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1. Introduction and preliminaries

Hyperstructure theory was introduced in 1934, at the eighth congress of Scan-
dinavian Mathematicians, when F. Marty [26] defined hypergroups based on the
notion of hyperoperation, began to analyze their properties and applied them to
groups. In the following decades and nowadays, a number of different hyperstruc-
tures are widely studied from the theoretical point of view and for their applications
to many subjects of pure and applied mathematics by many mathematicians such
as in fuzzy sets and rough set theory, optimization theory, theory of discrete event
dynamical systems, cryptography, codes, analysis of computer programs, automata,
formal language theory, combinatorics, artificial intelligence, probability, graphs and
hypergraphs, geometry, lattices and binary relations, physics, chemistry, biology etc.
(see [6, 7, 8, 9, 10, 15, 16, 36]).

Many complicated problems in economics, engineering, environment, social
sciences, medicine and many other fields involve uncertain data. Most of the model-
ing, reasoning and calculations are performed by those mathematical tools which are
certain or precise and deal with certain problems, so these are not useful to deal with
uncertain problems. In classical mathematics, a mathematical model of an object is
devised and the notion of the exact solution of this model is determined. Because
of that the mathematical model is too complex, the exact solution cannot be found.
There are several well-known theories developed to overcome these difficulties which
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arise due to uncertainty. For instance probability theory, fuzzy sets theory [38],
rough sets theory [29] and other mathematical tools. But all these theories have
their inherited difficulties as pointed out by Molodtsov [27]. In probability theory,
we have to make a great deal of experiments in order to check samples. In social
sciences and economics, it is not always possible to make so many experiments.

Pawlak [29] introduced the theory of rough sets in 1982. It was a significant
approach for modeling vagueness. In this theory, equivalence classes are used to
approximate crisp subsets by their upper and lower approximations. This theory
has been applied to many problems successfully, yet has its own limitations. It is
not always possible to have an equivalence relation among the elements of a given
set, so we cannot have equivalence classes to get upper and lower approximations of
a subset. Later, some authors [35] tried to have approximations not with the help
of equivalence relation but by a relation in general.

Fuzzy set theory was developed by Zadeh [38]. It is the most appropriate
approach to deal with uncertainties. However, some authors [27] think that the
difficulties in fuzzy set theory are due to the inadequacy of parameterization tools
of the theory.

In 1999, Molodtsov introduced the concept of soft sets as a new mathematical
tool for dealing with uncertainties that is free from the difficulties affecting existing
methods. Soft set theory has rich potential for applications in several directions, few
of which had been demonstrated by Molodtsov in his pioneer work [27]. Molodtsov
also showed how Soft Set Theory (SST) is free from parametrization inadequacy
syndrom of Fuzzy Set Theory (FST), Rough Set Theory (RST),Probability Theory,
and Game Theory. SST is a very general framework. At present, research in the
theory of soft sets is in progress. Many papers have appeared to discuss theoretical
and application aspects of the soft set theory [25, 30, 31, 24]. Maji et al. [25]
described the application of soft set theory to a decision making problem and studied
several operations on the theory of soft sets. Pei et al. [30] discussed the relationship
between soft sets and information systems. Roy et al. [31] described the application
of fuzzy soft set theory to a decision making problem. Maji et al. [24] studied several
operations on the theory of soft sets. Ali et al. [3] also studied some new notions
such as the restricted intersection, the restricted union, the restricted difference, and
the extended intersection of two soft sets. The algebraic structure of soft sets has
been studied by several authors. For example, Aktas and Cagman [2] introduced
the basic concepts of soft set theory and compared soft sets to the related concepts
of fuzzy sets and rough sets. They also discussed the notion of soft groups and drove
their basic properties using Molodtsov’s definition of soft sets. Other applications
of soft set theory in different algebraic structure can be found in [4, 19, 20, 21, 28,
22, 14, 33, 1, 32] etc. Recently, Leoreanu-Fotea and Corsini [23], then Davvaz et.
al. [5, 34, 37] and Hila et. al. [18] introduced the notion of soft hyperstructure
studying the notion of soft hypergroupoids, soft semihypergroups, soft polygroups,
soft ternary semihypergroups which extends the notion of the hypergroupoids and
semihypergroups to include the algebraic structures of soft sets.

In this paper, we introduce and initiate the study of soft m-ary semihyper-
groups by using the soft set theory. The notions of soft m-ary semihypergroups,
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soft m-ary subsemihypergroups, soft j-hyperideals, soft hyperideals, soft quasi-
hyperideals and soft bi-hyperideals are introduced, and several related properties
are investigated.

2. Algebraic hypersystems and m-ary hyperstructures

In this section we recall some known notions on what is meant by an algebraic
hypersystem and m-ary hyperstructure.

Let H be a nonempty set and f be a mapping f : H × H → P∗(H), where
P∗(H) denotes the set of all nonempty subsets of H. Then f is called a binary
(algebraic) hyperoperation on H. In general, a mapping f : H×H× ...×H → P∗(H)
where H appears m times, is called an m-ary (algebraic) hyperoperation, and m is
called the arity of this hyperoperation. An algebraic system (H, f), where f is an
m-ary hyperoperation defined on H, is called an m-ary hypergroupoid or an m-ary
hypersystem. Since we identify the set {x} with the element x, any m-ary (binary)
groupoid is an m-ary (binary) hypergroupoid. (see [12, 13, 17, 11]).

Let f be an m-ary hyperoperation on H and A1, A2, ..., Am subsets of H. We
define f(A1, A2, ..., Am) = ∪{f(x1, x2, ..., xm)|xi ∈ Ai, i = 1, 2, ...,m}. We shall use
the follwoing abbreviated notation: the sequence xi, xi+1, ..., xj will be denoted by

xji . For j < i, xji is the empty symbol. In this convention, f(x1, ..., xi, yi+1, ..., yj , zj+1, ..., zm)

will be written as f(xi1, y
j
i+1, z

m
j+1). In the case when yi+1 = ... = yj = y, the

last expression will be written in the form f(xi1,
(j−i)
y , zmj+1). Similarly, for subsets

A1, A2, ..., Am of H we define

f(Am
1 ) = f(A1, A2, ..., Am) = ∪{f(xm1 )|xi ∈ Ai, i = 1, ...,m}.

An m-ary hyperoperation f is called (i, j)− associative if

f(xi−1
1 , f(xm+i−1

i ), x2m−1
m+i ) = f(xj−1

1 , f(xm+j−1
j ), x2m−1

m+j ),

holds for fixed 1 ≤ i < j ≤ m and all x1, x2, ..., x2m−1 ∈ H.
Note that (i, k)-associativity follows from (i, j)- and (j, k)-associativities.
If the above condition is satisfied for all i, j ∈ {1, 2, ...,m}, then we say that f

is associative.
By an algebraic hypersystem (H, f1, f2, ..., fm) or simply H is meant a set

H closed under a collection of mi-ary hyperoperation fi and often also satisfying
a fixed set of laws, for instant, the associative law. A subset S of H constitues a
subhypersystem iff S is closed under the same hyperoperations and satisfies the same
fixed laws in H.

Let H be an algebraic hypersystem. A j-hyperideal j = 1, 2, ...,m relative to
the m-ary hyperoperation is defined to be a subhypersystem Ij such that for any
x1, x2, ..., xm ∈ H, if xj ∈ Ij then f(x1, x2, ..., xm) ⊆ Ij . The j-hyperideal relative to
f generated by an element a ∈ H (usually called a principal j-hyperideal) is denoted

by (a)j = f(H,H, ...,
j
a, ...,H) ∪ {a}. A subhypersystem I which is a j-hyperideal

for each j = 1, ...,m is simply called an hyperideal. An m-ary hypergroupoid (H, f)
will be called an m-ary semihypergroup if and only if f is associative.



94 K. Hila, T. Vougiouklis, Krisanthi Naka

3. Preliminaries from soft set theory

Let U be an initial universe set and E be a set of parameters. The power set
of U is denoted by P(U) and A is a subset of E.

Definition 3.1. A pair (F,A) is called a soft set over U , where F is a mapping
given by F : A → P(U).

In the other words, a soft set over U is a parameterized family of subsets of
the universe U . For a ∈ A,F (a) may be considered as the set of a-approximate
elements of the soft set (F,A). Clearly, a soft set is not a set. For illustration,
Molodtsov considered several examples in [27]. To illustrate this idea, let us consider
the following example. We quote it directly from [24].

Example 3.1. [24] Let us consider a soft set (F,E), which describes the ”at-
tractiveness of houses” that one is considering for purchase. Suppose that there
are six houses in the universe U , given by U = {h1, h2, h3, h4, h5, h6} and E =
{e1, e2, e3, e4, e5} is a set of decision parameters, where ei(i = 1, 2, 3, 4, 5) stand
for the parameters ”expensive”, ”beautiful”, ”wooden”, ”cheap” and ”in green sur-
roundings”, respectively. Consider the mapping F denoted by houses (·), where
the dot position (·) is to be filled by one of the parameters ei ∈ E. For instance,
suppose that F (e1) = {h2, h4}, F (e2) = {h1, h3}, F (e3) = {h3, h4, h5}, F (e4) =
{h1, h3, h5}, F (e5) = {h1}. The soft set (F,E) is a parameterized family {F (ei), i =
1, ..., 5} of subsets of the set U , and can be viewed as a collection of approximations:
(F,E)={expensive houses = {h2, h4}, beautiful houses ={h1, h3}, wooden houses
={h3, h4, h5}, cheap houses ={h1, h3, h5}, in green surroundings houses ={h1}}.
Each approximation has two parts: a predicate and an approximate value set.

In [14], for a soft set (F,A), the set Supp(F,A) = {x ∈ A|F (x) ̸= ∅} is called
the support of the soft set (F,A). If Supp(F,A) ̸= ∅, then a soft set (F,A) is called
non-null.

Definition 3.2. Let (F,A) and (G,B) be two soft sets over a common universe
U . The extended intersection of (F,A) and (G,B), denoted by (F,A)

∩
E(G,B) is

defined to be the soft set (K,C) satisfying the following conditions: (i) C = A ∪B;
(ii) for all c ∈ C,

K(c) =


F (c) if c ∈ A\B,
G(c) if c ∈ B\A,
F (c) ∩G(c) if c ∈ A ∩B.

Definition 3.3. Let (F,A) and (G,B) be two soft sets over a common universe
U . The restricted intersection of (F,A) and (G,B), denoted by (F,A)

∩
R(G,B), is

defined to be the soft set (K,C) satisfying the following conditions: (i) C = A ∩B;
(ii) for all c ∈ C, K(c) = F (c)∩G(c). In this case, we write (F,A)∩̃(G,B) = (K,C).

Definition 3.4. Let (F,A) and (G,B) be two soft sets over a common universe U .
The bi-intersection of (F,A) and (G,B) is defined to be the soft set (K,C), where
C = A ∩ B and K : C → P(U) is a mapping given by K(x) = F (x) ∩ G(x) for all
x ∈ G. In this case, we write (F,A)⊓̃(G,B) = (K,C).
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Definition 3.5. Let (F,A) and (G,B) be two soft sets over a common universe U .
The extended union of (F,A) and (G,B), denoted by (F,A)

∪
E(G,B) is defined to

be the soft set (K,C) satisfying the following conditions: (i) C = A ∪B; (ii) for all
c ∈ C,

K(c) =


F (c) if c ∈ A\B,
G(c) if c ∈ B\A,
F (c) ∪G(c) if c ∈ A ∩B.

Definition 3.6. Let (F,A) and (G,B) be two soft sets over a common universe U .
The restricted union of (F,A) and (G,B), denoted by (F,A)

∪
R(G,B), is defined to

be the soft set (K,C) satisfying the following conditions: (i) C = A ∩B; (ii) for all
c ∈ C,K(c) = F (c) ∪G(c). In this case, we write (F,A)∪̃(G,B) = (K,C).

Definition 3.7. Let (Fi, Ai)i∈I be a non-empty family of soft sets over a common
universe U . The union of these soft sets is defined to be the soft set (G,B) such that
B =

∪
i∈I Ai and for all x ∈ B, G(x) =

∪
i∈I(x) Fi(x), where I(x) = {i ∈ I|x ∈ Ai}.

In this case, we write
∪̃

i∈I(Fi, Ai) = (G,B).

Definition 3.8. Let (F,A) and (G,B) be two soft sets over a common universe U .
Then (F,A)AND(G,B) denoted by (F,A)∧̃(G,B) is defined by (F,A)∧̃(G,B) =
(K,A×B), where K(x, y) = F (x) ∩G(y), ∀(x, y) ∈ A×B.

Definition 3.9. Let (F,A) and (G,B) be two soft sets over a common universe
U . Then (F,A)OR(G,B) denoted by (F,A)∨̃(G,B) is defined by (F,A)∨̃(G,B) =
(K,A×B), where K(x, y) = F (x) ∪G(y) for all (x, y) ∈ A×B.

Definition 3.10. Let (F,A) and (G,B) be two soft sets over a common universe

U . We say that (F,A) is a soft subset of (G,B), denoted by (F,A)⊆̃(G,B), if it
satisfies: (i) A ⊆ B; (ii) F (a) ⊆ G(a) for all a ∈ A.

4. Soft m-ary semihypergroups

Hereafter, we shall consider soft sets over a m-ary semihypergroup (H, f).

Definition 4.1. The restricted hyperproduct of soft sets (F1, B1), ..., (Fm, Bm) over

H, denoted by f̂((F1, B1), ..., (Fm, Bm)), is defined as a soft set (K,D) = f̂((F1, B1),
..., (Fm, Bm)), where D =

∩
{Bi|i = 1, ...,m} ̸= ∅ and K : D → P(H) defined by

K(d) = f(F1(d), ..., Fm(d)), ∀d ∈ D.

Definition 4.2. Let (F,A) be a non-null soft set over H. Then, (F,A) is called a
soft m-ary semihypergroup over H if F (x) is a m-ary subsemihypergroup of H for

all x ∈ Supp(F,A), i.e. f̂((F,A), ..., (F,A)) ⊆ (F,A).

Proposition 4.1. A soft set (F,A) over H is a soft m-ary semigroup over H if and
only if for all a ∈ A,F (a) ̸= ∅ is a m-ary subsemihypergroup of H.

Proof. Let (F,A) be a soft m-ary semihypergroup over H and a ∈ A such that

F (a) ̸= ∅. We have by definition f̂((F,A), ..., (F,A)) = (K,A ∩ ... ∩ A) = (K,A),

whereK is defined byK(a) = f(F (a), ..., F (a)), ∀a ∈ A. Since f̂((F,A), ..., (F,A)) ⊆
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(F,A), then (K,A) ⊆ (F,A). That is,K(a) ⊆ F (a), ∀a ∈ A, and so f(F (a), ..., F (a))
⊆ F (a). This implies that F (a) is a m-ary subsemihypergroup of H.

Conversely, let us assume that F (a) ̸= ∅ is a m-ary semihypergroup of H
for all a ∈ A. We have to show that (F,A) is a soft m-ary semihypergroup over

H. By definition, we have f̂((F,A), ..., (F,A)) = (K,A ∩ ... ∩ A) = (K,A) and
K(a) = f(F (a), ..., F (a)) for all a ∈ A. Since F (a) is a m-ary subsemihypergroup
of H, we have f(F (a), ..., F (a)) ⊆ F (a), that is K(a) ⊆ F (a). Thus, (K,A) ⊆
(F,A). This implies that f̂((F,A), ..., (F,A)) ⊆ (F,A). Hence (F,A) is a soft m-ary
semihypergroup over H. �

Proposition 4.2. Let (F,A) and (G,B) be two soft m-ary semihypergroups over H
such that A∩B = ∅. Then (F,A)

∪
E(G,B) is a soft m-ary semihypergroup over H.

Proof. Let (K,C) = (F,A)
∪

E(G,B), where C = A ∪ B and A ∩ B = ∅. Then
∀c ∈ C, either c ∈ A\B or c ∈ B\A. If c ∈ A\B, then K(c) = F (c) and if c ∈ B\A,
then K(c) = G(c). So in both cases K(c) is a m-ary subsemihypergroup of H.
Therefore, (K,C) is a soft m-ary semihypergroup over H. �

Proposition 4.3. Let (F,A) and (G,B) be two soft m-ary semihypergroups over H
such that A∩B ̸= ∅. Then (F,A)

∪
E(G,B) is a soft m-ary semihypergroup over H.

Proof. Let us assume that A ∩ B ̸= ∅. Let (K,C) = (F,A)
∪

E(G,B) where K(C)
satisfies the condition (ii) of Definition 3.5. To show that (K,C) is a soft m-ary

semihypergroup over H, we have to show that f̂((K,C), ..., (K,C)) ⊆ (K,C). We

have f̂((K,C), ..., (K,C)) = (P,C) and P (c) = f(K(c), ...,K(c)) for all c ∈ C. For
c ∈ C, we have

P (c) = f(K(c), ...,K(c)) = f((F,A) ∪E (G,B), ...., (F,A) ∪E (G,B))

⊆


F (c) if c ∈ A\B,
G(c) if c ∈ B\A,
F (c) ∪G(c) if c ∈ A ∩B.

Then P (c) ⊆ K(c) for all c ∈ C. Therefore, (F,A) ∪E (G,B) is a soft m-ary
semihypergroup over H. �

Proposition 4.4. Let (F,A) and (G,B) be two soft m-ary semihypergroups over H
such that A∩B ̸= ∅. Then (F,A)∩R (G,B) is a soft m-ary semihypergroup over H.

Proof. Let us assume that A ∩ B ̸= ∅. Let (K,C) = (F,A) ∩R (G,B) where C =
A ∩ B ̸= ∅ and K(c) = F (c) ∩ G(c) for all c ∈ C. To show that (K,C) is a soft

m-ary semihypergroup over H, we have to show that f̂((K,C), (K,C), ..., (K,C)) ⊆
(K,C). We have f̂((K,C), ..., (K,C)) = (P,C) and P (c) = f(K(c), ...,K(c)) for all
c ∈ C. For c ∈ C, we have P (c) = f(K(c), ...,K(c)) = f(F (c) ∩ G(c), ...., F (c) ∩
G(c)) ⊆ F (c) ∩ G(c) = K(c). Then P ⊆ K and (F,A) ∩R (G,B) is a soft m-ary
semihypergroup over H. �

Proposition 4.5. Let (F,A) and (G,B) be two soft m-ary semihypergroups over
H. Then (F,A) ∧ (G,B) is a soft m-ary semihypergroup over H.
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Proof. Let (F,A) ∧ (G,B) = (K,A × B) = (K,C) where K(a, b) = F (a) ∩ G(b),
∀(a, b) ∈ A× B. We have to show that (K,A× B) is a soft m-ary semihypergroup

over H. We have (P,C) = f̂((K,A × B), ..., (K,A × B)), where C = A × B and
P (a, b) = f(K(a, b), ...,K(a, b)), ∀(a, b) ∈ C. For (a, b) ∈ C, we have P (a, b) =
f(K(a, b), ...,K(a, b)) = f(F (a) ∩ G(b), ...., F (a) ∩ G(b)) ⊆ F (a) ∩ G(b) = K(a, b).
Then P ⊆ K and (F,A) ∧ (G,B) is a soft m-ary semihypergroup over H. �

Definition 4.3. Let (F1, A1), ..., (Fm, Am) be m soft sets over H. Define f∗((F1, A1),
(F2, A2), ..., (Fm, Am)) = (K,A1×A2×...×Am) be a soft set where K(a1, a2, ..., am) =
f((F1(a1), F2(a2), ..., Fm(am)).

Proposition 4.6. Let (H, f) be a commutative m-ary semihypergroup. If (F1, A1),
(F2, A2), ..., (Fm, Am) are soft m-ary semihypergroup over H, then
f∗((F1, A1), (F2, A2), ..., (Fm, Am) is a soft m-ary semihypergroup over H.

Proof. Let f∗((F1, A1), ..., (Fm, Am)) = (K,A1 × ... × Am) where K(a1, ..., am) =

f(F1(a1), ..., Fm(am)), ∀(a1, ..., am) ∈ A1 × ... × Am. We have (P,C) = f̂((K,A1 ×
... × Am), ..., (K,A1 × ... × Am)), where C = A1 × ... × Am and P (a1, ..., am) =
f(K(a1, ..., am), ...,K(a1, ..., am)), ∀(a1, ..., am) ∈ C. For (a1, ..., am) ∈ C, since H is
commutative, we have P (a1, ..., am) = f(K(a1, ..., am), ...,K(a1, ..., am))
= f(f(F1(a1), ..., Fm(am)), ..., f(F1(a1), ..., Fm(am))) ⊆ f(F1(a1), ..., Fm(am)) = K(a1,
..., am). Then P ⊆ K. This completes the proof. �

5. Soft m-ary subsemihypergroups and soft hyperideals

Definition 5.1. Let (F,A) and (G,B) be two soft sets over H such that (F,A)
is a m-ary semihypergroup and (G,B) ⊆ (F,A). Then (G,B) is called a soft
m-ary subsemihypergroup(hyperideal) of (F,A) if G(b) is a m-ary subsemihyper-
group(hyperideal) of F (b) for all b ∈ B.

Proposition 5.1. Let (F,A) be a soft m-ary semihypergroup over H and consider
the set {(Ki, Ai)|i ∈ I} be a non-empty family of soft m-ary subsemihypergoups of
(F,A). Then the following hold:

(1) ∩Ri∈I
(Ki, Ai) is a soft m-ary subsemihypergroup of (F,A).

(2) ∧i∈I(Ki, Ai) is a soft m-ary subsemihypergroup of ∧i∈I(F,A).
(3) ∪Ei∈I

(Ki, Ai) is a soft m-ary subsemihypergroup of (F,A) if the set {Ai|i ∈ I}
is pairwise disjoint.

Definition 5.2. A soft set (F,A) over H is called a soft j-hyperideal over H, j =

1, 2, ...,m if f̂((H,E), ....,
j

(F,A), ...., (H,E)) ⊆ (F,A). A soft set (F,A) over H is
called a soft hyperideal over H, if it is a soft j-hyperideal over H for each j =
1, 2, ...,m.

The soft hyperideal over H defined above is different from the soft hyperideal
of a soft m-ary semihypergroup.

Proposition 5.2. A soft set (F,A) over H is a soft j-hyperideal over H where
j ∈ {1, 2, ...,m}, if and only if for all a ∈ A,F (a) ̸= ∅ is a j-hyperideal of H.
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Proof. Let us suppose that (F,A) is a soft j-hyperideal over H. We show that
F (a) ̸= ∅ is a j-hyperideal of H. By the definition we have

f̂((H,E), ...,
j

(F,A), ..., (H,E)) = (K,E ∩ ... ∩A... ∩ E) = (K,A), where

f(H(a), ...,
j

F (a), ...,H(a)) = K(a), ∀a ∈ A. That is, f(H, ..., F (a), ..., H) = K(a).

Since f̂((H,E), ..., (F,A), ..., (H,E)) ⊆ (F,A), where (K,A) ⊆ (F,A). Thus we
have, (K(a) ⊆ F (a), ∀a ∈ A. Therefore, f(H, ..., F (a), ..., H) ⊆ F (a). This shows
that F (a) is a j-hyperideal of H.

Conversely, let us assume that F (a) ̸= ∅ is a j-hyperideal of H. We have

f̂((H,E), ..., (F,A), ..., (H,E)) = (K,E ∩ ... ∩A.... ∩ E) = (K,A)
where f(H(a), ..., F (a), ..., H(a)) = K(a), ∀a ∈ A. That is,
f(H, ..., F (a), ..., H) = K(a). But f(H, ..., F (a), ..., H) ⊆ F (a). This impliesK(a) ⊆
F (a) and so (K,A) ⊆ (F,A). Thus f̂((H,E), ..., (F,A), ..., (H,E))
⊆ (F,A). Hence, (F,A) is a soft j-hyperideal over H. �

Proposition 5.3. Let (F,A) and (G,B) be any two soft hyperideals over a m-ary
semihypergroup H, with A∩B ̸= ∅. Then (F,A)∩R (G,B) is a soft hyperideal over
H contained in both (F,A) and (G,B).

Proposition 5.4. Let (F,A) and (G,B) be any two soft hyperideals over H. Then
(F,A) ∪E (G,B) is a soft hyperideal over H containing (F,A) and (G,B).

Proof. Let (K,C) = (F,A) ∪E (G,B), where C = A ∪ B for all c ∈ C = A ∪ B,
either c ∈ A\B or c ∈ B\A or c ∈ A ∩ B. If c ∈ A\B, then K(c) = F (c) if
c ∈ B\A, then K(c) = G(c), and if c ∈ A ∩ B, then K(c) = F (c) ∪ G(c), in all
the cases K(c) is a hyperideal of H. Hence, (K,C) is soft hyperideal over H. Since
A ⊆ A ∪ B,B ⊆ A ∪ B and F (c) ⊆ K(c), G(c) ⊆ K(c) for all c ∈ C. Therefore,
(F,A) ⊆ (K,C) and (G,B) ⊆ (K,C). �

Proposition 5.5. Let (F,A) and (G,B) be any two soft hyperideals over a m-ary
semihypergroup H. Then (F,A) ∧ (G,B) and (F,A) ∨ (G,B) are soft hyperideals
over H.

Proposition 5.6. Let (F,A) be a soft m-ary semihypergroup over H and the set
{(Ki, Ai)|i ∈ I} be a non-empty family of soft hyperideals of (F,A). Then the
following hold:

(1) ∩Ri∈I
(Ki, Ai) is a soft hyperideal of (F,A).

(2) ∧i∈I(Ki, Ai) is a soft hyperideal of ∧i∈I(F,A).
(3) ∪Ri∈I

(Ki, Ai) is a soft hyperideal of (F,A).
(4) ∨i∈I(Ki, Ai) is a soft hyperideal of ∨i∈I(F,A).

6. Soft quasi-hyperideals over m-ary semihypergroups

Definition 6.1. A soft set (F,A) over a m-ary semihypergroup H is called a soft
quasi-hyperideal over H if

(1) f̂((F,A), (H,E), ...., (H,E))∩R f̂((H,E), (F,A), (H,E), ...., (H,E))∩R .....∩R

f̂((H,E), (H,E), ...., (F,A)) ⊆ (F,A).
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(2) f̂((F,A), (H,E), ...., (H,E)) ∩R .... ∩R

f̂((H,E), ..., (H,E),
j

(F,A), (H,E), ...., (H,E)︸ ︷︷ ︸
2m−1

) ∩R ..... ⊆ (F,A).

where (H,E) is the absolute soft set over H and 3 ≤ j ≤ 2m− 3.

Proposition 6.1. A soft set (F,A) over H is a soft quasi-hyperideal over H if and
only if ∀a ∈ A,F (a) ̸= ∅ is a quasi-hyperideal of H.

Proof. Let us suppose that a soft set (F,A) over H is a soft quasi-hyperideal over
H. We show that F (a) is a quasi-hyperideal of H. We have

f̂((F,A), (H,E), ...., (H,E)) = (G,A ∩ E ∩ .... ∩ E) = (G,A) (1)

f̂((H,E), (F,A), ...., (H,E)) = (S,E ∩A ∩ .... ∩ E) = (S,A) (2)
. . . .
f̂((H,E), ...., (H,E), (F,A)) = (I, E ∩ E ∩ .... ∩A) = (I,A) (m)

f̂((H,E), ..., (H,E),
j

(F,A), (H,E), ...., (H,E)︸ ︷︷ ︸
2m−1

) =

= (J,E ∩ E ∩ ... ∩A ∩ E... ∩ E) = (J,A) (m+1)
The equations (1), (2),...,(m) imply that

f̂((F,A), (H,E), ...., (H,E)) ∩R f̂((H,E), (F,A), (H,E), ...., (H,E)) ∩R .....∩R

f̂((H,E), (H,E), ...., (F,A)) = (G,A) ∩R (S,A) ∩R .... ∩R (I, A) (m+2)

f̂((F,A), (H,E), ...., (H,E)) ∩R ... ∩R f̂((H,E), ...., (F,A)) = (K,A) (m+3)
But (F,A) is a soft quasi-hyperideal over H. Thus

f̂((F,A), (H,E), ...., (H,E)) ∩R ... ∩R f̂((H,E), (H,E), ...., (F,A)) ⊆ (F,A). From
the equation (m+3), (K,A) ⊆ (F,A), that is,K(a) ⊆ F (a), ∀a ∈ A. Again the equa-
tion (m+3) implies that ∀a ∈ A, f(F (a),H(a), ..., H(a))∩...∩f(H(a), ..., H(a), F (a)) =
K(a). This implies that ∀a ∈ A,
f(F (a),H(a), ...,H(a)) ∩ ... ∩ f(H(a), ..., H(a), F (a)) ⊆ F (a) (m+4)
Smilarly, from the equations (1), (m), (m+1), we have

f̂((F,A), (H,E), ...., (H,E)) ∩R .... ∩R

f̂((H,E), (H,E), ..., (H,E),
j

(F,A), (H,E), ...., (H,E), (H,E)︸ ︷︷ ︸
2m−1

) ∩R ..... ∩R

f̂((H,E), ...., (F,A)) = (P,A) (m+5)
where 3 ≤ j ≤ 2m− 3. Since (F,A) is a soft quasi-hyperideal over H, we have

f̂((F,A), (H,E), ...., (H,E)) ∩R .... ∩R

f̂((H,E), ..., (H,E),
j

(F,A), (H,E), ...., (H,E)︸ ︷︷ ︸
2m−1

) ∩R ... ∩R

f̂((H,E), ...., (F,A)) ⊆ (F,A). Therefore, (P,A) ⊆ (F,A), that is, for all a ∈ A,
P (a) ⊆ F (a). From the equation (m+5), we have for all a ∈ A,

f(F (a),H(a), ...,H(a))∩...∩f(H(a), ...,H(a),
j

F (a),H(a), ....,H(a)︸ ︷︷ ︸
2m−1

)∩...∩f(H(a), ...,

H(a), F (a)) = P (a), where 3 ≤ j ≤ 2m− 3. This implies that
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f(F (a),H(a), ...,H(a))∩...∩f(H(a), ...,H(a),
j

F (a),H(a), ...., H(a)︸ ︷︷ ︸
2m−1

)∩...∩f(H(a), ...,

H(a), F (a)) ⊆ F (a) (m+6)
From (m+4) and (m+6), it is clear that F (a) is a quasi-hyperideal of H.
Conversely, let F (a) ̸= ∅ be a quasi-hyperideal of H for all a ∈ A. From the

equations (1), (2), ..., (m) we have

f̂((F,A), (H,E), ...., (H,E)) ∩R f̂((H,E), (F,A), (H,E), ...., (H,E)) ∩R .....∩R

f̂((H,E), (H,E), ...., (F,A)) = (G,A) ∩R (S,A) ∩R ... ∩R (I,A) = (K,A).
By the definition, ∀a ∈ A, we have f(F (a),H(a), ..., H(a)) ∩ ...∩
f(H(a), ...,H(a), F (a)) = K(a). But F (a) is a quasi-hyperideal of H. Therefore,
K(a) = f(F (a), H(a), ..., H(a))∩...∩f(H(a), ..., H(a), F (a)) ⊆ F (a) and so (K,A) ⊆
(F,A). Thus

f̂((F,A), (H,E), ...., (H,E)) ∩R ... ∩R f̂((H,E), ...., (F,A)) ⊆ (F,A) (m+7)
From the equations (1), (m), and (m+1) we have for all a ∈ A,

f̂((F,A), (H,E), ...., (H,E)) ∩R ...∩R

f̂((H,E), (H,E), ..., (H,E),
j

(F,A), (H,E), ...., (H,E), (H,E)︸ ︷︷ ︸
2m−1

) ∩R ... ∩R

f̂((H,E), ...., (F,A)) = (G,A) ∩R (I, A) ∩R ... ∩R (J,A) = (P,A)

and also f(F (a),H(a), ..., H(a)) ∩ f(H(a), ..., H(a),
j

F (a),H(a), ....,H(a)︸ ︷︷ ︸
2m−1

) ∩

f(H(a), ...,H(a), F (a)) = P (a), where 3 ≤ j ≤ m. Since F (a) is a quasi-hyperideal
of H, so we have P (a) = f(F (a),H(a), ..., H(a)) ∩

f(H(a), ...,H(a),
j

F (a),H(a), ....,H(a)︸ ︷︷ ︸
2m−1

) ∩ f(H(a), ...,H(a), F (a)) ⊆ F (a)

and thus (P,A) ⊆ (F,A). Hence we have f̂((F,A), (H,E), ...., (H,E)) ∩R .... ∩R

f̂((H,E), ..., (H,E),
j

(F,A), (H,E), ...., (H,E)︸ ︷︷ ︸
2m−1

) ∩R ..... ⊆ (F,A). (m+8)

From (m+7) and (m+8), (F,A) is a soft quasi-hyperideal over H. �

Proposition 6.2. Let (Fj , Aj) be soft j-hyperideals for j = 1, 2, ...,m respectively
over H, respectively. Then (F1, A1) ∩R (F2, A2) ∩R .... ∩R (Fm, Am) is a soft quasi-
hyperideal over H.

Proposition 6.3. Let (Fj , Aj) be soft j-hyperideals for j = 1, 2, ...,m respectively
over H, respectively such that A1 ∩A2 ∩ ...∩Am = ∅. Then (F1, A1)∩E (F2, A2)∩E

.... ∩E (Fm, Am) is a soft quasi-hyperideal over H.
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Proof. By the definition, (S,A) = (F1, A1) ∩E (F2, A2) ∩E .... ∩E (Fm, Am), where
A = A1 ∪A2 ∪ .... ∪Am, A1 ∩A2 ∩ ... ∩Am = ∅, and ∀a ∈ A

S(a) =


F1(a) if a ∈ A1\A2 ∩ ... ∩Am,
...
Fj(a) if a ∈ Aj\A1 ∩ ... ∩Aj−1 ∩Aj+1 ∩ ... ∩Am,
...
Fm(a) if a ∈ Am\A1 ∩ ... ∩Am−1.

In each case, S(a) is a quasi-hyperideal of H. Since every j-hyperideal (j =
1, 2, ...,m) ofH is a quasi-hyperideal ofH, thus, by the definition, (S,A) = (F1, A1)∩E

.... ∩E (Fm, Am) is a soft quasi-hyperideal over H. �

Proposition 6.4. Every soft j-hyperideal (j = 1, 2, ...,m) over a m-ary semihyper-
group H is a soft quasi-hyperideal over H.

Proof. Let (Fj , Aj) be a soft j-hyperideal (j ∈ {1, 2, ...,m}) over H. Then Fj(a)
is a j-hyperideal of H. Since each j-hyperideal of H is a quasi-hyperideal of H,
therefore Fj(a) is a quasi-hyperideal of H. Hence (Fj , Aj) is a soft quasi-hyperideal
over H. �

Proposition 6.5. Every soft j-hyperideal (j = 1, 2, ...,m) over H is a soft m-ary
semihypergroup over H and every soft quasi-hyperideal is a soft m-ary semihyper-
group over H.

Proposition 6.6. Let (Fj , Aj) be soft j-hyperideals for j = 1, 2, ...,m respectively
over H, respectively. Then (F1, A1) ∧ .... ∧ (Fm, Am) is a soft quasi-hyperideal over
H.

Proof. Let (S,A) = (F1, A1) ∧ .... ∧ (Fm, Am), where A = A1 × .... × Am, and
∀(a1, ..., am) ∈ A1 × .... × Am, S(a1, ..., am) = A1(a1) ∩ ... ∩ Am(am) is a quasi-
hyperideal of H. Since the intersection of j-hyperideals for j = 1, 2, ...,m, is a
quasi-hyperideal of H, then (F1, A1)∧ ....∧ (Fm, Am) is a soft quasi-hyperideal over
H. �

Proposition 6.7. Let (F,A) and (G,B) be two soft quasi-hyperideals over a m-ary
semihypergroup H. Then the following hold:

(1) (F,A) ∩R (G,B) is a soft quasi-hyperideal over H.
(2) (F,A) ∩E (G,B) is a soft quasi-hyperideal over H.
(3) (F,A) ∧ (G,B) is a soft quasi-hyperideal over H.
(4) (F,A) ∪E (G,B) is a soft quasi-hyperideal over H, whenever A ∩B = ∅.

Proposition 6.8. Let (F,A) be a soft quasi-hyperideal and (G,B) a soft m-ary
semihypergroup over H. Then (F,A) ∩R (G,B) is a soft quasi-hyperideal of (G,B).

Proof. Let (S,C) = (F,A) ∩R (G,B), where C = A ∩ B ̸= ∅ and S(c) = F (c) ∩
G(c) for all c ∈ C, since S(c) ⊆ F (c) and S(c) ⊆ G(c). Since S(c) ⊆ G(c),
f(S(c), G(c), ...., G(c))∩...∩f(G(c), ...., G(c), S(c)) ⊆ f(G(c), ...., G(c))∩...∩f(G(c), ....,
G(c)) ⊆ f(G(c), ...., G(c)) ⊆ G(c). This implies that
f(S(c), G(c), ..., G(c)) ∩ ... ∩ f(G(c), ..., G(c), S(c)) ⊆ G(c) (1)
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Also S(c) ⊆ F (c). So f(S(c), G(c), ...., G(c)) ∩ ... ∩ f(G(c), ...., G(c), S(c))
⊆ f(F (c), G(c), ...., G(c)) ∩ ... ∩ f(G(c), ...., G(c), F (c))
⊆ f(F (c),H(c), ...., H(c)) ∩ ... ∩ f(H(c), ...., H(c), F (c)) ⊆ F (c). Thus
f(S(c), G(c), ...., G(c)) ∩ ... ∩ f(G(c), ...., G(c), S(c)) ⊆ F (c) (2)

From the equations (1) and (2), we have
f(S(c), G(c), ...., G(c)) ∩ ... ∩ f(G(c), ...., G(c), S(c)) ⊆ F (c) ∩G(c) = S(c). (3)

Similarly, we can show that f(S(c), G(c), ..., G(c)) ∩

f(G(c), ..., G(c),
j

S(c), G(c), ...., G(c)︸ ︷︷ ︸
2m−1

) ∩ f(G(c), G(c), ..., S(c)) ⊆ S(c). (4)

where 3 ≤ j ≤ 2m− 3. From the equation (3) and (4), S(c) is a quasi-hyperideal of
G(c). Thus (F,A) ∩R (G,B) is a soft quasi-hyperideal of (G,B). �

7. Soft bi-hyperideals over m-ary semihypergroups

Definition 7.1. A soft set (F,A) over H is called a soft bi-hyperideal over H if

(1) (F,A) is a soft m-ary semihypergroup over H.

(2) f̂((F,A), (H,E), (F,A), ...., (H,E), (F,A)︸ ︷︷ ︸
2m−1

) ⊆ (F,A) where (H,E) is the abso-

lute soft set over H.

Proposition 7.1. A soft set (F,A) over a m-ary semihypergroup H is a soft bi-
hyperideal over H if and only if ∀a ∈ A, F (a) ̸= ∅ is a bi-hyperideal of H.

Proof. Let (F,A) be a soft bi-hyperideal over a m-ary semihypergroup H. Then by
the definition, (F,A) is a soft m-ary semihypergroup over H. By the Proposition
4.1, for any a ∈ A,F (a) ̸= ∅ is a m-ary subsemihypergroup of H. Moreover, since
(F,A) is a soft bi-hyperideal over H, we have

f̂((F,A), (H,E), (F,A), ...., (H,E), (F,A)︸ ︷︷ ︸
2m−1

) ⊆ (F,A) where (H,E) is the

absolute soft set over H. It follows that f̂(F (a),H, F (a), ...., H, F (a)︸ ︷︷ ︸
2m−1

) ⊆ F (a), which

shows that F (a) is a bi-hyperideal of H.
Conversely, let us suppose that (F,A) is a soft set over H such that ∀a ∈

A,F (a) is a bi-hyperideal of H, whenever F (a) ̸= ∅. Then it is clear that each
F (a) ̸= ∅ is a m-ary subsemihypergroup of H. Hence, by the Proposition 4.1,
(F,A) is a soft m-ary semihypergroup over H. Furthermore, since F (a) ̸= ∅ is a

bi-hyperideal of H, then for all a ∈ A, f̂(F (a),H, F (a), ...., H, F (a)︸ ︷︷ ︸
2m−1

) ⊆ F (a). Hence

we conclude that f̂((F,A), (H,E), (F,A), ...., (H,E), (F,A)︸ ︷︷ ︸
2m−1

) ⊆ (F,A). This shows

that (F,A) is a soft bi-hyperideal over H. �
Proposition 7.2. Every soft quasi-hyperideal over H is a soft bi-hyperideal over
H.

Proposition 7.3. Let (F,A) be a soft bi-hyperideal over H and (G,B) a soft m-ary
semihypergroup over H. Then (F,A) ∩R (G,B) is a soft bi-hyperideal of (G,B).
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Proof. By the definition, (S,C) = (F,A) ∩R (G,B) where C = A ∩B ̸= ∅, and S is

defined by S(c) = F (c) ∩G(c), ∀c ∈ C. We have f̂((S,C), (S,C), ..., (S,C)) =

= f̂(((F,A)∩R (G,B)), ..., ((F,A)∩R (G,B))) ⊆ f̂((F,A), ..., (F,A)) ⊆ (F,A). This

implies that f̂((S,C), (S,C), ..., (S,C)) ⊆ (F,A) (1)

Also, f̂((S,C), ..., (S,C)) = f̂(((F,A) ∩R (G,B)), ..., ((F,A) ∩R (G,B))) ⊆
f̂((G,B), ..., (G,B)) ⊆ (G,B) because (G,B) is a soft m-ary semihypergroup over

H. This implies that f̂((S,C), (S,C), ..., (S,C)) ⊆ (G,B) (2)

From the equations (1) and (2), we have f̂((S,C), ..., (S,C)) ⊆ (F,A) ∩R

(G,B) = (S,C). This implies that (S,C) is a soft m-ary semihypergroup over H.

Also f̂((S,C), (G,B), (S,C), ..., (S,C)︸ ︷︷ ︸
2m−1

)

= f̂(((F,A) ∩R (G,B)), (G,B), ((F,A) ∩R (G,B)), (G,B), ...., ((F,A) ∩R (G,B)))

⊆ f̂((G,B), (G,B), ..., (G,B)︸ ︷︷ ︸
2m−1

) ⊆ f̂((G,B), (G,B), ..., (G,B)︸ ︷︷ ︸
m

) ⊆ (G,B), and so

f̂((S,C), (G,B), (S,C), ..., (S,C)︸ ︷︷ ︸
2m−1

) ⊆ (G,B). (3)

Again, f̂((S,C), (G,B), (S,C), ..., (S,C)︸ ︷︷ ︸
2m−1

)

= f̂(((F,A) ∩R (G,B)), (G,B), ((F,A) ∩R (G,B)), (G,B), ...., ((F,A) ∩R (G,B))︸ ︷︷ ︸
2m−1

)

⊆ f̂((F,A), (H,E), ..., (F,A)︸ ︷︷ ︸
2m−1

) ⊆ (F,A), because (F,A) is a soft bi-hyperideal over

H. This implies that f̂((S,C), (G,B), (S,C), ..., (S,C)︸ ︷︷ ︸
2m−1

) ⊆ (F,A). (4) From

the equations (3) and (4), we have

f̂((S,C), (G,B), (S,C), ..., (S,C)︸ ︷︷ ︸
2m−1

) ⊆ (F,A) ∩R (G,B) = (S,C).

Henece (S,C) is a soft bi-hyperideal of (G,B). �
Definition 7.2. A soft hyperideal (F,A) over H is soft idempotent if

f̂((F,A), ..., (F,A)) = (F,A).

Theorem 7.1. Let (F,A) be a soft bi-hyperideal over H and (G,B) a soft bi-

hyperideal of (F,A) such that f̂((G,B), ..., (G,B)) = (G,B). Then (G,B) is a soft
bi-hyperideal over H.

Proof. By the condition, we have f̂((G,B), ..., (G,B)) ⊆ (G,B). This implies
that (G,B) is a soft m-ary semihypergroup over H. Since (G,B) ⊆ (F,A) and

f̂((G,B), ..., (G,B)) = (G,B), we have

f̂((G,B), (H,E), (G,B), (H,E), ..., (G,B)︸ ︷︷ ︸
2m−1

)

= f̂(f̂((G,B), ..., (G,B)), (H,E), (G,B), (H,E), ..., f̂((G,B), ..., (G,B)))

= f̂((G,B), ..., f̂((G,B)), (H,E), (G,B), (H,E), ...(G,B))︸ ︷︷ ︸
2m−1

, ..., (G,B))
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⊆ f̂((G,B), ..., f̂((F,A)), (H,E), (F,A), (H,E), ...(F,A))︸ ︷︷ ︸
2m−1

, ..., (G,B))

⊆ f̂((G,B), (G,B), ..., (F,A), ..., (G,B), (G,B))

= f̂((G,B), (G,B), ..., (F,A), ..., (G,B), f̂((G,B), ..., (G,B)))

= f̂((G,B), f̂((G,B), ..., (F,A), ..., (G,B), ..., (G,B)), (G,B))

⊆ f̂((G,B), ..., (G,B)) = (G,B). This implies that

f̂((G,B), (H,E), (G,B), (H,E), ..., (G,B)︸ ︷︷ ︸
2m−1

) ⊆ (G,B). Hence (G,B) is a soft bi-

hyperideal over H. �

Proposition 7.4. Let (F,A) be a non-empty soft subset over H. If (Gj , Bj) are
soft j-hyperideals resp. (j ∈ {1, 2, ...,m}), over H resp. such that

f̂((G1, B1), ...., (Gj , Bj), ..., (Gm, Bm)) ⊆ (F,A) ⊆ (G1, B1) ∩R ... ∩R (Gm, Bm),

then (F,A) is a soft bi-hyperideal over H.

Proof. By the definition f̂((F,A), ..., (F,A)) ⊆ f̂((G1, B1) ∩R ... ∩R (Gm, Bm), ...,

(G1, B1)∩R ...∩R(Gm, Bm)) ⊆ f̂((G1, B1), ...., (Gj , Bj), ..., (Gm, Bm)) ⊆ (F,A). This

implies that f̂((F,A), ...., (F,A)) ⊆ (F,A). Thus (F,A) is a soft m-ary semihyper-
group over H. Let us consider again

f̂((F,A), (H,E), (F,A), (H,E), ..., (F,A)︸ ︷︷ ︸
2m−1

) ⊆ f̂((G1, B1) ∩R ... ∩R (Gm, Bm),

(H,E), (G1, B1)∩R...∩R(Gm, Bm), (H,E), ..., (G1, B1)∩R...∩R(Gm, Bm)) ⊆ f̂((G1, B1),
(H,E), (G2, B2), ...., (Gj , Bj), ..., (H,E), (Gm, Bm)) ⊆
f̂((G1, B1), ...., (Gj , Bj), ..., (Gm, Bm)) ⊆ (F,A). This implies that

f̂((F,A), (H,E), (F,A), ..., (H,E), (F,A)) ⊆ (F,A). Hence (F,A) is a soft bi-hyperideal
over H. �
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