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APPLICATION OF THE HOMOTOPY ANALYSIS METHOD IN
APPROXIMATION OF CONVOLUTIONS STOCHASTIC
DISTRIBUTIONS

Vladica Stojanovié', Tijana Kevkié?, Gordana Jelié?

This paper describes application of the homotopy analysis (HA) technique
in approzimation of infinity convolutions of mized stochastic distributions, which usu-
ally do not have a closed form. The main result is based on HA approximations of their
characteristics functions, as the Fourier-Stieltjes transforms of the appropriate distribu-
tions.
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1. Introduction

The homotopy analysis method (HAM) proposed by Liao [1]-[3] is a general approx-
imate analytic approach which is using to obtain series solutions of nonlinear equations of
various types. In recent years, the HAM has become the subject of extensive studies [4]-[6].
It has been applied to solving the various types of nonlinear differential equations [7, 8],
partial differential equations [9]-[11] or integral equations [12, 13].

Let us notice that HAM has found significant application in solving problems mainly
in the physical sciences. On the other hand, the importance of HAM in stochastic theory
can be seen for calculations of the options pricing subordinate with so-called stochastic
volatility (SV) model [14]. Moreover, in [15] has been introduced the discrete-time SV
model, named Split-SV model. It is shown that stochastic distribution of this model is an
infinity convolution of mixed stochastic distributions, which does not have a closed form.
In this paper will be describe some possibilities to finding approximations of these types of
stochastic distributions, by using the HAM. The main focus, similarly as in [16], will be on
the HAM approximations of Fourier-Stieltjes transforms of appropriate distributions, i.e.,
their characteristics functions (CF's).

2. Stochastic assumptions

Firstly, we observe the autoregressive (AR) sequence of random variables (RVs) de-
fined by the recurrent relation

(1) Ay =aliy +n, teZ.
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Here, a is some constant value and (7)) is the sequence of independent identically distributed
(ii.d.) RVs which satisfies

Pin #0}=pe(0,1), VteZ

In some practical interpretations, Eq.(1) describes some linear system with input A;_; and
output A, at time ¢ € Z. Thus, the sequence (1) is “optional” noise, because it affects
the outputs of the system (1) only partially, with probability p € (0,1). This sequence can
be formally written as the multiplicative decomposition 7, = ¢y, similarly as in [17]-[19].
Here, (&) is the “true” noise, i.e. the (0,62) i.i.d. sequence of RVs, with some absolutely-
continuous (usually, Gaussian) distribution. On the other hand, (g;) is the so-called Noise-
Indicator, i.e., the sequence of RVs mutually independent of (&), defined as

1, wp.p
qt = , O<p<l1.
0, wp.1l—p

According to the aforementioned facts, the distribution function (DF) of the noise
variable 7;, t € Z can be found by using the conditional probability

Fy(z) = P{p<az}= Zp{ﬁt<x|Qt=j}P{Qt=j}
j=0.1

= pP{& <z}+(1-p) P{Xo <z}
= pFe(z)+ (1 -p) Fo().
Here, F¢(x) denotes the DF of RV §;, and

0, <0
Fo(z) = 1, >0

is the DF of Xy £ 0. Therefore, the DF F) () is a mixture of the continuous DF F¢(z) and
the discrete type DF Fy(z) of the RV X, almost surely concentrated at = 0. For these
reasons, the distribution of 7 is usually called the Contaminated Distribution (CD). Namely,
the function F; (z) is continuous almost everywhere, i.e., the only point of discontinuity is
x = 0, where the jump has the value 1 — p (Fig. 1). Due to this fact, some standard
stochastic procedures cannot be applied in researching the properties of the RVs (A;) .

M Fl_l(x)

1-p/2

*

_p/2

FIGURE 1. The distribution function of random variable with contaminated distribution.
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In the following, we assume that the non-triviality and stationarity condition 0 <
la| < 1 of the sequence (A;) is satisfied. Thus, for any ¢ € Z and k € N we can express A,
onAyj, j=1,...,kas

k-1
Ay = Zajft—j Qr—j1 + " Ay
=0

It is obvious that, when & — oo and |a| < 1, we have
o0

(2) A= & jqj,
§=0

where the above sum converges in mean-square and almost surely.

Let us now consider the DF of RVs Ay, denoted by Fa(z). Since the series (A;)
is stationary, it is clear that function Fa(z) does not depend on time parameter ¢ € Z.
Another application of conditional probability give to us

Fa(z) = (G@ Fy)(z) = p (G @ Fe)(z) + (1 - p)G(a),

where
1—Fa (%) , ae(-1,0)

Fa (2) , a€(0,1)
and ”®” denotes the convolution of appropriate distribution functions, i.e.,
“+o0

(G®Fn)(z):/ G(I—U)Fn(dU):/ G(z = u) [pFe + (1 = p) Fol (du).

— 00 — 00

G(z) := P{aA; < z} = { )

—+o0

In order to find the unique expression for Fa(x), we find the explicit expression for the
characteristic function (CF) of RVs 1y = &4y, as

+oo ) )
Ch(u) = [m e F,(dz) = p/z;éo " Fe(dx) 4 (1 — p)e'®
3) = 14p(Ce(u) - 1),

where C¢(u) is the (known) CF of RVs &. As RVs A, according to Eq.(2), are sums of
uncorrelated RVs ajm,j, ji=0,1,2,... their CF is

(4) Ca(u) =[] ¢, (a/u) = ] [1+p (Ce(a?u) — 1)].
=0 j=0

Finally, from the Lévy’s convergence theorem, the equality
n

(5) Fae) = 1im @) [pG;+ (1 p)Fo) ()
j=0

holds, where G, (z) is the DF of a’¢; and, according to the Corollary 3.2 in [20], convolutions
on the right side of Eq.(5) uniformly converge, when n — oo.

3. Non-homotopy approximation of Ca (u)

The previous stochastic analysis shows that the DF of A; represents (in limit sense)
the infinite convolution of DFs of mixed CD variables a’ M¢—j, where j = 0,1,2,... In that
way, the analytic expression of Fa(z), as well as the appropriate CF Ca (u), do not have a
closed form. Therefore, they should be approximated with some numerical methods.
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For this purpose, by using the fact that Ca(u) is the Fourier-Stieltjes transform of
probability density of RV Ay, we can apply the various approximation methods of Ca (u).
Firstly, let us consider the Laplace approximation for the logarithms of functions

fi(w) =1+p[Ce(a’u) —1], j=0,1,2,...

which have a local maximum fj(O) = 1. Thus, we find that

/l
InCa(u) = lim Zlnfj = lim Z [ lnfj u2+0j(u2)},

where o0;(u?) are infinitely small values of higher order than u? when u — 0. In the case of
Gaussian noise & : N'(0,62), the last equality becomes

k—1 2552 2
InCa(u) = hm Z [_paQ(Su +0j(u2)] )

— 00
Jj=

and it can be easily shown that for an arbitrary but fixed u € R, values o;(u?) are infinitely
small values of higher order than a®/, when j — oco. Therefore, we can write o;(u?) = o (azj )
Under the assumption that k& — oo, and with previous notations, we have that

2

k—1 2 2k

pé2u? 1—a?
g In f;(u) = — 51— —&-E o
Jj=0

which implies

po2u? = Y
— 3 J
(6) InCa(u) = 21— a?) + lim JE:Oo (a®) .

Note that the first term in Eq.(6) corresponds to the logarithm of CF of Gaussian
N (07 i ) distribution. Thus, the CF of A; described by Eq.(4) differs from CF of the

aforementloned Gaussian distribution by the multiplicative value

k—1
exp ’CILI&;O (a2j) # 1.

Fig. 2 (panel left) shows graphs of CFs of the CD variables a/n;_;, CF of the RV with
Gaussian A/ (0 ) distribution, and CF of the RV A;. For all of them, we took a =

p=05and § = 1. As can be easily seen, the CF of A; is “between” two other classes of
functions which emphasizes the specificity of DF of RVs A;. On the other hand, in the right
panel of Fig. 2 are shown standard Taylor’s approximations of various order of the function

CA(U)

4. Approximation of Ca(u) with HAM

Firstly, let us notice that, in accordance to Eq.(3), the Eq.(4) can be rewritten as

[1 +p(Ce(u) — 1)} ﬁ {1 +p (Ce(a?TMu) — 1)}

=0

CA (u)

(7) = C,(u)Calau),

where C(u) = (1 — p) + pC¢(u) is the (known) CF of CD variables 1, = &:¢¢. In that way,
Eq.(7) can be interpreted as the equation on unknown function Ca (u), with the well-known
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FIGURE 2. Panel left: CFs of CD variables (dashed lines), Gaussian dis-
tribution (dot-dashed line) and RVs A, (solid line). Panel right: Standard

Taylor’s approximations of order 2k, k = 0,1,2...,5 (dashed lines) of the
CF Ca(u) (solid line).

initial condition Ca(0) = 1, which is valid for an arbitrary CF. In order to apply the HA
method, we construct the homotopy equation:

(®) (1 =)L [Calua)] = ah(w) N [Cafuia)],
where « € (0,1) is the embedding parameter, h(u) # 0 is the auxiliary function,
L[Catu )] = Ca(usa) — Ca(ausa)
is the linear part, and
N [Ca (s )| =€, (u) Ca(au; @) — Ca(us )

is the non-linear (“true”) part of Eq.(8). It is easily to see that, when a = 0, the unique
solution of Eq.(8) is the CF of the RV Xy £ 0, i.e., Ca(u;0) = 1. We notice this solution,
usually called an initial solution (approzimation), with vo(u) := Ca(u;0). On the other
hand, remark that, when o = 1, the Eq.(8) is equivalent to Eq.(7), with the “main” solution
Ca(u;1) = Calu).

The basic assumption of HAM is that the solution of homotopy equation can be
expressed as the power series in a:

(9) 5A(u;a) = Zakvk(u),
k=0

where

1 0FCa(u;a)
10 1 2Calua)
(10) vk (1) k! Oak
are terms in Taylor series of the function 5A(u;p) with respect to «. Assuming that the
auxiliary function h(u) is chosen so that the series in Eq.(9) converges at o = 1, the solution
of the Eq.(7) will be

a=0

(11) Ca(u) = lim Ca(u;a) =1+ ivk(u).

1-
a—r =1
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On the other hand, according to Taylor’s expansions of CF's

_ - (iu)" k _ -~ (iau)* k
Calu) =) k! E(Af),  Calau) =) k! E (AF)

k=0 k=0
we can assume that vg(au) = afvy(u), for any k =0,1,2,..., i.e.,
(12) Calau; o) = Z(aa)kvk(u).
k=0

Therefore, by substituting Eq.(9) and Eq.(12) in the homotopy Eq.(8), we obtain

1—al

(13) L lz oFup(u)| —aL [Z akvk(u)] =ah(u) N [Z akvk(u)] .
k=0 k=0 k=0
Now, by differentiating Eq.(13) k times with respect to a, and putting o = 0, we obtain
Livi(w)] = h(u) N [vo(u)],
dE-IN [Q(u; a)}
R{Lfon()] — Lo @] } = kh(y) —— 1 , k=23,...
a=0
These equalities, for an arbitrary k = 1,2,..., can be rewritten, equivalently,
_ h(w) _ oLty 5A(au; a)
R R s G
C9F1CA(y a)]
0ak—1 oz:O.
Finally, according to the last equality and the Eq.(10), we have:
Vo (U) = 1a
vi(u) = h(u)[Cy(u) —1],
1- k=1 -1
Uk:(u) = h(U) ra 1 7(:]511) Cﬁ(u) ) Uk:—l(“)? k= 2,3,...,
i.e., we obtain the explicit expressions of vy (u):
vo(u) = 1,
vi(u) = h(u)[Cy(u) — 1],
L j—1 _
o) = b [Cy(w) — 1 [[ MG =D sy
j=2

Let us remark that for obtained functions vg(u), on the condition of stationarity
0 < |a] < 1 and for fixed but an arbitrary « € R, the radius of convergence of the power
series in Eq.(9) is

vg—1(w)

. 1—aF 1
= lim
v (u)

koo |1 — h(u) + ak—1 [h(u) C,(u) — 1] - 1 —h(u)|

r(u) = lim_

Thus, this power series uniformly converges on « € (—r(u),7(u)). According to Abel’s
theorem (see, for instance [21]), on the condition r(u) > 1 or, equivalently, 0 < h(u) < 2,
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function Ca (u; @) is continuous from the left at @ = 1. Then, the solution of Eq.(8) will be

obtain as it is given in the Eq.(11), i.e.,

(14) Ca(u)

lim Ca(u;a)
a—1-

Notice that, according to Eq.(14), for an arbitrary k£ = 0,1,2,...

approximate solutions (/Z\XC )(u), as

W = 1,
Cw) = C¥ 7V (u) + vg(u),

1+ h(u) [Cy(u) — 1] |1+

1—h(u)

+ a?7t (h(u) Cp(u) — 1)

1—al

we can compute the

k=1,2

g Ly ene

In the following, we give HAM approximations of CFs for some specific choices of
auxiliary functions h(u), where the parameters are a = p = 0.5, and the noise & has Gaussian
N(0,52) distribution with § = 1. In this case, CFs of RVs & and 1 are, respectively,

Ce(u) = e/ and Cp(u) = (e /2 +1)/2.

e Auxiliary function h(u) = [Cy(u)]

_1.

vo(u) = 1
4 e_% -1
Ul(u) = 3 w2
3\e % +1
2 2
43 T -1
U2(u) = ‘ u22
3-15 \ % 41
W g (k+1)/2 % _
ViU =
3-15.--(4F —1) \ o2 |
e Auxiliary function h(u) = 1:
vo(u) = 1
2( -2
vi(u) = 3 (e 2 —1)
22 u? 2
va(w) = 375 (‘277 _1>
2k o2 k
_ 4 1)
ve(u) 3.15.- (48 — 1) (e ’
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e Auxiliary function h(u) = C,(u):

vo(u) = 1
i) = b(u)* —2 gez - 1)
iy = M08 (165 1) )

vg(u) 4k — 1 v—1(u)
*b(u) = (e‘g — 1)2 +4 (e_uTz + 1)
e Auxiliary function h(u) = [C, (w))*:
vo(u) = 1
d(u)** — (e‘g — 1)2 —4 (e_uT2 — 1)
vi(u) = 3
valw) = d(u) — 4 (e*%2 _ 1152 16 (67% - 1) onfa)
u) — 4kt (e 2— k e‘§—

o d(u) - 4+ ( ; _1)1 4 ( | e

() = % (e*% - 1)3 +3 (e*§ - 1)2 +6 (e*§ - 1)

As an illustration, Fig. 3 shows graphics of the CF of RVs A, t € Z, as well
as its first several approximations, obtained for the aforementioned choices of auxiliary
functions h(u). It is easily seen that approximations of Ca(u) are better in the region
around of the origin v = 0. This is in accordance to the fact that v = 0 is the point of
maxima and, in general, it contains the most of informations around this point. Finally,
notice that the best approximation has been obtained with the auxiliary function h(u) =1
(panel right above). In this case, the series in Eq.(9) has a maximum radius of convergence
r(u) = [1 — h(u)] "' = +00. We point out that this is also the case when HAM reduces to
the so-called Homotopy Perturbation Method (HPM), introduced by He [22]-[24]. Similarly
as HAM, this approximation method was successfully applied in solving various, mainly
physically-based problems (see, for instance [25]-[27]).

5. Final remarks
As it is well-known, by using the inverse Fourier-Stieltjes transform, it can be obtain

the expression of density distribution of RVs A,:

“+o0
falz) 1/ ¢ (u)du,

:ﬂ .
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F1GURE 3. Graphics of CFs Ca(u) (solid lines) and its various HA approx-
imations (dashed lines).

as well as the appropriate DF:

Fa(z) = /_9” fa(y)dy.

According to these, as well as HAM approximations é\(Ak) (u) of the CF Ca (u), we can compute

approximations of the density distribution of A,;:

+oo 400, x=0;
2(0) _ 1 / —izu 5(0) _ ’ ’
T) = e Cy’(u)du =
fa’ (@) o | A (u) 0. 40,
k k—1 Lofre
Wa = BP@+ g [ e utdn, k=12....
a — 00

Here, the function f(AO)(Q?) represents the so-called unit impulse, i.e., the density function of
the RV X, £ 0.
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