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This paper describes application of the homotopy analysis (HA) technique
in approximation of infinity convolutions of mixed stochastic distributions, which usu-
ally do not have a closed form. The main result is based on HA approximations of their

characteristics functions, as the Fourier-Stieltjes transforms of the appropriate distribu-
tions.
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1. Introduction

The homotopy analysis method (HAM) proposed by Liao [1]-[3] is a general approx-
imate analytic approach which is using to obtain series solutions of nonlinear equations of
various types. In recent years, the HAM has become the subject of extensive studies [4]-[6].
It has been applied to solving the various types of nonlinear differential equations [7, 8],
partial differential equations [9]-[11] or integral equations [12, 13].

Let us notice that HAM has found significant application in solving problems mainly
in the physical sciences. On the other hand, the importance of HAM in stochastic theory
can be seen for calculations of the options pricing subordinate with so-called stochastic
volatility (SV) model [14]. Moreover, in [15] has been introduced the discrete-time SV
model, named Split-SV model. It is shown that stochastic distribution of this model is an
infinity convolution of mixed stochastic distributions, which does not have a closed form.
In this paper will be describe some possibilities to finding approximations of these types of
stochastic distributions, by using the HAM. The main focus, similarly as in [16], will be on
the HAM approximations of Fourier-Stieltjes transforms of appropriate distributions, i.e.,
their characteristics functions (CFs).

2. Stochastic assumptions

Firstly, we observe the autoregressive (AR) sequence of random variables (RVs) de-
fined by the recurrent relation

(1) ∆t = a∆t−1 + ηt, t ∈ Z.
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Here, a is some constant value and (ηt) is the sequence of independent identically distributed
(i.i.d.) RVs which satisfies

P{ηt ̸= 0} = p ∈ (0, 1), ∀t ∈ Z.

In some practical interpretations, Eq.(1) describes some linear system with input ∆t−1 and
output ∆t, at time t ∈ Z. Thus, the sequence (ηt) is “optional” noise, because it affects
the outputs of the system (1) only partially, with probability p ∈ (0, 1). This sequence can
be formally written as the multiplicative decomposition ηt = ξtqt, similarly as in [17]-[19].
Here, (ξt) is the “true” noise, i.e. the (0, δ2) i.i.d. sequence of RVs, with some absolutely-
continuous (usually, Gaussian) distribution. On the other hand, (qt) is the so-called Noise-
Indicator, i.e., the sequence of RVs mutually independent of (ξt), defined as

qt =

{
1, w.p. p

0, w.p. 1− p
, 0 < p < 1.

According to the aforementioned facts, the distribution function (DF) of the noise
variable ηt, t ∈ Z can be found by using the conditional probability

Fη(x) := P{ηt < x} =
∑
j=0,1

P{ηt < x | qt = j}P{qt = j}

= pP{ξt < x}+ (1− p)P{X0 < x}

= pFξ(x) + (1− p)F0(x).

Here, Fξ(x) denotes the DF of RV ξt, and

F0(x) =

{
0, x ≤ 0

1, x > 0

is the DF of X0
as
= 0. Therefore, the DF Fη(x) is a mixture of the continuous DF Fξ(x) and

the discrete type DF F0(x) of the RV X0, almost surely concentrated at x = 0. For these
reasons, the distribution of ηt is usually called the Contaminated Distribution (CD). Namely,
the function Fη(x) is continuous almost everywhere, i.e., the only point of discontinuity is
x = 0, where the jump has the value 1 − p (Fig. 1). Due to this fact, some standard
stochastic procedures cannot be applied in researching the properties of the RVs (∆t) .

Figure 1. The distribution function of random variable with contaminated distribution.
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In the following, we assume that the non-triviality and stationarity condition 0 <
|a| < 1 of the sequence (∆t) is satisfied. Thus, for any t ∈ Z and k ∈ N we can express ∆t

on ∆t−j , j = 1, . . . , k as

∆t =
k−1∑
j=0

ajξt−j qt−j−1 + ak∆t−k.

It is obvious that, when k → ∞ and |a| < 1, we have

(2) ∆t =

∞∑
j=0

ajξt−j qt−j−1,

where the above sum converges in mean-square and almost surely.
Let us now consider the DF of RVs ∆t, denoted by F∆(x). Since the series (∆t)

is stationary, it is clear that function F∆(x) does not depend on time parameter t ∈ Z.
Another application of conditional probability give to us

F∆(x) = (G⊗ Fη)(x) = p (G⊗ Fξ)(x) + (1− p)G(x),

where

G(x) := P{a∆t < x} =

{
1− F∆

(
x
a

)
, a ∈ (−1, 0)

F∆

(
x
a

)
, a ∈ (0, 1)

,

and ”⊗” denotes the convolution of appropriate distribution functions, i.e.,

(G⊗ Fη)(x) =

∫ +∞

−∞
G(x− u)Fη(du) =

∫ +∞

−∞
G(x− u) [pFξ + (1− p)F0] (du).

In order to find the unique expression for F∆(x), we find the explicit expression for the
characteristic function (CF) of RVs ηt = ξtqt, as

Cη(u) :=

∫ +∞

−∞
eiuxFη(dx) = p

∫
x ̸=0

eiuxFξ(dx) + (1− p)eit0

= 1 + p (Cξ(u)− 1) ,(3)

where Cξ(u) is the (known) CF of RVs ξt. As RVs ∆t, according to Eq.(2), are sums of
uncorrelated RVs ajηt−j , j = 0, 1, 2, . . . , their CF is

(4) C∆(u) :=
∞∏
j=0

Cη
(
aju
)
=

∞∏
j=0

[
1 + p

(
Cξ(aju)− 1

)]
.

Finally, from the Lévy’s convergence theorem, the equality

(5) F∆(x) = lim
n→∞

n⊗
j=0

[
pGj + (1− p)F0

]
(x)

holds, where Gj(x) is the DF of ajξt and, according to the Corollary 3.2 in [20], convolutions
on the right side of Eq.(5) uniformly converge, when n → ∞.

3. Non-homotopy approximation of C∆(u)

The previous stochastic analysis shows that the DF of ∆t represents (in limit sense)
the infinite convolution of DFs of mixed CD variables ajηt−j , where j = 0, 1, 2, . . . In that
way, the analytic expression of F∆(x), as well as the appropriate CF C∆(u), do not have a
closed form. Therefore, they should be approximated with some numerical methods.
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For this purpose, by using the fact that C∆(u) is the Fourier-Stieltjes transform of
probability density of RV ∆t, we can apply the various approximation methods of C∆(u).
Firstly, let us consider the Laplace approximation for the logarithms of functions

fj(u) = 1 + p
[
Cξ(aju)− 1

]
, j = 0, 1, 2, . . .

which have a local maximum fj(0) = 1. Thus, we find that

ln C∆(u) = lim
k→∞

k−1∑
j=0

ln fj(u) = lim
k→∞

k−1∑
j=0

[
(ln fj)

′′
(0)

2
u2 + oj(u

2)

]
,

where oj(u
2) are infinitely small values of higher order than u2 when u → 0. In the case of

Gaussian noise ξt : N (0, δ2), the last equality becomes

ln C∆(u) = lim
k→∞

k−1∑
j=0

[
−p a2jδ2 u2

2
+ oj(u

2)

]
,

and it can be easily shown that for an arbitrary but fixed u ∈ R, values oj(u2) are infinitely
small values of higher order than a2j , when j → ∞. Therefore, we can write oj(u

2) = o
(
a2j
)
.

Under the assumption that k → ∞, and with previous notations, we have that

k−1∑
j=0

ln fj(u) = −p δ2 u2

2
· 1− a2k

1− a2
+

k−1∑
j=0

o
(
a2j
)
,

which implies

(6) ln C∆(u) = − p δ2 u2

2(1− a2)
+ lim

k→∞

k−1∑
j=0

o
(
a2j
)
.

Note that the first term in Eq.(6) corresponds to the logarithm of CF of Gaussian

N
(
0, p δ2

1−a2

)
distribution. Thus, the CF of ∆t described by Eq.(4) differs from CF of the

aforementioned Gaussian distribution by the multiplicative value

exp

 lim
k→∞

k−1∑
j=0

o
(
a2j
) ̸= 1.

Fig. 2 (panel left) shows graphs of CFs of the CD variables ajηt−j , CF of the RV with

Gaussian N
(
0, p δ2

1−a2

)
distribution, and CF of the RV ∆t. For all of them, we took a =

p = 0.5 and δ = 1. As can be easily seen, the CF of ∆t is “between” two other classes of
functions which emphasizes the specificity of DF of RVs ∆t. On the other hand, in the right
panel of Fig. 2 are shown standard Taylor’s approximations of various order of the function
C∆(u).

4. Approximation of C∆(u) with HAM

Firstly, let us notice that, in accordance to Eq.(3), the Eq.(4) can be rewritten as

C∆(u) =
[
1 + p (Cξ(u)− 1)

] ∞∏
j=0

[
1 + p

(
Cξ(aj+1u)− 1

) ]
= Cη(u) C∆(au),(7)

where Cη(u) = (1 − p) + p Cξ(u) is the (known) CF of CD variables ηt = ξtqt. In that way,
Eq.(7) can be interpreted as the equation on unknown function C∆(u), with the well-known
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Figure 2. Panel left: CFs of CD variables (dashed lines), Gaussian dis-
tribution (dot-dashed line) and RVs ∆t (solid line). Panel right: Standard
Taylor’s approximations of order 2k, k = 0, 1, 2 . . . , 5 (dashed lines) of the
CF C∆(u) (solid line).

initial condition C∆(0) = 1, which is valid for an arbitrary CF. In order to apply the HA
method, we construct the homotopy equation:

(8) (1− α)L
[
C̃∆(u;α)

]
= αh(u)N

[
C̃∆(u;α)

]
,

where α ∈ (0, 1) is the embedding parameter, h(u) ̸= 0 is the auxiliary function,

L
[
C̃∆(u;α)

]
:= C̃∆(u;α)− C̃∆(au;α)

is the linear part, and

N
[
C̃∆(u;α)

]
:= Cη(u) C̃∆(au;α)− C̃∆(u;α)

is the non-linear (“true”) part of Eq.(8). It is easily to see that, when α = 0, the unique

solution of Eq.(8) is the CF of the RV X0
as
= 0, i.e., C∆(u; 0) ≡ 1. We notice this solution,

usually called an initial solution (approximation), with υ0(u) := C̃∆(u; 0). On the other
hand, remark that, when α = 1, the Eq.(8) is equivalent to Eq.(7), with the “main” solution

C̃∆(u; 1) ≡ C∆(u).
The basic assumption of HAM is that the solution of homotopy equation can be

expressed as the power series in α:

(9) C̃∆(u;α) :=
∞∑
k=0

αkυk(u),

where

(10) υk(u) :=
1

k!
· ∂

kC̃∆(u;α)
∂αk

∣∣∣
α=0

are terms in Taylor series of the function C̃∆(u; p) with respect to α. Assuming that the
auxiliary function h(u) is chosen so that the series in Eq.(9) converges at α = 1, the solution
of the Eq.(7) will be

(11) C∆(u) = lim
α→1−

C̃∆(u;α) = 1 +

∞∑
k=1

υk(u).
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On the other hand, according to Taylor’s expansions of CFs

C∆(u) =
∞∑
k=0

(iu)k

k!
E
(
∆k

t

)
, C∆(au) =

∞∑
k=0

(iau)k

k!
E
(
∆k

t

)
we can assume that υk(au) = akυk(u), for any k = 0, 1, 2, . . . , i.e.,

(12) C̃∆(au;α) =
∞∑
k=0

(aα)kυk(u).

Therefore, by substituting Eq.(9) and Eq.(12) in the homotopy Eq.(8), we obtain

(13) L

[ ∞∑
k=0

αkυk(u)

]
− αL

[ ∞∑
k=0

αkυk(u)

]
= αh(u)N

[ ∞∑
k=0

αkυk(u)

]
.

Now, by differentiating Eq.(13) k times with respect to α, and putting α = 0, we obtain

L [υ1(u)] = h(u)N [υ0(u)] ,

k!
{
L [υk(u)]− L [υk−1(u)]

}
= k h(u)

∂ k−1 N
[
C̃∆(u;α)

]
∂ αk−1

∣∣∣∣∣
α=0

, k = 2, 3, . . .

These equalities, for an arbitrary k = 1, 2, . . . , can be rewritten, equivalently,

(1− ak)υk(u)− (1− ak−1)υk−1(u) =
h(u)

(k − 1)!

[
ak−1Cη(u)

∂ k−1 C̃∆(au;α)
∂ αk−1

−∂ k−1 C̃∆(u;α)
∂ αk−1

]∣∣∣
α=0

.

Finally, according to the last equality and the Eq.(10), we have:

υ0(u) ≡ 1,

υ1(u) = h(u) [Cη(u)− 1] ,

υk(u) =
1− h(u) + ak−1 (h(u) Cη(u)− 1)

1− ak
υk−1(u), k = 2, 3, . . . ,

i.e., we obtain the explicit expressions of υk(u):

υ0(u) ≡ 1,

υ1(u) = h(u) [Cη(u)− 1] ,

υk(u) = h(u) [Cη(u)− 1]

k∏
j=2

1− h(u) + aj−1 (h(u) Cη(u)− 1)

1− aj
, k = 2, 3, . . .

Let us remark that for obtained functions υk(u), on the condition of stationarity
0 < |a| < 1 and for fixed but an arbitrary u ∈ R, the radius of convergence of the power
series in Eq.(9) is

r(u) = lim
k→∞

∣∣∣∣υk−1(u)

υk(u)

∣∣∣∣ = lim
k→∞

1− ak

|1− h(u) + ak−1 [h(u) Cη(u)− 1]|
=

1

|1− h(u)|
.

Thus, this power series uniformly converges on α ∈ (−r(u), r(u)). According to Abel’s
theorem (see, for instance [21]), on the condition r(u) ≥ 1 or, equivalently, 0 ≤ h(u) ≤ 2,
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function C̃∆(u;α) is continuous from the left at α = 1. Then, the solution of Eq.(8) will be
obtain as it is given in the Eq.(11), i.e.,

C∆(u) := lim
α→1−

C̃∆(u;α)(14)

= 1 + h(u) [Cη(u)− 1]

1 + ∞∑
k=2

k∏
j=2

1− h(u) + aj−1 (h(u) Cη(u)− 1)

1− aj

 .

Notice that, according to Eq.(14), for an arbitrary k = 0, 1, 2, . . . we can compute the

approximate solutions Ĉ(k)
∆ (u), as

Ĉ(0)
∆ (u) ≡ 1,

Ĉ(k)
∆ (u) = Ĉ(k−1)

∆ (u) + υk(u), k = 1, 2, . . .

In the following, we give HAM approximations of CFs for some specific choices of
auxiliary functions h(u), where the parameters are a = p = 0.5, and the noise ξt has Gaussian
N
(
0, δ2

)
distribution with δ = 1. In this case, CFs of RVs ξt and ηt are, respectively,

Cξ(u) = e−u2/2 and Cη(u) = (e−u2/2 + 1)/2.

• Auxiliary function h(u) = [Cη(u)]−1
:

υ0(u) ≡ 1

υ1(u) =
4

3

(
e−

u2

2 − 1

e−
u2

2 + 1

)

υ2(u) =
43

3 · 15

(
e−

u2

2 − 1

e−
u2

2 + 1

)2

...

υk(u) =
4k(k+1)/2

3 · 15 · · · (4k − 1)

(
e−

u2

2 − 1

e−
u2

2 + 1

)k

• Auxiliary function h(u) = 1:

υ0(u) ≡ 1

υ1(u) =
2

3

(
e−

u2

2 − 1
)

υ2(u) =
22

3 · 15

(
e−

u2

2 − 1
)2

...

υk(u) =
2k

3 · 15 · · · (4k − 1)

(
e−

u2

2 − 1
)k
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• Auxiliary function h(u) = Cη(u):

υ0(u) ≡ 1

υ1(u) =
b(u)∗ − 2

(
e−

u2

2 − 1
)

3

υ2(u) =
b(u)− 8

(
e−

u2

2 − 1
)

15
· υ1(u)

...

υk(u) =
b(u)− 4k

2

(
e−

u2

2 − 1
)

4k − 1
· υk−1(u)

∗b(u) =
(
e−

u2

2 − 1
)2

+ 4
(
e−

u2

2 + 1
)

• Auxiliary function h(u) = [Cη(u)]2:

υ0(u) ≡ 1

υ1(u) =
d(u)∗∗ −

(
e−

u2

2 − 1
)2

− 4
(
e−

u2

2 − 1
)

3

υ2(u) =
d(u)− 4

(
e−

u2

2 − 1
)2

− 16
(
e−

u2

2 − 1
)

15
· υ1(u)

...

υk(u) =
d(u)− 4k−1

(
e−

u2

2 − 1
)2

− 4k
(
e−

u2

2 − 1
)

4k − 1
· υk−1(u)

∗∗d(u) =
1

2

(
e−

u2

2 − 1
)3

+ 3
(
e−

u2

2 − 1
)2

+ 6
(
e−

u2

2 − 1
)

As an illustration, Fig. 3 shows graphics of the CF of RVs ∆t, t ∈ Z, as well
as its first several approximations, obtained for the aforementioned choices of auxiliary
functions h(u). It is easily seen that approximations of C∆(u) are better in the region
around of the origin u = 0. This is in accordance to the fact that u = 0 is the point of
maxima and, in general, it contains the most of informations around this point. Finally,
notice that the best approximation has been obtained with the auxiliary function h(u) ≡ 1
(panel right above). In this case, the series in Eq.(9) has a maximum radius of convergence

r(u) = [1− h(u)]
−1

= +∞. We point out that this is also the case when HAM reduces to
the so-called Homotopy Perturbation Method (HPM), introduced by He [22]-[24]. Similarly
as HAM, this approximation method was successfully applied in solving various, mainly
physically-based problems (see, for instance [25]-[27]).

5. Final remarks

As it is well-known, by using the inverse Fourier-Stieltjes transform, it can be obtain
the expression of density distribution of RVs ∆t:

f∆(x) :=
1

2π

∫ +∞

−∞
e−ixuC∆(u)du,
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Figure 3. Graphics of CFs C∆(u) (solid lines) and its various HA approx-
imations (dashed lines).

as well as the appropriate DF:

F∆(x) :=

∫ x

−∞
f∆(y)dy.

According to these, as well as HAM approximations Ĉ(k)
∆ (u) of the CF C∆(u), we can compute

approximations of the density distribution of ∆t:

f̂
(0)
∆ (x) =

1

2π

∫ +∞

−∞
e−ixu Ĉ(0)

∆ (u)du =

{
+∞, x = 0;

0, x ̸= 0.

f̂
(k)
∆ (x) = f̂

(k−1)
∆ (x) +

1

2π

∫ +∞

−∞
e−ixu υk(u)du, k = 1, 2, . . . .

Here, the function f̂
(0)
∆ (x) represents the so-called unit impulse, i.e., the density function of

the RV X0
as
= 0.
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