing interest from both 

academics and industry. Firms are challenged to balance business performance 

with environmental and social issues. To achieve this goal, companies have begun 

to incorporate sustainability concerns [1,2], increasing their demand for efficient 

and effective decision-making methods. Green design has gradually become the 

preponderant way for firms to sustainably develop. 

A green supply chain’s primary objective is to satisfy all customer 

demands via the most efficient use of resources, including inventory, logistics, 

and labor. Regarding the environmental aspect, carbon emission is commonly 

used as the indicator. However, studies tend to focus on only the emissions of 

parts of the supply chain process, such as production or transportation. This 
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deficiency is primarily due to the complexity involved in modelling the various 

criteria. Optimization models become complex when combining social, 

environmental, and traditional business concerns. To account for sustainability in 

optimizing supply chain optimization, a large number of additional variables are 

required, rendering the solving of large-scale cases a serious challenge. 

Due to the large number of indicators and partners in GSCM [3,4], the 

optimization of its network is difficult and time-consuming [5-9]. Thus, heuristic 

and metaheuristic algorithms, such as the Fuzzy Neural Network [10]; the Bees 

Algorithm [11]; the Ant Colony Optimization [12]; the Neural Network 

Algorithm [13]; and the Genetic Algorithm (GA) [14], have been widely used. 

However, four difficulties exist, rendering their use problematic. One, the 

algorithms remain time and memory-consuming in solving large-scale cases. 

Two, the diversity of the searching process usually decreases significantly after 

convergence to the local optimum, which restricts the ability of the algorithms to 

further explore the solution space. Three, the algorithms require an accurate 

parameter setting to obtain a good search ability, which can be difficult to obtain 

in a reasonable amount of time. Four, the algorithms have difficulties meeting the 

real-world requirements of scale, solution quality, and efficiency. 

Thus, to further integrate sustainability into the supply chain network 

design, this study proposes a comprehensive Mixed Integer Linear Programming 

(MILP) model for a four-level green supply chain network design problem [15-

17]. In addition, we propose a novel effective method combining a self-adaptive 

evolutionary algorithm, the optimum algorithm, and a distribution structure, based 

on a demand-oriented mechanism. We test its validity and reliability via a case 

study. Our results demonstrate that the proposed algorithm outperformed the other 

algorithms. 

2. Literature Review 

To develop a Green Supply Chain (GSC), an indicator system consisting 

of enterprise statistics should indicate corresponding changes and improvements 

of the existing supply chain [18]. The addition of carbon emissions is required to 

indicate the greenness of the GSC. Xie et al. [19] explored GSC performance 

indicators (i.e., energy consumption and profit), and Shao et al. [20] evaluated 

green performance using the energy usage rate and environmental pollution. 

However, these indicators do not completely describe the green performance. 

Coskun et al. [21] proposed a comprehensive indicator system for GSC 

performance for partner selection, introducing economic, environmental, and 

social performance, which is similar to the research of inventories [22] and 

research on facility allocation [23]. Roy et al. [24] proposed a two-level model 

containing one manufacturer and many retailers. Although attempts have been 
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made to identify the indicators of green performance in a GSC [25,26], a holistic, 

sustainable framework emphasizing economic, environmental, and social 

dimensions does not yet exist. 

Similar to traditional supply chains, the GSC can be designed as different 

models, with each designed for a different research direction. Aksen et al. [27] 

designed a discrete optimization model for solving the process of commodities 

trading in a green supply chain. Vencheh et al. [28] proposed a non-linear model 

for supplier selection in a green supply chain; later experiments demonstrated that 

the model was able to maintain stability during the solution process. Lious et al. 

[29] presented a model based on the green expectations of consumers. Benjaafar 

et al. [18] designed a model to balance the relationship between cost and carbon 

emissions. Roy et al. [30] proposed a two-level model with one manufacturer and 

many retailers. Wang et al. [31] proposed that a green supply chain required a 

comprehensive evaluation. As a result, the technologies of an environmental 

information system and a decision support system were synthesized in the 

research and a novel multi-objective dynamic programming model was proposed. 

Similarly, Lious et al. [29] designed a novel model for dealing with the Fuzzy 

information of decision-makers, while Oliveria et al. [32] and Sakiks et al. [33] 

built a multi-objective model that was consistent with the government’s 

environmental policy. Kannan et al. [34] considered sustainable development 

using a modern production model. Xie et al. [35] proposed an integrated supply 

chain model that considered energy consumption and profit. Mirthedayatian et al. 

[36] evaluated double factors in a new DEA network model. 

Many resolution algorithms have been proposed to design and optimize 

GSC networks [37]. For small-scale cases, Sarkis et al. [38] used the IBM ILOG 

CPLEX Optimization Studio (CPLEX) to solve the inventory problem. Wang et 

al. [31] and Boonsothonsati et al. [39] also used the CPLEX for the partner 

selection problem. Slimani et al. [40] proposed a game theory for a two-level 

supply chain with one retailer and one supplier. For medium-size cases, the 

Lagrangian relaxation, the Branch-and-bound approach, and the Bender 

decomposition have been utilized. However, these approaches cannot always 

provide feasible solutions. For large-scale cases, the solution space often depletes 

system memory during operation, resulting in the use of heuristic and 

metaheuristic methods. Kannan et al. [34] used the Genetic Algorithm to solve a 

recycling green supply chain model using a closed loop battery. The study also 

analyzed the closed loop supply chain using the Genetic Algorithm and the 

Particle Swarm Optimization Algorithm. Validi et al. [41] proposed a method 

based on the MOGA-II to solve the sustainable supply chain model. Roghanian et 

al. [42] optimized a network of reverse logistics using the Genetic Algorithm. 

Jiang et al. [43] solved the facility location problem using the Genetic Algorithm. 

Jamshidi et al. [44] used a hybrid memetic algorithm to improve the efficiency of 
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the green supply chain network. Carlucci et al. [45] presented a non-dominated 

genetic algorithm for the multi-objective optimization of the supply chain. Dotoli 

et al. [46] proposed a multiple-step hierarchical algorithm for solving the supply 

chain network design problem with uncertainty. 

Although it is allowable to significantly reduce the computational 

complexity of the search process by using heuristics and metaheuristics, the latter 

remains time/memory consuming in large-scale usage. Moreover, population-

based algorithms require an accurate parameter setting to obtain a good search 

ability. Therefore, in this paper, we develop a self-adaptive distributed 

evolutionary algorithm to solve the green supply network design problem with 

high efficiency and solution quality, particularly in large-scale usage. 

3. Mathematical model for GSC network design 

Studies [15-17] helped develop and improve the criteria for evaluating the 

GSC network used in this paper. Table 1 displays the range of performance 

indicators and activity measures.  

The hybrid method of the Analytic Hierarchy Process (AHP), as well as 

the Data Envelopment Analysis (DEA) method, were used to evaluate the weight 

of the selected indicators. The AHP is commonly used for organizing and 

analyzing complex decisions. It provides a rational framework for a needed 

decision by quantifying its criteria and alternative options, and for relating those 

elements to the overall goal. The DEA is a non-parametric method for performing 

frontier analysis. It uses linear programming to estimate the efficiency of multiple 

decision-making units and it is commonly used in production, management and 

economics. 

The process was designed as follows: First, every index was compared 

after the hierarchical structure was established, and the judgment matrix was 

constructed according to the selected scale. Second, based on this judgment 

matrix, the single level ranking and the consistency check were implemented. 

After calculating the single ranking, we calculated the ranking weights of all the 

indicators in the same level, in order to obtain their relative importance at the 

highest level. The consistency of the general ranking was tested, and the weights 

were obtained. Then, the DEA model was established and transformed into an 

equivalent linear programming model. The model was then solved, and the 

optimal evaluation indicators and their weights were obtained. Finally, a linear 

combination as per Equation (1) was used to calculate the combined weights, 

where λ is the adjusting parameter.  
(1 )i i i   = + −                                              (1) 

Table 2 displays the integrated indicators. Specifically, the cost-based 

indicators, such as worker rights and social compliance, were integrated directly 
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into the corresponding partner’s fixed costs. The probability-based indicators 

(e.g., example the accident rate) were transformed into a pessimistic value of lost 

costs and added into the corresponding partner’s operational cost or production 

cost. The operational costs were calculated with indicators that included 

operational taxes, employee salaries, operational energy costs, and other costs of 

operation. Sustainability costs were calculated using the emission index, sewage 

discharge index, and pollution abatement. 
Table 1 

Indicators of each dimension considered in GSC 

Bottom-line Indicator Type Consolidation 

Economic 

Price Positive real numbers Costs of Production 

Quality Positive natural numbers Costs of Production 

Cost Positive real numbers Costs of Transportation 

Investment Positive real numbers Costs of Production 

Income Positive real numbers Costs of Operation 

Environmental 

Usage Positive real numbers Costs of Operation 

Energy cost Positive real numbers 
Costs of Production, 

Transportation and Operation 

Water cost Positive real numbers Water of Production, Operation 

Disposal Positive real numbers Costs of Operation 

Emission Positive real numbers 
Emission of Operation, 

Production and Transportation 

Reusability Positive real numbers Costs of Production 

Social 

Rights Positive real numbers Costs of Operation 

Risk Positive real numbers Costs of Operation 

Satisfaction Positive natural numbers Costs of Operation 

Compliance Positive real numbers Costs of Operation 

 

Table 2 

Integrated indicators in GSC 

 Economic Environment 

Supplier 
Raw material costs 

Transport costs 
Transport emission 

Manufacturer 

Operational costs 

Product costs 

Transport costs 

Product emission 

Operational emission 

Product water costs 

Operational water 

Transport emission 

Distributor 

Operational costs 

Stock costs 

Transport costs 

Operational emission 

Operational water 

Transport emission 

 

The proposed network of the green supply chain includes suppliers, 

manufacturers, distributors, and customers. The operation of the green supply 

chain was modelled as follows: The production sites process raw materials 

purchased from the suppliers and produce products that are then transported to a 
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distribution center where the products are delivered to customers according to 

their orders. The objective was to obtain the balance between carbon emissions, 

water consumption, and total costs and find an inferior optimal solution in the 

feasible solutions. Thus, the proposed GSC network is a customer-order-driven 

process. Table 3 displays the indices of the supply chain partners, transportation 

modes, and energy types. Table 4 displays the decision variables in the GSC, and 

Table 5 displays the constants in the GSC.  
Table 3 

Variables in GSC 

Variable Number 

Supplier  1,2,...,i I=  

Manufacturer  1,2,...,j J=  

Distributor  1,2,...,k K=  

Customer  1,2,...,l L=  

Transport  1,2,...,s S=  

Energy  1,2,...,e E=  

Table 4 

Decision variable in GSC 

Decision variables Explanation 

( ) ( )
( )

,
j k

s m f t d  Binary variable that represents the current state of the manufacturer 

j (distributor k); 

( ) ( )
( ) ( ), ,

, ,
i j k j k l s

as t d t d c  
Quantity of raw materials/product transported from one suppliers 

i(manufacturer j, distributor k) to manufacturers j(distributor k, 

client l) by transport s 

( )
je

app m  Numbers of products made by manufacturer j and energy e 

Table 5 

Constants in GSC 

Constants Explanation 

lD  Order of customer l 

iQS  Supply Capacity of supplier i to supply Raw material; 

( )
( )j k

QUT D  The capacity of manufacturer j (distributor k) 

( ) ( )
( )

.
j k e

CO M F T D  The fixed costs of manufacturer j (distributor k) by energy e 

( )
( )j k

IOT D  The State of manufacturer j (distributor k) 

( ) ( )
( ) ( ), ,

, ,
i j k j k l s

CS T D T D C  
The cost of transporting a unit of raw material or product from supplier i 

(manufacturer j, distributor k) to manufacturer j (distributor k, client l) 

using transport mode s. 

( )
je

CPP M  The costs of producing a unit of product by manufacturer j and energy e 

iCSM  The costs of purchasing a unit of raw material from supplier i 

( ) ( )
( ) ( ), ,

, ,
i j k j k l s

ES T D T D C  Transport mode s from supplier i (manufacturer j, distributor k), 

transportation of a unit of raw materials or products to manufacturer j 
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(distributor k, client l) that produces carbon emissions. 

( )
je

EPP M  The output of carbon dioxide produced by a unit of production by 

manufacturer j and energy e 

( )
je

WPP M  Manufacturer j uses energy e that produces the amount of water 

consumed by a unit of production 

iEPR  The amount of carbon dioxide produced by supplier i production of a 

unit of raw material 

iWPR  The amount of water consumed by supplier i for the production of a unit 

of raw material 

( ) ( )
( )

,
j k e

WO M F T D  Established (maintain, close) fixed water consumption of manufacturer j 

(distributor k) using energy e 

( ) ( )
,

i k e
WS T D I  The water consumption indicator of supplier i(manufacturer j, 

distributor k) 

( ) ( ),
,

i j k
ES T D I  The carbon emission indicator of supplier i(manufacturer j, distributor k) 

( ) ( )
( )

,
j k e

EO M F T D  Production (select, not select) fixed carbon dioxide emissions produced 

by manufacturer j (distributor k) using energy e 

,a b  weights of the carbon emissions and weights of water consumption 

 

Based on the above information, the objective function of cost, emissions, 

and water consumption were obtained using Equations (2) through (4): 

 

1 min(

( ) ( ))

kls kls jks jks ijs ijs je je i ij

s S k K l L s S j J k K s S i I j J e E j J i I j J

je j je j ke k ke k

e E j J e E k K

obj CDC adc CTD atd CST ast CPP app CSM ast

CMT st CFT ft CMD sd CFD fd

            

   

= + + + +

+ + + +

    

 
 

(2) 

2 min( ( )

( ) ( )

kls kls jks jks ijs ijs je j je j je j

s S k K l L s S j J k K s S i I j J e E j J

je j je j ke k ke k ke k je je

e E j J e E k K j J

obj EDC adc ETD atd EST ast EOT st EMT st EFT ft

CMT st CFT ft EOD sd EMD sd EFD fd EPP app

          

    

= + + + + +

+ + + + + +

   

   )i ij

e E i I j J

EPR ast
  

+ 
 

(3) 

3 min( ( ) ( )

)

je j je j je j ke k ke k ke k je je

e E j J e E k K e E j J

i ij

i I j J

obj WOT st WMT st WFT ft WOD sd WMD sd WFD fd WPP app

WPR ast

     

 

= + + + + +

+

  


 (4) 

The multiple objective programming model can be converted into a single 

objective programming model, as shown in Equation (5): 
min( 1 2 3)Obj obj a obj b obj= +  +                               (5) 

Subjected to the following constraints: 

In this model, it was assumed that the orders were known and met, as 

shown in Equation (6): 

( )kls l

s S k K

adc D l L
 

= 
                                         (6) 
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The number of materials supplied from the suppliers must be less than the 

suppliers’ capacity, as shown in Equation (7): 

( )ijs i

s S j J

ast QS i I
 

 
                                          (7) 

The number of products from the suppliers to manufacturers must equal 

the number of products from manufacturers to distributors, as shown in Equation 

(8): 

ijs jks

i I j J j J k K

ast atd
   

= 
                                       (8) 

The number of products from the suppliers to manufacturers cannot 

exceed the number of the products by manufacturers, as shown in Equation (9): 

ijs je

s S i I e E

ast app
  

= 
                                         (9) 

The amount of carbon emissions by the suppliers cannot exceed the carbon 

emission index, as shown in Equation (10): 

i i ijs

i I s S j J

ESI EPR ast
  

 
                                    (10) 

The amount of carbon emissions by the manufacturers cannot exceed the 

carbon emission index, as shown in Equation (11): 
( )i j jks j jks j jks j ijs

j J s S j J j J s S i I j J

ETI EOT st EMT st EFT ft EPP ast
      

 + + +    
  (11) 

The amount of carbon emission by the distributors cannot exceed the 

carbon emission index, as shown in Equation (12): 
( )i k kl k kl k kl

j J l L k K

EDI EOD sd EMD sd EFD fd
  

 + + 
                  (12) 

The amount of water consumption by the suppliers cannot exceed the 

water consumption index, as shown in Equation (13): 

i i ijs

i I s S j J

WSI WPR ast
  

 
                                     (13) 

The amount of water consumption by the manufacturers cannot exceed the 

water consumption index, as shown in Equation (14): 
( )i j jks j jks j jks j ijs

j J s S j J j J s S i I j J

WTI WOT st WMT st WFT ft WPP ast
      

 + + +    
  (14) 

The amount of water consumption by the distributors cannot exceed the 

water consumption index, as shown in Equation (15): 
( )i k kl k kl

k K l L k K

WDI WMD sd WFD fd
  

 + 
                             (15) 

The open/close status of the partners are shown in Equations (16) to (28), 

where M is a very large value. 

( )0j je

e E

M st app j J


 −  
                                   (16) 

( )0j ijs

i I j J

M st ast j J
 

 −  
                                (17) 
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( )0j jks

s S k K

M st atd j J
 

 −  
                                (18) 

( )0k jks

s S k K

M sd atd k K
 

 −  
                             (19) 

( )0k kls

s S l L

M sd adc k K
 

 −  
                             (20) 

1( )j je

e E

st ft j J


+  
                                      (21) 

0( )j je

e E

st ot j J


−  
                                      (22) 

1( )k ke

e E

sd fd k K


+  
                                  (23) 

0( )k ke

e E

sd od k K


−  
                                   (24) 

1( )j j je

e E

st IOT ot j J


 +  
                                (25) 

1( )k k ke

e E

sd IOD od k K


 +  
                              (26) 

1 (1 ) 1( )j j je

e E

st IOT ft j J


−  − +  
                           (27) 

1 (1 ) 1( )k k ke

e E

sd IOD fd k K


−  − +  
                        (28) 

4. Self-adaptive distributed evolutionary algorithm 

In each iteration of the evolution process, the algorithm must adaptively 

select an operator pair from the pool to modify the current population of solutions. 

The operator pool contains several pairs of different crossover and mutation 

operators. The self-adaptive selection of the operator pairs is determined by the 

update of the global best solution, which is designed to guide the behavior of the 

searching process. The objective of this mechanism is promoting the algorithm to 

find a faster and more efficient solution. 

4.1 Encoding 

A hierarchy of the tree structure is used to demonstrate the conformation 

model of the constraint network. The chromosome is encoded as a multiway tree. 

Each tree is expressed using sequential numbers where each number indicates a 

partner in the GSC. Fig. 1 shows an example of the chromosome structure. 

4.2 Initial solution generation 

The initial solution of the proposed algorithm is obtained by sorting each 

partner’s preference evaluation value, which is calculated by weights using the 

AHP and the DEA. The probability of each partner selected is calculated using 

Equation (29), where
ip  represents the fitness of the potential partner.  
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root

C1 C2

D1 D2 D3 D1 D3

T1 T2 T2 T1 T2 T1 T1

S1 S2 S1 S3 S1 S2 S3 S1

Client

Distributor

Manufacturer

Supplier
 

Fig 1. Tree structure of the chromosome 

1 1

0 0

((1 / 1 ))
N N

i i j

j j

q p p− −

= =

= − −                                       (29) 

The cumulative probability of each supply chain partner, is calculated 

using kp  , as shown in Equation (30): 

1

, 1,2...,
K

k j

j

p q j k
=

= =                                         (30) 

The probability of a random generation of fitness is within the range of 

( )1,k kp p− . Then, the same level kth partner will be selected as a member of the 

supply chain. 

4.3 Evolutionary operations 

In the crossover operation, it is assumed that 
1 1 1( , )T r BT  and 

2 2 2( , )T r BT  are 

the progenitors of the 
'

1T  and 
'

2T , respectively, where 
1r  and 

2r  are roots, 
1BT  is the 

subtree of 
1r , and 

2BT  is the subtree of 
2r . The crossover operation was 

performed, as indicated in Equation (31): 
'

1 1 1 1 2 2 2

'

2 1 1 1 2 2 2

( , ) (1 ) ( , )

(1 ) ( , ) ( , )

T T r BT T r BT

T T r BT T r BT

 

 

 = + −


= − +
                                 (31) 

where α is the partial probability, and cp  represents the crossover rate. In 

the mutation operation, when the mrandom p , 
'

1 1 1 1( , ) 1,2,...,T T r BT i n= =                                        (32) 

where ri represents all of the root records that meet the selection criteria; 

and pm is the mutation rate. 

Based on the structure of the chromosome, ILOG CPLEX is then applied 

to adjust the quantity of products transported between each of the two partners. 

Adopted from the structure introduced in Meignan et al. [51], the genetic operator 

classifier selection mechanism in the GSC was designed to be based on the form 

of 〈condition, operation〉, where the condition indicates that the current situation 
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occurs, and the operator corresponds to the pair of crossover and mutation 

operations. Let C  be the set of conditions and O  be the crossover and mutation 

operator pairs. For a parameter condition, 
ic , a genetic manipulation, io , is 

selected for each pair. The selection of an operator pair is performed by a counter 

parameter, which represents the distance number of iterations since the last time 

the local best individual was improved. The different operation pairs use the same 

crossover and mutation mechanism introduced above; however, their parameters 

are set to be different from each other to obtain different intensification and 

diversification search abilities. 

4.4 Distributed structure 

In the distributed structure, the population is divided into four sub-

populations. When a sub-population searches around a local optimum, it may be 

discovered, while the other sub-populations continue to search for new local 

optima. The process is repeated if more local optima are found. The interaction 

among the agents of the distributed structure can maintain the diversity after a 

convergence. Indeed, exchanging information between cooperative meta-

heuristics will alter their behavior in terms of searching in the landscape 

associated with the problem. Both better convergence and improvement in the 

quality of solutions may occur. Furthermore, by proceeding with the calculation 

on multiple workstations, the distributed structure can improve the computational 

speed of the algorithm. Fig. 2 illustrates the structure of this method. 

 

Start

Tree coding

N=iterations

Iteration N=0

Initialization population

subgroup subgroup subgroup subgroup

Evolution Evolution Evolution Evolution

The best solution

Input corresponding 
paramter

Optimal 
solution

Optimal 
solution

Optimal 
solution

Optimal 
solution

Optimal  
comparison

Optimal  
comparison

Optimal  
comparison

Optimal  
comparison

N=iterations N=iterations N=iterations

Yes

No No No No

End

 

Fig. 2. The structure of Distributed Evolutionary Algorithm 
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5. Results and analysis 

The experiments were conducted on a set of cases with different scales. 

The partners’ maximum capacities of each case were generated according to real-

world cases. The parameter setting and simulation configuration for the 

investigated approach were specified as follows: Population: 100, Generations: 

500; 0.6cp = , 0.01mp = ; 10oc = ; 
1 30c = ; 

2 60c = ; 
3 95c = ; 

0o :
0 5.0%m =  of the 

individual’s subtrees; 
1o :

1 10.0%m =  of the individual’s subtrees; 
2o :

2 15.0%m =  of 

the individual’s subtrees; 
3o :

3 20.0%m =  of the individual’s subtrees. 

Six sets of experiments were performed to evaluate the efficiency and 

effectiveness of this approach, and the number of vertexes in these sets increased 

gradually. For each set, five cases with respect to the real data sets of an electronic 

device manufacturing process were generated. Each case was run on the Genetic 

Algorithm (GA), the Cplex (Opt), the Self-Adaptive Evolutionary Algorithm 

without distributed structure (SAEA), and the SADEA; their average objective 

function (Avg), standard deviations (Std), and average run times (Time) were 

recorded for ten runs.  

Table 6 displays a solution provided by the SADEA. It includes product 

distribution schemes among partners, and the results calculated using Equations 

(2) to (4). This solution corresponds to the data of a manufacturer of electronic 

goods that plans its GSC network to better meet customer requirements. The 

manufacturer has three customer regions, manufacturing factories, and 

distribution facilities, and three suppliers in the region.  
Table 6 

Solution provided by SADEA 
Partner T3 T1 T2 D1 D2 C1 C2 C3 Total 

S3 100         

S2  150        

S1  50 150       

T3    100      

T1    50 150     

T2     150     

D1        150  

D2      100 150 50  

Order      100 150 200  

Cost      176000 189000 159000 524000 

Emission      643245 746060 876180 2265485 

Water      7300 6900 8100 22300 

Total      311949 345112 342336 999397 
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Fig. 3 shows the relationship between the total costs and the different 

parameter settings of the selection pool at the three scales. The parameters were 

set as follows:
1 1 2 3 4( 10; 25; 50; 75)T C C C C= = = = , 

2 1 2 3 4( 15; 30; 60; 90)T C C C C= = = = ,
3 1 2 3 4( 20; 40; 80; 100)T C C C C= = = = . It can be seen 

that the parameters affect the solution quality, and 
1T  was more efficient than the 

other parameters. 

Fig. 4 compares the SAEA and SADEA on the 2-node Spark cluster. It is 

obvious that SADEA’s run time was only half that of the SAEA. By observing 

Fig. 5, we can find that the computing time of each cluster was slightly lower than 

the time of the stand-alone for small-scale cases. However, with the gradual 

increase in the case size, the advantages of the distributed computing began to 

appear. 
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Through the clustered calculation, the computing time of the algorithm can 

be significantly reduced, and the efficiency of the 6-node cluster provided the 

shortest computing time. For the last set of cases, the cluster with 4-nodes had a 

two-fold reduction in the computing time compared with the stand-alone. As 

shown in Table 7, SADEA was more efficient than the other algorithms. It can 

solve large-scale cases, which the CPLEX cannot. Furthermore, when the scale of 

the case increased, the computing time became significantly less than the other 

algorithms. 
Table 7-1 

Comparison of test results of each algorithm 

Partner 

(S/P/D/C) 
Instances Opt 

GA SAEA SADEA 

Avg Std Time Avg Std Time Avg Std Time 

5/5/5/5 

1 910141.7 916580 4757.317 9 914105.3 3139.809 12 910382.6 9362.654 5 

2 891034.5 911355.2 4420.055 11 902294.3 6063.129 12 893727.4 3822.533 6 

3 909873.2 924256.9 4851.49 10 919710.6 7405.302 14 923846.7 22918.424 7 

4 910286 922222 5112.823 11 915736.7 3800.453 10 914638.5 21932.532 7 

10/10/10/10 

1 879573.1 912500.5 12710.31 16 900333.2 16925.2 15 894729.4 31737.432 9 

2 930928.6 945242.3 7045.947 15 940937.2 6654.129 14 940184.5 38274.435 11 

3 941083.2 953618.5 4620.07 14 949277.4 5220.199 16 947294.8 32948.258 10 

4 892537.1 923510.9 4737.444 14 904894 5422.064 16 923448.9 22473.854 10 

30/10/10/10 

1 832014.8 851385.2 13341.02 15 847070.5 8354.608 16 843929.4 38264.895 10 

2 969837.3 978736.1 6596.852 16 974194.8 3916.702 17 970392.1 40285.938 10 

3 937832.9 951073.9 5314.941 16 947710.1 4029.417 16 950284 28372.927 11 

4 926739.5 945947.2 9214.81 17 937825 5641.173 18 929948.9 24958.294 10 

30/30/30/30 

1 --- 974643 7723.046 20 962753.5 3868.29 20 968482.3 21938.028 12 

2 --- 943504.1 8060.757 20 933361.9 6667.377 21 924938.7 35288.384 11 

3 --- 868483.6 14883.89 18 843349.8 6212.682 20 838492 38472.384 10 

4 --- 946771.7 12728.5 18 934366.1 10503.52 23 938482.9 24858.937 10 

50/50/50/50 

1 --- 946884 7803.034 21 939033.2 5110.345 26 923948.6 30991.969 16 

2 --- 949144.9 7641.312 23 931613 2812.201 28 940028.4 32127.092 16 

3 --- 955298.7 13680.2 22 932986.9 14367.71 25 929384.3 34153.374 15 

4 --- 965989.8 17424.86 25 947854.8 7397.529 24 940294.8 32034.867 16 

80/80/80/80 

1 --- 956664.5 26400.85 28 955067.7 8660.9 36 940284.5 23928.839 19 

2 --- 929341.5 15594.61 29 907040 8881.099 38 899937.2 32484.982 20 

3 --- 939958.3 14859.02 30 912081.8 12782.01 34 913828.6 29372.028 22 

4 --- 957822.5 24108.96 29 914959.7 4146.388 38 903829.3 23947.493 21 
 

Table 7-2 

Comparison of test results of each algorithm (improvement) 

Partner 

(S/P/D/C) 
Instances Opt 

Improve 

Opt(-%) 

Improve 

GA(%) 

Improve 

SAGA(%) 

Opt(-%) GA(%) SAEA(%) 

5/5/5/5 1 910141.7 0.02646841 0.67614393 0.40725067 
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2 891034.5 0.30222174 1.93424035 0.9494574 

3 909873.2 1.53576344 0.0443816 -0.4497176 

4 910286 0.47814643 0.82230743 0.1199253 

10/10/10/10 

1 879573.1 1.72314274 1.94751674 0.62241401 

2 930928.6 1.75694462 0.53507974 -0.6745721 

3 941083.2 0.66004791 0.66312682 0.2088536 

4 892537.1 3.51938312 0.00671351 -0.1057605 

30/10/10/10 

1 832014.8 3.83582119 0.87572582 -1.9902594 

2 969837.3 0.98519618 0.85252807 -0.533497 

3 937832.9 2.18067632 0.08305348 -0.1157315 

4 926739.5 0.34631091 1.69124662 0.83982619 

30/30/30/30 

1 --- --- 0.63209811 -0.5950433 

2 --- --- 1.9677074 0.90245809 

3 --- --- 3.45332946 0.57601247 

4 --- --- 0.87548033 -0.4405982 

50/50/50/50 

1 --- --- 2.42219744 1.60639688 

2 --- --- 0.96049613 -0.903315 

3 --- --- 2.71270127 0.38613618 

4 --- --- 2.65996597 0.79759052 

80/80/80/80 

1 --- --- 1.712199 1.54786933 

2 --- --- 3.163993 0.78307462 

3 --- --- 2.77987864 -0.1915179 

4 --- --- 5.63707785 1.21649074 

6. Conclusions 

In this study, an integrated mathematical model and a new Self-Adaptive 

Distributed Evolutionary Algorithm were proposed and applied on a green supply 

chain network design problem. Related indicators were integrated into three 

different criteria that were used to evaluate the partners. A hybrid tree coding 

evolutionary algorithm was applied with a self-adaptive operator selection pool to 

facilitate the parameter setting and to improve the search ability of the algorithm. 

Finally, the approach was paralleled and implemented in Spark to further improve 

its efficiency and solution quality. Experiments were conducted to evaluate the 

performance of this approach, and the results showed that this approach can 

provide high quality solutions efficiently in large-scale cases.  

Future research should consider more indicators in a green supply chain 

and extend this model by considering the uncertainty in customer demand and 

facility capacity. This will enhance its applicability in real-life scenarios. Closed-

loop SCNs should also be included in future research to consider used/returned 

products flows. 
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