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CLASSIFICATION OF GOOD AND BAD RESPONDERS IN
LOCALLY ADVANCED RECTAL CANCER AFTER
NEOADJUVANT RADIO-CHEMOTHERAPY USING

RADIOMICS SIGNATURE

Calin Gh. BUZEA *, Camil C. MIRESTEAN ¢, Maricel AGOP?,
Viorel Puiu PAUN®, Dragos T. IANCU 4

We present and discuss here, a study on 22 patients diagnosed with locally
advanced rectal cancer proposed for neo-adjuvant radio-chemotherapy, by
evaluating their CT-simulator images using radiomics signature. Programs were
written in Python, first, to perform the initial stages of image processing and second,
to build and save a model using a deep convolutional neural network (CNN) which
in the end, proved to be able to evaluate good and bad responders from unseen CT
images within a high level of prediction accuracy (over 95.0 %).

Keywords: radiomics, unsupervised learning, rectal cancer, tumor regression
grading, radiotherapy.

1. Introduction

Colorectal cancer is the third leading cause of cancer-related mortality in Western
countries and in approximately one-third of cases the tumor is localized in the
rectum [1]. A standard for the therapeutic scheme in locally advanced rectal
cancer (LARC) may be represented by surgical resection, preceded by
neoadjuvant chemo-radiotherapy (CRT) or radiotherapy only (RT) [2,3].
Neoadjuvant treatment can lower the risk of local recurrence, decrease the tumor
size, and facilitate subsequent successful RO resection and sphincter — preserving
surgery [4]. After CRT, pathological complete response (pCR) is achieved for
approximately 15% to 30% of the patients [3,4] and in these cases a wait-and-see
strategy is becoming a viable therapeutic option [5].

To improve patient management and/or stratification, it could be advantageous to
determine the likelihood of pCR or near pCR before treatment also to allow
clinicians to tailor therapy. Importantly, patients predicted as non-responders
could benefit from alternative treatments or up-front surgery, avoiding toxicity
and side effects of CRT/RT. Also, it might be important to provide physicians
with accurate information using noninvasive approaches to identify complete
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responders for an alternative surgical treatment such as sphincter-saving local
excision.

Previous studies have highlighted several imaging modalities for their
capability to distinguish good responders from others for LARC. Examples are
FDG-PET [6], T2-weighted magnetic resonance imaging (T2w-MRI) [7],
dynamic contrast-enhanced MR (DCE-MRI) [8] and diffusion-weighted imaging
(DWI) [9,10].

In the past 10 years, medical digital image analysis has grown dramatically
as advancement of the pattern recognition tools and increase of the data collection.
Furthermore, medical digital imaging could give a whole picture of the tumor
shape, texture and volume, and it is also a noninvasive way to get comprehensive
tumor information [11]. A relatively new field of medical investigation, known as
Radiomics, is expected to be central to precision medicine due to its ability to
gather detailed information describing tumour phenotypes [12].

Radiomics is a promising area of medical research that uses state-of-the-
art machine learning (ML) techniques for image characteristics extraction from
different types of medical imaging such as computed tomography (CT), nuclear
magnetic resonance (MRI) and positron emission tomography (PET) for objective
and computable characterization of tumor phenotypes. It was formally introduced
by Lambin and collaborators in 2012 [13,14]. It is about extracting and studying a
huge amount of radiological imaging features, using either supervised, or
unsupervised learning and these data are then used to predict or decode hidden
genetic and molecular traits in decision support [11,15-20]. Radiomic features
include useful spatial and textural information about black and white images and
correlations between pixels in images. Further, these characteristics can be
modeled by computerized systems, thus supplementing as an adjuvant instrument
the individual diagnosis and treatment guidance [21].

Fig. 1 depicts the processes involved in the Radiomics workflow. The first
step involves the acquisition of high quality and standardized imaging, for
diagnostic or planning purposes. From this image, the macroscopic tumour is
defined, either with an automated segmentation method or alternatively by an
experienced radiologist or radiation oncologist. Quantitative imaging features are
subsequently extracted from the previously defined tumour region. These features
involve descriptors of intensity distribution, spatial relationships between the
various intensity levels, texture heterogeneity patterns, descriptors of shape and of
the relations of the tumour with the surrounding tissues. The extracted image traits
are then subjected to a feature selection procedure. The most informative features
are identified based on their independence from other traits, reproducibility and
prominence on the data. The selected features are then analyzed for their
relationship with treatment outcomes or gene expression. The ultimate goal is to
provide accurate risk stratification by incorporating the imaging traits into
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predictive models for treatment outcome and to evaluate their added value to

commonly used predictors.
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Fig. 1 - typical workflow of Radiomics

In the last few years, the literature on automated classification of images
has been extensive, with applications covering different anatomical parts other
than colon, such as brain, breast, prostate and lungs. Most of the proposed
approaches rely on automated texture analysis, where a limited set of local
descriptors are computed from patches of the original input images and then fed
into a classifier. Among the most frequently used, statistical features based on
grey level co-occurrence matrix (GLCM), local binary patterns (LBP), Gabor and
wavelet transforms, etc. The texture descriptors, eventually encoded into a
compact dictionary of visual words, are used as input of machine learning
techniques such as Support Vector Machines (SVM), Random Forests or Logistic
Regression classifiers [22]. In spite of the good level of accuracy obtained by
some of these works, the dependence on a fixed set of handcrafted features is a
major limitation to the robustness of the classical texture analysis approaches.
First, because it requires a deep knowledge of the image characteristics that are
best suited for classification, which is not obvious. Second, because it puts severe
constraints to the generalization and transfer capabilities of the proposed
classifiers, especially in presence of inter-dataset variability.

As an answer to such limitations, in the recent years the use of deep
learning (DL) architectures, and more specifically Convolutional Neural
Networks (CNNs), has become a major trend [23,24]. In CNNs a number of
convolutional and pooling layers learns by backpropagation a set of features that
are best for classification, thus avoiding the extraction of hand-crafted texture
descriptors. Nonetheless, the necessity of training the networks with a huge
number of independent histological samples is still an open issue, which limits the
usability of the approach in the everyday clinical setting.

Radiomics has been extensively studied in oncology, with a substantial
contribution from the quantitative imaging network (QIN) and the National
Cancer Institute (NCI) [11]. There are studies and reports, especially for breast
cancer [25], glioblastoma [18], head and neck cancers [26], lung cancer [14],
esophageal cancer [27], prostate cancer [28] and rectal cancer [29]. In addition,
radiomics was also used in dermatological studies [30].
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All computer programs in this work were written in Python, an interpreted,
object-oriented, high-level programming language with dynamic semantics.
Python supports modules and packages, which encourages program modularity
and code reuse. The Python interpreter and the extensive standard library are
available in source or binary form without charge for all major platforms, and can
be freely distributed.

In this paper, we evaluate a deep learning convolutional neural network
(CNN) approach, which trains, validates and saves a classifier for predicting
tumor regression grading of rectal tumors after neoadjuvant chemoradiotherapy.
The computer program works by extracting characteristic features from the 320
CT - simulator images of a number of 22 patients diagnosed with LARC proposed
for neo-adjuvant radio-chemotherapy. The images are first converted from
DICOM to JPEG format and a square region of interest (ROI) is defined in each
of the CT-simulator pictures, for each patient, to delimitate the image of interest
from the noisy background. Note the set of images used for each patient were
previously contoured by a highly trained radiation oncologist as defining the
tumor. We find that the saved model, even using a simple CNN architecture,
succeeds to evaluate good and bad responders (identified using Dworak tumor
regression grade (TRG) system obtained after surgery of these patients) from new
CT- simulator images within a high degree of classification accuracy. The results
are encouraging, suggesting the wealth of imaging radiomics should be further
explored to help tailoring the treatment into the era of personalized medicine.

2. Materials and Methods

Twenty-two patients with LARC treated between 13.07.2015 and
22.07.2016 with photon radiotherapy were included in the study. A 8 - 12 weeks
resting interval is suggested before surgery to get a maximum effect of radio-
chemotherapy.

Treatment was planned using CT-based simulation with patient lying in
supine position. Image fusion between the diagnostic MRI and the planning CT
images was made. Target volumes and radiosensitive organs at risk were
delineated on images obtained from CT simulation fused with diagnostic imaging
with contrast agent and the treatment plan was created and delivered by 3D
conformal technique.

All patients benefited from total excision of mesorectum and Dworak’s
degree of regression was evaluated on the pathological sample.

For each of the 22 patients we extracted from the CT simulator DICOM
images only those contoured by an experienced radiation oncologist as defining
the PTV-T (target volume of the primary rectal tumor) and PTV-N (target volume
of lymph nodes) (Phase I) (see Table 1) where :
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S1=(x1-x2)/Step+1;  S2=(x2-x3)/Step+S1 (1)
are the first and the last slide contoured, respectively, x4, x3, x2, x1 the
coordinates of the slide on the Oy axis, along the patient, Step is the step of the
slices taken within the CT simulator.

Commonly used tumor regression grading (TRG) for rectal cancer is the
Dworak grading system (which is used here too). TRGs provides important
prognostic information since complete or subtotal tumor regression has shown to
be associated with better patient’s outcome. The prognostic value of TRG may
even exceed those of currently used staging systems (e.g., TNM staging) for

tumors treated by neoadjuvant therapy.
Table 1
Number of CT simulator slides extracted for each patient, the associated Dworak index and
their groups (G =good or B = bad responders)
Number ~ TRG  Responders

Patient of (Dworak) (good/bad)
number  Step x4 x3 X2 x1 S1 S2 | Slides

1 03 -189 -72 138 249 38 108 71 2 B
2 03 -1925 -275 1585 2125 19 81 63 2 B
3 03 -152 -32 97 226 44 87 44 1 B
4 03 -114 6 105 21 36 91 56 1 B
5 03 -181 -73 68 176 37 84 48 3 G
6 03 -162 -72 105 243 47 106 60 1 B
7 03 -12 -42 117 252 46 99 54 3 G
8 03 -189 9 93 246 52 113 62 1 B
9 03 -151 -31 11 239 44 91 48 3 G
10 03 -123 -09 15 273 42 95 54 2 B
11 03 -1225 -145 1265 2705 49 96 48 1 B
12| op| 1685 -885 1515 2965 30 78 49 2 B
13 03 -1575 -585 1515 2805 44 114 71 1 B
14| 05 144 14 146 206 13 45 33 4 G
15 03 -141 -42 171 249 27 98 72 2 B
16 03 -159 -48 96 213 40 88 49 1 B
17| 05| -1635 -335 1665 2415 16 56 41 2 B
18 03 21 99 54 159 36 87 52 4 G
19 03 -12,45 -10,05 12,45 21,75 32 107 76 Progression B
20 03 -18 -87 54 186 45 92 48 2 B
21 03 -16,65 -465 1335 2325 34 94 61 2 B
G

22 03 -189 72 87 219 45 98 54 3
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Computer Program #1 (CP1) was used to convert the DICOM images
selected as mentioned above, into JPEG images. Furthermore, a square region of
interest (ROI) (see Fig. 2) was created for each of the CT images, for all patients,
to delimitate the image of mesorectum from the noisy background. This program
also generated images with the same ROIs’ sizes (256 x 256 pixels) and excluded
all noises from the acquired digital images. For the main Computer Program #2
(CP2) to be able to process these images, the ROIs were placed onto a black
background. These images were stored as JPEG files for further image processing
and complex measurements with dedicated software tools. Also, CP1 stored the
features and labels into two pickle files “X_rect.pickle” and "y _rect.pickle", for
the main program CP2 to be able to load and further process.

Using Dworak system, good responders were defined as Dworak
TRG3+TRG4; bad responders were defined as Dworak TRG2+TRG1. The two
groups (good responders versus bad responders) were defined to evaluate
outcome results. CT images from the two groups were stored into two different
subfolders: 160 images in GOOD, and 160 images in BAD. The program creates
the DATADIR folder from the 320 images stored by us into the subfolders (BAD,
GOOD).

Fig. 2 — Example of ROl image of mesorectum

A Convolutional Neural Network (CNN) is made up of multiple locally
connected trainable stages, piled one after the other, with two or more fully-
connected layers as the last step. The first part of the network is devoted to
learning the image representation, with successive layers learning features at a
progressively increasing level of abstraction, while the last fully-connected part is
devoted to classification and acts like a traditional multilayer perceptron. From a
computational point of view, a CNN architecture is characterized by two main
types of building blocks:

(i) Convolutional (CONV) blocks, that perform a 2D convolution
operation (i.e. kernel filtering) on the input image and apply a non-linear transfer
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function, such as Rectified Linear Unit (ReLU). Based on the trainable parameters
of the kernels, the stage detects different types of local patterns on the input
image.

(it) Pooling (POOL) blocks that perform a non-linear down-sampling of
the input (e.g. by applying a max function). This has the double effect of reducing
the amount of parameters of the network to control overfitting and of making the
image representation (i.e. the local pattern descriptors learnt by the network)
spatially invariant.

The number of CONV and POOL blocks (i.e. the depth) of the network is
directly related to the level of detail that can be achieved in the hierarchical
representation of the image. Nonetheless, a higher depth also translates into a
higher number of parameters, and hence on a higher computational cost.

The training paradigm chosen for the CNN is a classic backpropagation
scheme: an iterative process that involves multiple passes of the whole input
dataset until the model converges. At each training step, the whole dataset flows
from the first to the last layer in order to compute a classification error, quantified
by a loss function. Such error flows backward through the net, and at each training
step the model parameters (i.e. the network weights) are tuned in the direction that
minimizes the classification error on the training data.

As a trade-off between representation capabilities and computational costs,
in our work we used a simple CNN model, which is represented in Table 2. It
adopts a very simple architecture, based on piling up only 3x3 convolution and
2x2 pooling blocks. More specifically, the model consists of 2 CONV layers that
can be conceptually grouped into 2 macro-blocks ending with one POOL layer
each, and of a final 1-layered fully-connected (FC) stage. Nonlinearities are all
based on ReLU, except for the fully-connected layer (FC) that has a sigmoid
activation function. The convolution stride and the padding are fixed to 1 pixel
and the maxpooling stride to 2. The net was built within Keras framework [31]
and trained with a backpropagation paradigm. More specifically, we applied an
ADAM gradient descent, as iterative optimization algorithm to minimize the
categorical cross-entropy function between the two classes of interest (GOOD,
BAD). To monitor the training and optimize the choice of hyper-parameters of the
net, we used 30% of the training set as validation data i.e. from the total of 320
samples used, we train on 224 and validate on 96. This subset is completely
independent from the images used for testing purposes, and was solely used to
compute the validation accuracy metric upon which the training process is
optimized. Based on validation, we selected a learning rate (LR) of 0.001, a
momentum (M) of 0.9 and a batch size (BS) of 32 images.

The CNN was trained for 20 epochs on our colorectal cancer training
dataset, which lasted 2min26sec on our computer : system manufacturer:
LENOVO; model: 20354; processor: Intel(R) Core(TM) i7-4510U CPU @
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2.00GHz (4 CPUs), ~2.6GHz; memory: 8192MB RAM; BIOS: InsydeH20
Version 03.73.069BCN26W,; card name: NVIDIA GeForce 840M; Operating
System: Windows 10.

Fig. 3 shows the loss (a) and accuracy (b) curves on both the training and
validation datasets. From the graphs of Fig. 3 we can derive the following
observations: (i) The model seems to converge quite quickly. Indeed, while
training accuracy is still increasing, the value of validation accuracy saturates
within 12 epochs. (ii) The decay speed of the validation loss curve indicates that
the learning rate is appropriate. (iii) The similarity of validation and training
accuracies after about 10 epochs reasonably rules out overfitting.

Table 2 — used CNN architecture

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 98, 98, 64) 640
activation (Activation) (None, 98, 98, 64) 0

max_pooling2d (MaxPooling2D) (None, 49, 49, 64) 0

conv2d_1 (Conv2D) (None, 47, 47, 64) 36928

activation_1 (Activation) (None, 47, 47, 64) 0

max_pooling2d_1 (MaxPooling2D)  (None, 23, 23, 64) 0

flatten (Flatten) (None, 33856) 0

dense (Dense) (None, 64) 2166848
activation_2 (Activation) (None, 64) 0
dense_1 (Dense) (None, 1) 65
activation_3 (Activation) (None, 1) 0

Total params: 2,204,481
Trainable params: 2,204,481
Non-trainable params: 0

Train on 224 samples, validate on 96 samples
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Fig. 3 — loss and validation curves for the training of the CNN classifier.
3. Results and Discussion

In a study from 2016, in a systematic analysis of multiparametric MR
imaging features in predicting pathologic response after preoperative
chemoradiation therapy (CRT) for locally advanced rectal cancer (LARC),
authors Ke Nie et al, enrolled forty-eight consecutive patients, and built models
with improved predictive value over conventional imaging metrics. For each
patient, a total of 103 imaging features were extracted and analyzed using both
volume averaged and voxelized methods. Artificial neural network with 4-fold
validation technique was used to select the best predictor sets to classify different
response groups and the predictive performance was calculated using receiver
operating characteristic (ROC) curves. The conventional volume-averaged
analysis could provide an area under ROC curve (AUC) ranging from 0.54 to 0.73
in predicting pCR. Moreover, if the models were replaced by voxelized
heterogeneity analysis, the prediction accuracy measured by AUC improved to
0.71-0.79 and combining all information together, the AUC could be further
improved to 0.84 for pCR and 0.89 for GR prediction, respectively. [32]

Zhenyu Liu et al in 2017 enrolled 222 patients (152 in the primary cohort
and 70 in the validation cohort) with clinicopathologically confirmed LARC who
received chemoradiotherapy before surgery and extracted from T2- weighted and
diffusion-weighted imaging, 2252 radiomic features before and after treatment.
The radiomics signature comprised 30 selected features and showed good
discrimination performance in both the primary and validation cohorts. The
individualized radiomics model, which incorporated the radiomics signature and
tumor length, also showed good discrimination, with an area under the receiver
operating characteristic curve of 0.9756 (95% confidence interval, 0.9185—
0.9711) in the validation cohort, and good calibration. Using pre- and
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posttreatment MRI data, they developed a radiomics model with excellent
performance for individualized, noninvasive prediction of pCR. [33]

In a 2018 study on ninety-five patients, 49 males (52%) and 46 females
(48%), with twenty-two patients (23%) having pathologic complete response after
chemoradiation, Jean-Emmanuel Bibault et al extracted one thousand six hundred
eighty-three radiomics features for the tumor volume from the treatment planning
CT Scan. A Deep Neural Network (DNN) was created to predict complete
response, as a methodological proof-of-principle. The results were compared to a
baseline Linear Regression model using only the TNM stage as a predictor and a
second model created with Support Vector Machine on the same features used in
the DNN. The DNN predicted complete response with an 80% accuracy, which
was better than the Linear Regression model (69.5%) and the SVM model
(71.58%). This model correctly predicted complete response after neo-adjuvant
rectal chemoradiotherapy in 80% of the patients of this multicenter cohort. [34]

In this paper, we build a computer program in Python using the Keras
framework based on a CNN simple architecture to develop a classifier for tumor
regression grading of rectal tumors after neoadjuvant chemoradiotherapy. Using
features extracted from a set of CT for radiotherapy planning images, used for
training and validation, this model succeeded to evaluate good and bad responders
from new CT for radiotherapy planning images with a loss function val_loss:
0.1537 and overall accuracy val_acc: 0.9688. Notice also, the results we found
are in the range of those presented in the literature 69.5 - 96%.

In Machine Learning, performance measurement is an essential task. So
when it comes to a classification problem, we can count on an AUC - ROC Curve.
When we need to check or visualize the performance of the multi - class
classification problem, we use AUC (Area Under The Curve) ROC (Receiver
Operating Characteristics) curve. It is one of the most important evaluation
metrics for checking any classification model’s performance. It is also written as
AUROC (Area Under the Receiver Operating Characteristics). Generally
speaking, ROC describes the discriminative power of a classifier independent of
class distribution and unequal prediction error costs (false positive and false
negative cost). ROC is a probability curve and AUC represents degree or measure
of separability. It tells us how much the model is capable of distinguishing
between classes. Higher the AUC, better the model is at predicting Os as Os and 1s
as 1s. By analogy, higher the AUC, better the model is at distinguishing between
patients with disease and no disease. The ROC curve is plotted with true positive
rate (TPR) against the false positive rate (FPR) where TPR is on y-axis and FPR
is on the x-axis. The question it answers is the following: “When it is actually the
negative result, how often does it predict incorrectly?”
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We give in Figure 4 the AUROC for our problem. With a value of 0.998
for the AUC we are sure the model distinguishes very well between patients with
GOOD and BAD responders.
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Fig. 4 - Receiver Operating Characteristics curve for the trained classifier

A confusion matrix (in unsupervised learning usually called matching
matrix) is a table that is often used to describe the performance of a
classification model (or "classifier') on a set of test data for which the true values
are known. The confusion matrix itself is relatively simple to understand, but the
related terminology can be confusing. In figure 5 we print the confusion matrix
for our model.

Confusion matrix, without normalization

Mermalized confusion matrix

120 BAD

100

ue label
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Fig. 5 — confusion matrix without normalization a) and normalized b) for the model
classifier trained in this study.

As can be seen from the results in Fig. 5 the expected values are
represented by rows and predicted values by columns. The diagonal represents the
elements where the predicted values where equal to the expected values, and the
off-diagonal values represent the elements where the classifier got the prediction
wrong. The higher the proportion of values on the diagonal of the matrix in
relation to values off of the diagonal, the better the classifier is. High number of
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values off the diagonal indicate problem areas. In the model developed in this
paper the classifier literally confused BAD with GOOD responders in 6 out of 160
instances, and GOOD with BAD responders in 3 out of 160 instances. Out of 320
images, the classifier predicted correctly 311 of them.

In what follows TP stands for true positive, TN for true negative, FP for
false positive and FN for false negative. From the matrix above if we calculate the
“accuracy” defined as the ratio (TP+TN)/(TP+TN+FP+FN), we obtain again that
97% of the predicted outputs were correctly classified. Precision calculated as the
ratio TP/(TP+FP) is 0.963 and it answers the question: “When it predicts the
positive result, how often is it correct?” and it is usually used when the goal is to
limit the number of FP. Recall, or TPR defined as the ratio TP/(TP+FN) is 0.981
and it answers the question: “When it is actually the positive result, how often
does it predict correctly? Recall, usually is used when the goal is to limit the
number of FN.

4. Conclusions

According to the results of this study, in practice, we can ultimately feed
diagnostic, anatomic and metabolic (CT, RMN, PET CT) and/or CT simulator
images of patients with rectal tumors to a specially built computer
program/algorithm and the resulted classifier could predict, with a quite high
precision rate, the tumor regression grading of these patients, after neoadjuvant
chemoradiotherapy.

Basically, the possibility of predicting a response to the treatment based on
images correlated to clinical, biological and pathological factors (e.g., tumor
stage, histology, lymphovascular invasion) can lead to a stratification of patients
in order to intensify or lessen the neoadjuvant therapy. Moreover, the system can
help medical experts in completing a superior assessment of medical pictures, by
indicating out patterns related to the disease.

REFERENCES

[1] Siegel R, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7-30.

[2] NCCN Clinical Practice Guidelines in Oncology: Rectal Cancer, Version 1.2016. (2016).
NCCN.org. Accessed 11 Jan 2019.

[3] Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative
chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731-40.

[4] Li Y, Wang J, Ma X, Tan L, Yan Y, Xue C, et al. A review of neoadjuvant chemoradiotherapy
for locally advanced rectal cancer. Int J Biol Sci. 2016;12(8):1022-31.

[5] Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological
complete response after chemoradiation for rectal cancer: a pooled analysis of individual
patient data. Lancet Oncol. 2010;11:835-44.

[6] Janssen MH, Ollers MC, Riedl RG, van den Bogaard J, Buijsen J, van Stiphout RG, et al.
Accurate prediction of pathological rectal tumor response after two weeks of preoperative



Classification of good and bad responders|... ] radio-chemotherapy using radiomics signature 277

radiochemotherapy using (18)F-fluorodeoxyglucose-positron emission tomography-
computed tomography imaging. Int J Radiat Oncol Biol Phys 2010;77:392-9.

[7] Engelen SM, Beets-Tan RG, Lahaye MJ, Lammering G, Jansen RL, van Dam RM, et al. MRI
after chemoradiotherapy of rectal cancer: a useful tool to select patients for local excision.
Dis Colon Rectum 2010;53:979-86.

[8] Intven M, Reerink O, Philippens ME. Dynamic contrast enhanced MR imaging for rectal
cancer response assessment after neo-adjuvant chemoradiation. J Magn Reson Imaging
2015;41:1646-53.

[9] Lambregts DM, Vandecaveye V, Barbaro B, Bakers FC, Lambrecht M, Maas M, et al.
Diffusion weighted MRI for selection of complete responders after chemoradiation for
locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 2011;18:2224-31.

[10] Intven M, Reerink O, Philippens ME. Diffusion-weighted MRI in locally advanced rectal
cancer: pathological response prediction after neoadjuvant radiochemotherapy. Strahlenther
Onkol 2012;189:117-22.

[11] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data.
Radiology. 2016;278:563-77.

[12] Chen B, Zhang R, Gan Y, et al. Development and clinical application of radiomics in lung
cancer. Radiat Oncol 2017;12:154.

[13] Lambin P, Rios-Velazquez E, Leijenaar R, et al.,, 2012. Radiomics: extracting more
information from medical images using advanced feature analysis. Eur J Cancer,
48(4):441-446.

[14] Scrivener M, de Jong EEC, van Timmeren JE, et al., 2016. Radiomics applied to lung cancer:
a review. Transl Cancer Res, 5(4):398-4009.

[15] Cook GJR, Siddique M, Taylor BP, et al., 2014. Radiomics in PET: principles and
applications. Clin Transl Imaging, 2(3):269-276.

[16] Kumar V, Gu Y, Basu S, et al., 2012. Radiomics: the process and the challenges. Magn Reson
Imaging, 30(9):1234-1248.

[17] Court LE, Fave X, Mackin D, et al., 2016. Computational resources for radiomics. Transl
Cancer Res, 5(4): 340-348.

[18] Narang S, Lehrer M, Yang D, et al., 2016. Radiomics in glioblastoma: current status,
challenges and potential opportunities. Transl Cancer Res, 5(4):383-397.

[19] Yip SSF, Aerts HIWL, 2016. Applications and limitations of radiomics. Phys Med Biol,
61(13):R150-R166.

[20] Sala E, Mema E, Himoto Y, et al., 2017. Unravelling tumour heterogeneity using next-
generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol, 72(1):3-
10.

[21] Parekh V, Jacobs MA, 2016. Radiomics: a new application from established techniques.
Expert Rev Precis Med Drug Dev, 1(2):207-226.

[22] Di Cataldo, S. and Ficarra, E. (2017). Mining textural knowledge in biological images:
Applications, methods and trends. Computational and Structural Biotechnology Journal,
15:56 - 67.

[23] Janowczyk, A. and Madabhushi, A. (2016). Deep learning for digital pathology image
analysis: A comprehensive tutorial with selected use cases. Journal of Pathology
Informatics, 7(1):29.

[24] Korbar, B., Olofson, A. M., Miraflor, A. P., Nicka, C. M., Suriawinata, M. A., Torresani, L.,
Suriawinata, A. A., and Hassanpour, S. (2017). Deep learning for classification of
colorectal polyps on whole-slide images. Journal of Pathology Informatics, 8:30.

[25] Wu WM, Parmar C, Grossmann P, et al., 2016. Exploratory study to identify radiomics
classifiers for lung cancer histology. Front Oncol, 6:71.



278  Calin Buzea, Camil Mirestean, Maricel Agop,Viorel-Puiu Paun, Dragos lancu

[26] Wong AJ, Kanwar A, Mohamed AS, et al., 2016. Radiomics in head and neck cancer: from
exploration to application. Transl Cancer Res, 5(4):371-382.

[27] Van Rossum PSN, Xu C, Fried DV, et al., 2016. The emerging field of radiomics in
esophageal cancer: current evidence and future potential. Transl Cancer Res, 5(4):410-423.

[28] Stoyanova R, Takhar M, Tschudi Y, et al., 2016. Prostate cancer radiomics and the promise of
radiogenomics. Transl Cancer Res, 5(4):432-447.

[29] Dinapoli N, Casa C, Barbaro B, et al., 2016. Radiomics for rectal cancer. Transl Cancer Res,
5(4):424-431.

[30] Cho DS, Clausi DA, Wong A, 2015. Dermal radiomics for melanoma screening. Vision Lett,
1(1):23.

[31] Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.

[32] Ke Nig, Liming Shi, Qin Chen, Xi Hu, Salma K. Jabbour, Ning Yue, Tianye Niu and Xiaonan
Sun, Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on
Radiomics of Multiparametric MRI, Clinical Cancer Res; 22(21) November 1, (2016).

[33] Zhenyu Liu, Xiao-Yan Zhang,Yan-Jie Shi, Lin Wang, Hai-Tao Zhu, Zhenchao Tang, Shuo
Wang, Xiao-Ting Li, Jie Tian and Ying-Shi Sun, Radiomics Analysis for Evaluation of
Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced
Rectal Cancer, Clinical Cancer Res; 23(23) December 1, 2017

[34] Jean-Emmanuel Bibault, Philippe Giraud, Martin Housset, Catherine Durdux, Julien Taieb,
Anne Berger, Romain Coriat, Stanislas Chaussade, Bertrand Dousset, Bernard Nordlinger
and Anita Burgun, Deep Learning and Radiomics predict complete response after neo-
adjuvant chemoradiation for locally advanced rectal cancer, Nature - Scientific Reports
(2018) 8: 12611



