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A DISTRIBUTED EVOLUTIONARY ALGORITHM FOR
SOLVING THE GREEN SUPPLY CHAIN NETWORK DESIGN
PROBLEM

Xinyuan LI*, Dan WANG?*, Yanji JIANG®, Maojun CAO*

This paper proposes an extended Multi-objective Mathematical Model for the
Green Supply Chain (GSC) network design problem, taking green procurement,
production, distribution, and transportation into consideration. The triple-bottom-
line in GSC is defined and assigned indicators to evaluate potential partners for
further operations. In addition, an efficient and flexible Self-Adaptive Distributed
Evolutionary Algorithm (SADEA) is developed to undertake strategic, tactical, and
operational decision making. The algorithm employs a hybrid tree coding structure
with a self-adaptive operator selection pool and is paralleled and implemented in
Spark to further improve its efficiency. Our results demonstrate that the algorithm
can solve the GSC network design problem efficiently and provide high quality
solutions compared to other algorithms for the multi-objective optimization. The
study results provide an important reference to guide future research.

Keywords: green supply chain; evolutionary algorithm; distributed algorithm;
selection pool; genetic algorithm; hybrid tree

1. Introduction

With a gradual recognition of the need to become sustainable, green
supply chain management (GSCM) has received increasing interest from both
academics and industry. Firms are challenged to balance business performance
with environmental and social issues. To achieve this goal, companies have begun
to incorporate sustainability concerns [1,2], increasing their demand for efficient
and effective decision-making methods. Green design has gradually become the
preponderant way for firms to sustainably develop.

A green supply chain’s primary objective is to satisfy all customer
demands via the most efficient use of resources, including inventory, logistics,
and labor. Regarding the environmental aspect, carbon emission is commonly
used as the indicator. However, studies tend to focus on only the emissions of
parts of the supply chain process, such as production or transportation. This
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deficiency is primarily due to the complexity involved in modelling the various
criteria.  Optimization models become complex when combining social,
environmental, and traditional business concerns. To account for sustainability in
optimizing supply chain optimization, a large number of additional variables are
required, rendering the solving of large-scale cases a serious challenge.

Due to the large number of indicators and partners in GSCM [3,4], the
optimization of its network is difficult and time-consuming [5-9]. Thus, heuristic
and metaheuristic algorithms, such as the Fuzzy Neural Network [10]; the Bees
Algorithm [11]; the Ant Colony Optimization [12]; the Neural Network
Algorithm [13]; and the Genetic Algorithm (GA) [14], have been widely used.
However, four difficulties exist, rendering their use problematic. One, the
algorithms remain time and memory-consuming in solving large-scale cases.
Two, the diversity of the searching process usually decreases significantly after
convergence to the local optimum, which restricts the ability of the algorithms to
further explore the solution space. Three, the algorithms require an accurate
parameter setting to obtain a good search ability, which can be difficult to obtain
in a reasonable amount of time. Four, the algorithms have difficulties meeting the
real-world requirements of scale, solution quality, and efficiency.

Thus, to further integrate sustainability into the supply chain network
design, this study proposes a comprehensive Mixed Integer Linear Programming
(MILP) model for a four-level green supply chain network design problem [15-
17]. In addition, we propose a novel effective method combining a self-adaptive
evolutionary algorithm, the optimum algorithm, and a distribution structure, based
on a demand-oriented mechanism. We test its validity and reliability via a case
study. Our results demonstrate that the proposed algorithm outperformed the other
algorithms.

2. Literature Review

To develop a Green Supply Chain (GSC), an indicator system consisting
of enterprise statistics should indicate corresponding changes and improvements
of the existing supply chain [18]. The addition of carbon emissions is required to
indicate the greenness of the GSC. Xie et al. [19] explored GSC performance
indicators (i.e., energy consumption and profit), and Shao et al. [20] evaluated
green performance using the energy usage rate and environmental pollution.
However, these indicators do not completely describe the green performance.
Coskun et al. [21] proposed a comprehensive indicator system for GSC
performance for partner selection, introducing economic, environmental, and
social performance, which is similar to the research of inventories [22] and
research on facility allocation [23]. Roy et al. [24] proposed a two-level model
containing one manufacturer and many retailers. Although attempts have been
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made to identify the indicators of green performance in a GSC [25,26], a holistic,
sustainable framework emphasizing economic, environmental, and social
dimensions does not yet exist.

Similar to traditional supply chains, the GSC can be designed as different
models, with each designed for a different research direction. Aksen et al. [27]
designed a discrete optimization model for solving the process of commodities
trading in a green supply chain. Vencheh et al. [28] proposed a non-linear model
for supplier selection in a green supply chain; later experiments demonstrated that
the model was able to maintain stability during the solution process. Lious et al.
[29] presented a model based on the green expectations of consumers. Benjaafar
et al. [18] designed a model to balance the relationship between cost and carbon
emissions. Roy et al. [30] proposed a two-level model with one manufacturer and
many retailers. Wang et al. [31] proposed that a green supply chain required a
comprehensive evaluation. As a result, the technologies of an environmental
information system and a decision support system were synthesized in the
research and a novel multi-objective dynamic programming model was proposed.
Similarly, Lious et al. [29] designed a novel model for dealing with the Fuzzy
information of decision-makers, while Oliveria et al. [32] and Sakiks et al. [33]
built a multi-objective model that was consistent with the government’s
environmental policy. Kannan et al. [34] considered sustainable development
using a modern production model. Xie et al. [35] proposed an integrated supply
chain model that considered energy consumption and profit. Mirthedayatian et al.
[36] evaluated double factors in a new DEA network model.

Many resolution algorithms have been proposed to design and optimize
GSC networks [37]. For small-scale cases, Sarkis et al. [38] used the IBM ILOG
CPLEX Optimization Studio (CPLEX) to solve the inventory problem. Wang et
al. [31] and Boonsothonsati et al. [39] also used the CPLEX for the partner
selection problem. Slimani et al. [40] proposed a game theory for a two-level
supply chain with one retailer and one supplier. For medium-size cases, the
Lagrangian relaxation, the Branch-and-bound approach, and the Bender
decomposition have been utilized. However, these approaches cannot always
provide feasible solutions. For large-scale cases, the solution space often depletes
system memory during operation, resulting in the use of heuristic and
metaheuristic methods. Kannan et al. [34] used the Genetic Algorithm to solve a
recycling green supply chain model using a closed loop battery. The study also
analyzed the closed loop supply chain using the Genetic Algorithm and the
Particle Swarm Optimization Algorithm. Validi et al. [41] proposed a method
based on the MOGA-II to solve the sustainable supply chain model. Roghanian et
al. [42] optimized a network of reverse logistics using the Genetic Algorithm.
Jiang et al. [43] solved the facility location problem using the Genetic Algorithm.
Jamshidi et al. [44] used a hybrid memetic algorithm to improve the efficiency of



36 Xinyuan Li, Dan Wang, Yanji Jiang, Maojun Cao

the green supply chain network. Carlucci et al. [45] presented a hon-dominated
genetic algorithm for the multi-objective optimization of the supply chain. Dotoli
et al. [46] proposed a multiple-step hierarchical algorithm for solving the supply
chain network design problem with uncertainty.

Although it is allowable to significantly reduce the computational
complexity of the search process by using heuristics and metaheuristics, the latter
remains time/memory consuming in large-scale usage. Moreover, population-
based algorithms require an accurate parameter setting to obtain a good search
ability. Therefore, in this paper, we develop a self-adaptive distributed
evolutionary algorithm to solve the green supply network design problem with
high efficiency and solution quality, particularly in large-scale usage.

3. Mathematical model for GSC network design

Studies [15-17] helped develop and improve the criteria for evaluating the
GSC network used in this paper. Table 1 displays the range of performance
indicators and activity measures.

The hybrid method of the Analytic Hierarchy Process (AHP), as well as
the Data Envelopment Analysis (DEA) method, were used to evaluate the weight
of the selected indicators. The AHP is commonly used for organizing and
analyzing complex decisions. It provides a rational framework for a needed
decision by quantifying its criteria and alternative options, and for relating those
elements to the overall goal. The DEA is a non-parametric method for performing
frontier analysis. It uses linear programming to estimate the efficiency of multiple
decision-making units and it is commonly used in production, management and
economics.

The process was designed as follows: First, every index was compared
after the hierarchical structure was established, and the judgment matrix was
constructed according to the selected scale. Second, based on this judgment
matrix, the single level ranking and the consistency check were implemented.
After calculating the single ranking, we calculated the ranking weights of all the
indicators in the same level, in order to obtain their relative importance at the
highest level. The consistency of the general ranking was tested, and the weights
were obtained. Then, the DEA model was established and transformed into an
equivalent linear programming model. The model was then solved, and the
optimal evaluation indicators and their weights were obtained. Finally, a linear
combination as per Equation (1) was used to calculate the combined weights,
where A is the adjusting parameter.

v = Ao +(1-A)f 1)

Table 2 displays the integrated indicators. Specifically, the cost-based
indicators, such as worker rights and social compliance, were integrated directly
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into the corresponding partner’s fixed costs. The probability-based indicators
(e.g., example the accident rate) were transformed into a pessimistic value of lost
costs and added into the corresponding partner’s operational cost or production
cost. The operational costs were calculated with indicators that included
operational taxes, employee salaries, operational energy costs, and other costs of
operation. Sustainability costs were calculated using the emission index, sewage

discharge index, and pollution abatement.
Table 1
Indicators of each dimension considered in GSC

Bottom-line Indicator Type Consolidation
Price Positive real numbers Costs of Production
Quality Positive natural numbers Costs of Production
Economic Cost Positive real numbers Costs of Transportation
Investment Positive real numbers Costs of Production
Income Positive real numbers Costs of Operation
Usage Positive real numbers Costs of Operation

Costs of Production,

Positive real numbers Transportation and Operation

Energy cost

. Water cost Positive real numbers Water of Production, Operation
Environmental - - -
Disposal Positive real numbers Costs of Operation
L . Emission of Operation,
Emission Positive real numbers : .
Production and Transportation
Reusability Positive real numbers Costs of Production
Rights Positive real numbers Costs of Operation
Social _Risk. Po_s_itive real numbers Costs of Operat!on
Satisfaction | Positive natural numbers Costs of Operation
Compliance Positive real numbers Costs of Operation
Table 2
Integrated indicators in GSC
Economic Environment
Supplier Raw material costs Transport emission
Transport costs
Product emission
Operational costs Operational emission
Manufacturer Product costs Product water costs
Transport costs Operational water
Transport emission
Operational costs Operational emission
Distributor Stock costs Operational water
Transport costs Transport emission

The proposed network of the green supply chain includes suppliers,
manufacturers, distributors, and customers. The operation of the green supply
chain was modelled as follows: The production sites process raw materials
purchased from the suppliers and produce products that are then transported to a
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distribution center where the products are delivered to customers according to
their orders. The objective was to obtain the balance between carbon emissions,
water consumption, and total costs and find an inferior optimal solution in the
feasible solutions. Thus, the proposed GSC network is a customer-order-driven
process. Table 3 displays the indices of the supply chain partners, transportation
modes, and energy types. Table 4 displays the decision variables in the GSC, and
Table 5 displays the constants in the GSC.

Table 3
Variables in GSC
Variable Number
Supplier i={12,..,1}
Manufacturer i={12..3}
Distributor k={12,.,K}
Customer I={12,..,L}
Transport s={12..,S}
Energy e={12,..,E}
Table 4
Decision variable in GSC
Decision variables Explanation
s(m, f)t(d) Binary variable that represents the current state of the manufacturer
' ik)

j (distributor k);

Quantity of raw materials/product transported from one suppliers

as(t,d)t(d ’C)i(j,k)j(k,l)s i(manufacturer j, distributor k) to manufacturers j(distributor k,
client I) by transport s
app(f’ﬂ)je Numbers of products made by manufacturer j and energy e
Table 5
Constants in GSC
Constants Explanation
D, Order of customer |
Qs, Supply Capacity of supplier i to supply Raw material;
QUT(D);, The capacity of manufacturer j (distributor k)
CO(MF)T(D),,. | The fixed costs of manufacturer j (distributor k) by energy e
10T (D), ,, The State of manufacturer j (distributor k)

The cost of transporting a unit of raw material or product from supplier i
CS(T,D)T(D.C)y;i0ne | (manufacturer j, distributor k) to manufacturer j (distributor k, client 1)
using transport mode s.

CPP(M), The costs of producing a unit of product by manufacturer j and energy e
CsM, The costs of purchasing a unit of raw material from supplier i
ES(T,D)T(D.C) Transport mode s from supplier i (manufacturer j, distributor k),

IkDs | transportation of a unit of raw materials or products to manufacturer j
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(distributor k, client I) that produces carbon emissions.

The output of carbon dioxide produced by a unit of production by

EPP(M), manufacturer j and energy e
WPP (M) Manufacturer j Uses energy e that produces the amount of water
* consumed by a unit of production
EPR The amount of carbon dioxide produced by supplier i production of a
' unit of raw material
WPR The amount of water consumed by supplier i for the production of a unit

of raw material

e

WO(M,F)T (D),

Established (maintain, close) fixed water consumption of manufacturer j
(distributor k) using energy e

WS(T,D) ke

The water consumption indicator of supplier i(manufacturer j,
distributor k)

ES(T.D) L

The carbon emission indicator of supplier i(manufacturer j, distributor k)

EO(M,F)T (D),

Production (select, not select) fixed carbon dioxide emissions produced
by manufacturer j (distributor k) using energy e

a,b

weights of the carbon emissions and weights of water consumption

Based on the above information, the objective function of cost, emissions,
and water consumption were obtained using Equations (2) through (4):

objL=min(}_)" > CDC,.adc,, +Y Y. > CTD atd, + ) > > CST,ast, +» ) CPP.app, + Y CSMast;

seS keK leL seS jed keK se$ el jed ecE jel iel jeld
+Y ) (CMT st +CFT, ft,)+ > > (CMD,sd, +CFD, fd,))
ecE jel ecE keK
(2)
obj2=min()_ ) Y EDC,.ade, +Y ) Y ETD,atd + Y > ) EST,ast, +) ) (EOT,st, + EMT st,EFT, ft;)+

seS keK lel seS jed keK se$ el jel ecE jel

+Y. Y (CMT,st, +CFT, ft,)+ ) > (EOD,sd, + EMD,sd, + EFD,, fd,)+ ) ) EPP.app,+ ) > EPRast;)

ecE jel ecE keK ecE jel iel jed

(3)
obj3=min()_ " WOT,st; +WMT, st WFT, ft;,)+ )" (WOD,,sd, +WMD,,sd, +WFD,, fd,)+ > > WPPapp,,
ecE jel ecE keK ecE jel
+. Y WPRast;)
iel jed (4)

The multiple objective programming model can be converted into a single
objective programming model, as shown in Equation (5):
Obj = min(objl+ axobj2+ b xobj3) (5)

Subjected to the following constraints:
In this model, it was assumed that the orders were known and met, as

shown in Equation (6):
> > adc,, =D (lel)
seS keK (6)
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The number of materials supplied from the suppliers must be less than the
suppliers’ capacity, as shown in Equation (7):
D> > ast, QS (iel)
seS jed (7)
The number of products from the suppliers to manufacturers must equal
the number of products from manufacturers to distributors, as shown in Equation

(8):
ZZastijs = Z D atdy,
iel jed jed kek (8)

The number of products from the suppliers to manufacturers cannot
exceed the number of the products by manufacturers, as shown in Equation (9):
ast.. = app;
ZSZI s ZE PPy ©
The amount of carbon emissions by the suppliers cannot exceed the carbon
emission index, as shown in Equation (10):
D> ESI, = > EPRast,
iel seS jel (10)
The amount of carbon emissions by the manufacturers cannot exceed the
carbon emission index, as shown in Equation (11):
D ETI, = > > (EOT,st; +EMT;st,, +EFT, ft, )+ > > EPP, x> > ast,
jed seS jel jed seS iel jel (11)
The amount of carbon emission by the distributors cannot exceed the
carbon emission index, as shown in Equation (12):
> EDI, > > %" (EOD,sd,, +EMD,sd,, + EFD, fd,)
jed leL keK (12)
The amount of water consumption by the suppliers cannot exceed the
water consumption index, as shown in Equation (13):
> WSl > > WPRast;,
iel seS jel (13)
The amount of water consumption by the manufacturers cannot exceed the
water consumption index, as shown in Equation (14):
D WTIE =D (WOT, st WMT st +WFT, ft, )+ > > WPP, x > > ast,
jed seS jeld jed ses iel jed (14)
The amount of water consumption by the distributors cannot exceed the
water consumption index, as shown in Equation (15):

> WDI, > > >" (WMD,sd,, +WFD, fd,)
keK leL keK (15)

The open/close status of the partners are shown in Equations (16) to (28),
where M is a very large value.
M xst, —> app, >0(jeJ)
i ; i (16)

Mxst, —> > ast, >0(jeJ)
icl jel (17)
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M x st —Z:Zatdjks >0(jed)

seS keK (18)
M xsd, — atd,, >0(k e K)
R (19)
M xsd, — adc,, 20(k e K
Zi e 2009 @0
st.+ ) ft, <1(jed)
i ; j (21)
st, — > ot., >0(jeJ)
i ; i (22)
sd, + ) fd,, <1(k e K)
k eEZE K (23)
sd, — > od,, 20k € K)
2 (24)
st, <IOT, + ) ot, <1( €J)
] ] ; J (25)
sd, < 10D, + Y od,, <1(k € K)
ecE (26)
1-st. <@-10T,)+ ) ft, <1(eJ)
] ] eeZE J (27)
1-sd, <(1-10D)+ > fd,, <1(k e K)
ecE (28)

4. Self-adaptive distributed evolutionary algorithm

In each iteration of the evolution process, the algorithm must adaptively
select an operator pair from the pool to modify the current population of solutions.
The operator pool contains several pairs of different crossover and mutation
operators. The self-adaptive selection of the operator pairs is determined by the
update of the global best solution, which is designed to guide the behavior of the
searching process. The objective of this mechanism is promoting the algorithm to
find a faster and more efficient solution.

4.1 Encoding

A hierarchy of the tree structure is used to demonstrate the conformation
model of the constraint network. The chromosome is encoded as a multiway tree.
Each tree is expressed using sequential numbers where each number indicates a
partner in the GSC. Fig. 1 shows an example of the chromosome structure.

4.2 Initial solution generation

The initial solution of the proposed algorithm is obtained by sorting each
partner’s preference evaluation value, which is calculated by weights using the
AHP and the DEA. The probability of each partner selected is calculated using
Equation (29), where p, represents the fitness of the potential partner.
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Client

Distributor

Manufacturer

Supplier

Fig 1. Tree structure of the chromosome

G = Z((l— b/ Zl— ;") (29)

The cumulative probability of each supply chain partner, is calculated
using p, , as shown in Equation (30):

Py :qu, j=12...k (30)
j=1

The probability of a random generation of fitness is within the range of
(Pt P ). Then, the same level kth partner will be selected as a member of the

supply chain.
4.3 Evolutionary operations
In the crossover operation, it is assumed that T,(r,BT,) and T,(r,,BT,) are

the progenitors of the T, and T, respectively, where r, and r, are roots, BT, is the

subtree of r, and BT, is the subtree of r,. The crossover operation was

performed, as indicated in Equation (31):
{T;=aT1<rl.BT1)+<1—a)T2(r2,BTZ)

. (31)
T, = (1=a)T,(1, BT)) +aT,(r,, BT,)

where o is the partial probability, and p, represents the crossover rate. In
the mutation operation, when the random> p, ,

T1I =T1(rl! BTl) I :11 21---5n (32)

where r;j represents all of the root records that meet the selection criteria;
and pm is the mutation rate.

Based on the structure of the chromosome, ILOG CPLEX is then applied
to adjust the quantity of products transported between each of the two partners.
Adopted from the structure introduced in Meignan et al. Y, the genetic operator
classifier selection mechanism in the GSC was designed to be based on the form
of (condition, operation), where the condition indicates that the current situation
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occurs, and the operator corresponds to the pair of crossover and mutation
operations. Let ¢ be the set of conditions and o be the crossover and mutation
operator pairs. For a parameter condition, ¢, a genetic manipulation, o,, is

selected for each pair. The selection of an operator pair is performed by a counter
parameter, which represents the distance number of iterations since the last time
the local best individual was improved. The different operation pairs use the same
crossover and mutation mechanism introduced above; however, their parameters
are set to be different from each other to obtain different intensification and
diversification search abilities.

4.4 Distributed structure

In the distributed structure, the population is divided into four sub-
populations. When a sub-population searches around a local optimum, it may be
discovered, while the other sub-populations continue to search for new local
optima. The process is repeated if more local optima are found. The interaction
among the agents of the distributed structure can maintain the diversity after a
convergence. Indeed, exchanging information between cooperative meta-
heuristics will alter their behavior in terms of searching in the landscape
associated with the problem. Both better convergence and improvement in the
quality of solutions may occur. Furthermore, by proceeding with the calculation
on multiple workstations, the distributed structure can improve the computational
speed of the algorithm. Fig. 2 illustrates the structure of this method.

0
e

roup
*b{ Evulutmn‘ ~>{ Evolution ‘D{ Evolution ){ Evolution ‘
’ Tree coding ‘ i i l i
i Optimal Optimal Optimal Optimal
solution solution s or solutio
Tteration N=0
N i No i No Ng i

solution
i Optimal Optimal Optimal

comparison omparison comparison

Initialization population X 7 7N

%

v

The best solution

Fig. 2. The structure of Distributed Evolutionary Algorithm
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5. Results and analysis

The experiments were conducted on a set of cases with different scales.
The partners’ maximum capacities of each case were generated according to real-
world cases. The parameter setting and simulation configuration for the
investigated approach were specified as follows: Population: 100, Generations:
500; p,=06, p,=001; c,=10; ¢ =30; c,=60; c,=95; o,:m,=50% Of the
individual’s subtrees; o, :m =10.0% of the individual’s subtrees; o,:m, =15.0% Of
the individual’s subtrees; o,:m, =20.0% of the individual’s subtrees.

Six sets of experiments were performed to evaluate the efficiency and
effectiveness of this approach, and the number of vertexes in these sets increased
gradually. For each set, five cases with respect to the real data sets of an electronic
device manufacturing process were generated. Each case was run on the Genetic
Algorithm (GA), the Cplex (Opt), the Self-Adaptive Evolutionary Algorithm
without distributed structure (SAEA), and the SADEA,; their average objective
function (Avg), standard deviations (Std), and average run times (Time) were
recorded for ten runs.

Table 6 displays a solution provided by the SADEA. It includes product
distribution schemes among partners, and the results calculated using Equations
(2) to (4). This solution corresponds to the data of a manufacturer of electronic
goods that plans its GSC network to better meet customer requirements. The
manufacturer has three customer regions, manufacturing factories, and
distribution facilities, and three suppliers in the region.

Table 6
Solution provided by SADEA
Partner T3 T1 T2 D1 D2 C1 Cc2 C3 Total
S3 100
S2 150
S1 50 150
T3 100
T1 50 150
T2 150
D1 150
D2 100 150 50
Order 100 150 200
Cost 176000 189000 159000 524000
Emission 643245 746060 876180 2265485
Water 7300 6900 8100 22300

Total 311949 345112 342336 999397
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Fig. 3 shows the relationship between the total costs and the different
parameter settings of the selection pool at the three scales. The parameters were
set as follows: 7, (c, =10;C, = 25;C, =50;C, = 75),
T,(C, =15;C, =30;C, = 60;C, = 90) , T, (C, = 20;C, = 40;C, =80;C, =100) . It can be seen
that the parameters affect the solution quality, and T, was more efficient than the
other parameters.

Fig. 4 compares the SAEA and SADEA on the 2-node Spark cluster. It is
obvious that SADEA’s run time was only half that of the SAEA. By observing
Fig. 5, we can find that the computing time of each cluster was slightly lower than
the time of the stand-alone for small-scale cases. However, with the gradual
increase in the case size, the advantages of the distributed computing began to
appear.
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Fig. 3. The optimum of different instance sets
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Through the clustered calculation, the computing time of the algorithm can
be significantly reduced, and the efficiency of the 6-node cluster provided the
shortest computing time. For the last set of cases, the cluster with 4-nodes had a
two-fold reduction in the computing time compared with the stand-alone. As
shown in Table 7, SADEA was more efficient than the other algorithms. It can
solve large-scale cases, which the CPLEX cannot. Furthermore, when the scale of
the case increased, the computing time became significantly less than the other
algorithms.

Comparison of test results of each algorithm

Table 7-1

Partner
(S/P/DIC)

Instances| Opt

GA

SAEA

SADEA

Avg

Std

Time

Avg

Std

Time

Avg

Std Time

910141.7

916580

4757.317

9

914105.3

3139.809

12

910382.6

9362.654 | 5

891034.5

911355.2

4420.055

11

902294.3

6063.129

12

893727.4

3822.533

5/5/5/5

909873.2

924256.9

4851.49

10

919710.6

7405.302

14

923846.7

22918.424

910286

922222

5112.823

11

915736.7

3800.453

10

914638.5

21932.532

879573.1

912500.5

12710.31

16

900333.2

16925.2

15

894729.4

O (N (N |

31737.432

930928.6

945242.3

7045.947

15

940937.2

6654.129

14

940184.5

38274.435

10/10/10/10

941083.2

953618.5

4620.07

14

949277.4

5220.199

16

947294.8

32948.258

892537.1

923510.9

4737.444

14

904894

5422.064

16

923448.9

22473.854

832014.8

851385.2

13341.02

15

847070.5

8354.608

16

843929.4

38264.895

969837.3

978736.1

6596.852

16

974194.8

3916.702

17

970392.1

40285.938

30/10/10/10

937832.9

951073.9

5314.941

16

947710.1

4029.417

16

950284

28372.927

926739.5

945947.2

9214.81

17

937825

5641.173

18

929948.9

24958.294

974643

7723.046

20

962753.5

3868.29

20

968482.3

21938.028

943504.1

8060.757

20

933361.9

6667.377

21

924938.7

35288.384

30/30/30/30

868483.6

14883.89

18

843349.8

6212.682

20

838492

38472.384

946771.7

12728.5

18

934366.1

10503.52

23

938482.9

24858.937

946884

7803.034

21

939033.2

5110.345

26

923948.6

30991.969

949144.9

7641.312

23

931613

2812.201

28

940028.4

32127.092

50/50/50/50

955298.7

13680.2

22

932986.9

14367.71

25

929384.3

34153.374

965989.8

17424.86

25

947854.8

7397.529

24

940294.8

32034.867

956664.5

26400.85

28

955067.7

8660.9

36

940284.5

23928.839

929341.5

15594.61

29

907040

8881.099

38

899937.2

32484.982

80/80/80/80

939958.3

14859.02

30

912081.8

12782.01

34

913828.6

29372.028

AW |IN|IP|IDMIOIN|IP|IDMNIOIN|IP|IMIOIN|IRP[DMIOIN|(RP|DMI®W[IN |-
'
i
i

957822.5

24108.96

29

914959.7

4146.388

38

903829.3

23947.493

Comparison of test results of each algorithm (improvement)

Table 7-2

Partner
(S/P/DIC)

Instances

Opt

Improve
Opt(-%)

Improve
GA(%)

Improve
SAGA(%)

Opt(-%)

GA(%)

SAEA(%)

5/5/5/5

910141.7

0.02646841

0.67614393

0.40725067
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2 891034.5 0.30222174 1.93424035 0.9494574
3 909873.2 1.53576344 0.0443816 -0.4497176
4 910286 0.47814643 0.82230743 0.1199253
1 879573.1 1.72314274 1.94751674 0.62241401
2 930928.6 1.75694462 0.53507974 -0.6745721
10/10/10/10
3 941083.2 0.66004791 0.66312682 0.2088536
4 892537.1 3.51938312 0.00671351 -0.1057605
1 832014.8 3.83582119 0.87572582 -1.9902594
2 969837.3 0.98519618 0.85252807 -0.533497
30/10/10/10
3 937832.9 2.18067632 0.08305348 -0.1157315
4 926739.5 0.34631091 1.69124662 0.83982619
1 0.63209811 -0.5950433
2 1.9677074 0.90245809
30/30/30/30
3 3.45332946 0.57601247
4 0.87548033 -0.4405982
1 2.42219744 1.60639688
2 0.96049613 -0.903315
50/50/50/50
3 2.71270127 0.38613618
4 2.65996597 0.79759052
1 1.712199 1.54786933
2 3.163993 0.78307462
80/80/80/80
3 2.77987864 -0.1915179
4 5.63707785 1.21649074

6. Conclusions

In this study, an integrated mathematical model and a new Self-Adaptive
Distributed Evolutionary Algorithm were proposed and applied on a green supply
chain network design problem. Related indicators were integrated into three
different criteria that were used to evaluate the partners. A hybrid tree coding
evolutionary algorithm was applied with a self-adaptive operator selection pool to
facilitate the parameter setting and to improve the search ability of the algorithm.
Finally, the approach was paralleled and implemented in Spark to further improve
its efficiency and solution quality. Experiments were conducted to evaluate the
performance of this approach, and the results showed that this approach can
provide high quality solutions efficiently in large-scale cases.

Future research should consider more indicators in a green supply chain
and extend this model by considering the uncertainty in customer demand and
facility capacity. This will enhance its applicability in real-life scenarios. Closed-
loop SCNs should also be included in future research to consider used/returned
products flows.
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