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A FINITE-RANK APPROACH TO THE NEWTON-STAR METHOD FOR

SOLVING NONLINEAR EQUATIONS

by Hamza Guebbai1, Nada Bouazila2, Mohamed Zine Aissaoui3 and Ridha Dida4

In this paper, we study the local convergence of the Finite-Rank Newton-

Star (FRNS) method for approximating solutions to nonlinear equations in infinite-
dimensional spaces. By discretizing the Newton-Star sequence, defined in a Hilbert space,

we replace the inverse operator used in traditional Newton-Kantorovich and Newton-

type methods with the adjoint operator, simplifying the process and reducing computa-
tional complexity. We provide convergence proofs under specific conditions and apply

the method to solve a nonlinear Fredholm-Hermite integral equation using Green’s ker-

nel. Our numerical results demonstrate the efficiency and robustness of the (FRNS)
method. Notably, it allows for initial guesses farther from the solution compared to

Newton-Kantorovich, making it more flexible and applicable to a broader range of prob-
lems. This study highlights the potential of the (FRNS) method for practical applications

in infinite-dimensional settings.
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1. Introduction

The resolution of nonlinear equations is a fundamental problem in many scientific
disciplines. These equations are typically of the form:

G(V ) = 0, (1)

where G is a nonlinear operator defined on a Hilbert space (X, < ., . >) with the norm
∥.∥

X
=

√
< ., . > and 0 is the neutral element of X. Finding exact solutions to these equations

is often impractical, necessitating the use of iterative methods to obtain approximations[1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The Newton-Kantorovich method, based on the iteration:

Vk+1 = Vk − (G′(Vk))
−1G(Vk),

is widely used to solve these problems in Banach spaces. However, this method relies on
computing the inverse of the Fréchet derivative operator G′(Vk), which can be complex and
computationally expensive, particularly in infinite-dimensional spaces.
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When the equation is defined in an infinite-dimensional space, manipulating operators
becomes more complicated and resource-intensive. The use of finite-rank approximations
helps reduce the complexity of the problem, making the computations more tractable. In
this context, our finite-rank Newton-Star method plays a crucial role. By replacing the
inverse operator with the adjoint operator and applying a finite-rank approximation, we
significantly simplify the process of obtaining approximate solutions while maintaining con-
vergence to the solution.

Several recent works have sought to improve the convergence and applicability of these
methods. For instance, Chuiko et al.[2] studied the conditions for the existence of solutions to
weakly nonlinear periodic boundary-value problems using the Newton-Kantorovich method
in the case of parametric resonance. Their work enhances the classification of critical and
non-critical cases and proposes an iterative algorithm based on the generalized Newton-
Kantorovich theorem for these complex situations.

Moreover, Amaral et al.[3] extended the solvability results of generalized equations in
Banach spaces using a Kantorovich-like approach, introducing a Hölder-type condition to
improve convergence analysis. Similarly, Regmi et al.[4] developed Kantorovich-type results
for generalized equations without additional conditions, leading to finer Lipschitz constants
and more precise convergence analysis.

Jaiswal[5] recently analyzed the semi-local convergence of a fourth-order Newton-type
scheme, based on the assumption that a generalized Lipschitz condition is satisfied by the
operator’s first derivative. These results contribute to a better theoretical understanding of
Newton schemes in Banach spaces and their application to integral equations.

In this context, we propose a new approach based on the Newton-Star method. In-
stead of using the inverse operator, we replace it with the adjoint operator, simplifying the
process of obtaining a numerical approximation and making it more practical for infinite-
dimensional applications. This sequence is defined as follows:

Vk+1 = Vk − αk(G
′(Vk))

∗G(Vk), αk ∈ R∗
+, (2)

where (G′(Vk))
∗ represents the adjoint operator of the Fréchet derivative of G at the point

Vk. Bouazila et al [1] introduced this new sequence (2) and demonstrated its convergence
by assuming that equation (1) admits a unique solution V∞ ∈ Ω an open set of X, G′(.) is
δ-Lipschitzian over Ω and

∃m > 0, ∀W ∈ X, || G′(V∞)W ||X≥ m || W ||X . (3)

Using the philosophy developed by Grammont et al[10], we are going to construct the
discretized version of the Newton-Star sequence (2) in the following form :

V n
k+1 = V n

k − αn,k(G
′
n(V

n
k ))∗G(V n

k ), (4)

where G′
n is a finite-rank approximation of the operator G′.

To ensure the convergence of this method, certain hypotheses must be verified. We
formulate the following set of hypotheses to ensure the convergence of the Finite-Rank-
Newton-Star (FRNS) (4):
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sup
n≥1

|| G′
n(V∞) ||= M < +∞, (5)

∃δ > 0, ∃n0 ∈ N, ∀n ≥ n0, G′
n(.) is δ − Lipschitzian, i.e.,

∀W1,W2 ∈ X, || G′
n(W1)−G′

n(W2) ||≤ δ || W1 −W2 ||X, (6)

∃m > 0, ∀W ∈ X, || G′(V∞)W ||X≥ m || W ||X, (7)

lim
n→+∞

|| (G′(V∞)−G′
n(V∞))

∗
G′(V∞) ||= 0, (8)

where, || . || is the norm of the Banach space BL(X), the space of bounded linear
operator defined on X to itself, given by:

∀T ∈ BL(X), || T ||= sup {|| TW ||X : || W ||X= 1} .
The objective of this study is to demonstrate the local convergence of this finite-

rank Newton-Star method. We use the hypotheses (5,6,7,8) to prove this convergence and
apply the theoretical results to solve a nonlinear Fredholm-Hermite integral equation with a
Green’s kernel. The numerical results show the efficiency of this new approach and confirm
its convergence under practical conditions.

2. Main result

We are interesting in the numerical approximation of the unique solution V∞ ∈ Ω of
the equation (1), i.e.

G(V∞) = 0, (9)

where G : Ω ⊂ X → X is supposed to be Fréchet differentiable and to verify (7).

To define our new (FRNS) sequence, we introduce, for n ≥ 1, the finite rank linear
operators G′

n(.) supposed to verify (5−8). This family of operators can be easily constructed
by assuming the Bouazila et al[1] hypothesis: G′(.) is δ-Lipschitzian over Ω, and using the
Projection approach[12]

G′
n(.)

P = πnG
′(.),

the Galerkien approch [12]

G′
n(.)

G = πnG
′(.)πn,

or the Sloan approach [12]

G′
n(.)

S = G′(.)πn,

where, πn : X → Xn = [e1, e2, ..., en] ⊂ X such that

π2
n = πn, ∀W ∈ X, lim

n→+∞
|| W − πnW ||X= 0.

It is clear that the three previous approaches verify the hypotheses (5, 6).

Now, using Theorem 4.1 from[12] and supposing that the operator G′(V∞) is com-
pact, we easily deduce that Projection , Galerkien and Sloan approaches verify (8). At this
stage we have just given a practical analytical framework, in which our family of hypotheses
(5− 8) is easily applicable.

We introduce the (FRNS) sequence, for a fixed n ∈ N, by{
V n
0 chosen in Ω,

V n
k+1 = V n

k − αn,k(G
′
n(V

n
k ))∗G(V n

k ), k ≥ 0.
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Before studying the convergence of the sequence (FRNS), we prove the following
lemma,

Lemma 2.1. For d > 0, λ ∈ ]0, 1[ and ξ ∈ ]λ, 1[, we define the sequence {uk}k≥0 by

u0 =
−1 +

√
1 + 4d(ξ − λ)

2d
,

uk+1 = λuk + u2
k + du3

k, k ≥ 0.

Then, for all k ≥ 0,

uk ≤
−1 +

√
1 + 4d(ξ − λ)

2d
ξk →k→+∞ 0.

Proof. It is clear that f(x) = λx+ x2 + dx3 is increasing over

[
0,

−1+
√

1+4d(1−λ)

2d

]
and

f(0) = 0, f(
−1 +

√
1 + 4d(1− λ)

2d
) =

−1 +
√

1 + 4d(1− λ)

2d
.

Then, {uk}k≥0 is monotonic and included in

[
0,

−1+
√

1+4d(1−λ)

2d

]
. But,

u1 − u0 = (λ− 1)u0 + u2
0 + du3

0 = −(1− ξ)
−1 +

√
1 + 4d(ξ − λ)

2d
< 0,

which means that {uk}k≥0 is decreasing and for all k ≥ 0

uk+1 = uk(λ+ uk + du2
k) ≤ uk(λ+ u0 + du2

0) ≤ ξuk.

Then, for all k ≥ 0,

uk ≤
−1 +

√
1 + 4d(ξ − λ)

2d
ξk →k→+∞ 0.

□

The previous lemma is used to show the convergence of our new sequence:

Theorem 2.1. Let n ≥ 1 chosen big enough such that

|| (G′(V∞)−G′
n(V∞))∗G′(V∞) ||≤ µ,

let σ ∈
]
0, ( m

||G′(V∞)|| )
2
[
such that (1− σ + µ) < 1 and suppose that for all k ≥ 0,

σ

m2
< αn,k <

1

|| G′(V∞) ||2
.

Then, ∃C > 0,

|| V n
0 − V∞ ||X< C ⇒ lim

k→+∞
|| V n

k − V∞ ||X= 0.

Proof. For all k ≥ 0, we have

V n
k+1 − V∞ = V n

k − V∞ − αn,k(G
′
n(V

n
k ))∗(G(V n

k )−G(V∞))

= V n
k − V∞ − αn,k(G

′
n(V

n
k ))∗(G′(V∞)(V n

k − V∞) + o(|| V n
k − V∞ ||2X).

Then, ∃η > 0,

|| V n
k+1 − V∞ ||X ≤ || I − αn,k(G

′
n(V

n
k ))∗G′(V∞) || || V n

k − V∞ ||X
+ η || αn,k(G

′
n(V

n
k ))∗ || || V n

k − V∞ ||2X .
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But,

|| αn,k(G
′
n(V

n
k ))∗ || ≤ || G′(V∞) ||−2|| G′

n(V
n
k )−G′

n(V∞) +G′
n(V∞) ||

≤ || G′(V∞) ||−2 (δ || V n
k − V∞ ||X +M).

And,

|| I − αn,k(G
′
n(V

n
k ))∗G′(V∞) || = || I − αn,k(G

′(V∞)− (G′(V∞)−G′
n(V

n
k )))∗G′(V∞) ||

≤ || I − αn,k(G
′(V∞))∗G′(V∞) || + | αn,k | Hn

k ,

where,

Hn
k = || (G′(V∞)−G′

n(V
n
k ))∗G′(V∞) ||

≤ || (G′(V∞)−G′
n(V∞))∗G′(V∞) || + || (G′(V∞)−G′

n(V
n
k ))∗G′(V∞) ||

≤ µ+ δ || G′(V∞) || || V n
k − V∞ ||X .

We have,

|| I − αn,k(G
′(V∞))∗G′(V∞) || = sup

||U ||X=1

|< (I − αn,k(G
′(V∞))∗G′(V∞))U,U >|

= sup
||U ||X=1

| 1− αn,k || (G′(V∞))U ||2X| .

But, for all k ≥ 0 and all U ∈ X, || U ||X= 1,

0 < σ < αn,km
2 ≤ αn,k || (G′(V∞))U ||2X≤ αn,k || (G′(V∞)) ||2< 1.

Then, for all k ≥ 0,

|| I − αn,k(G
′(V∞))∗G′(V∞) ||≤ 1− σ.

Finally, we obtain for all k ≥ 0,

|| V n
k+1 − V∞ ||X ≤ (1− σ + µ+ δ || G′(V∞) || || V n

k − V∞ ||X) || V n
k − V∞ ||X

+ || G′(V∞) ||−2 (δ || V n
k − V∞ ||X +M)η || V n

k − V∞ ||2X
≤ (1− σ + µ) || V n

k − V∞ ||X
+ (δ || G′(V∞) || +ηM || G′(V∞) ||−2) || V n

k − V∞ ||2X
+ δη || G′(V∞) ||−2|| V n

k − V∞ ||3X .

Let κ > 0 large as possible to obtain

{W ∈ X : || W − V∞ ||X< κ} ⊂ Ω,

and V n
0 ∈ Ω such that

|| V n
0 − V∞ ||X< C = min

{
κ,

−1 +
√
1 + 4d(ξ − λ)

2d(δ || G′(V∞) || +ηM || G′(V∞) ||−2)

}
,

where, λ = 1− σ + µ, ξ ∈ ]λ, 1[ and

d = (δ || G′(V∞) || +ηM || G′(V∞) ||−2)δη || G′(V∞) ||−2 .

Then, for all k ≥ 0,

(δ || G′(V∞) || +ηM || G′(V∞) ||−2) || V n
k − V∞ ||X≤ uk,

where, {uk}k≥0 is the same sequence as in the previous lemma. Which achieves the proof. □
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3. Numerical test

To illustrate the numerical application of our new (FRNS) sequence we consider the
following Fredholm-Hermite integral equation: For all t ∈ [0, 1],

V (t) =

∫ 1

0

g(t, s)V 2(s)ds+ f(t), (10)

with green kernel g, defined by

(s, t) ∈ [0, 1]× [0, 1] 7→ g(s, t) :=

{
s(1− t), s ≤ t,
t(1− s), t ≤ s.

Our study is done on the Hilbert space X = L2(0, 1) equipped with its usual scalar product
and norm: For all V,W ∈ X

< V,W > =

∫ 1

0

V (s)W (s)ds,

|| V ||X =

√∫ 1

0

V (s)2ds.

We rewrite (10) for t ∈ [0, 1] as

G(V )(t) := V (t)−
∫ 1

0

g(t, s)V 2(s)ds− f(t) = 0. (11)

If we fix f(t) = − 5
48 t

4 − 1
24 t+ 5, then the exact solution of (11) is V∞(t) = t.

G is Fréchet differentiable on X with

∀V ∈ X, G′(V ) = I − T (V ),

and T (V ) is a linear operator given for all W ∈ X by

∀t ∈ [0, 1] , T (V )W (t) = 2

∫ 1

0

g(t, s)V (s)W (s)ds.

Using δ = 1 and the fact that T (.) is compact, we conclude that hypotheses (5 − 8) are
obtained for the following approximations:

G′
n(.)

P = I − πnT (.),

G′
n(.)

G = I − πnT (.)πn,

G′
n(.)

S = I − T (.)πn,

where πn is given for a subdivision n ≥ 2, h = (n− 1)−1, tj = (j − 1)h, 1 ≤ j ≤ n, and for
all W ∈ X by

πnW =

n∑
j=2

< W, ej > ej ,

ej(t) =
1√
h

{
1, tj−1 ≤ t ≤ tj ,
0, otherwise,

< W, ej > =
1√
h

∫ tj

tj−1

x(s)ds.

Table 1 shows that the three techniques are similar when taking V0(t) = t − a, a = 1 and
n = 5 Now to compare our method with the Finite Rank Newton-Kantorovich method (N-
K)[10] with Galerkien projection, we fix k = 5, n = 5 and we vary a. The results are in
table 2.
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Methods k=3 k=5 k=10
Projection 3.29e-04 1.55e-05 7.12e-07
Galerkien 4.59e-04 1.02e-05 6.62e-07
Sloan 2.89e-04 2.02e-05 5.53e-07

Table 1. The errors obtained by using the (FRNST) with different pro-
jection methods.

Methods a=0.2 a=1 a=20
Projection 4.39e-07 1.55e-05 8.11e-04
Galerkien 3.32e-07 1.02e-05 9.01e-04
Sloan 3.89e-07 2.02e-05 7.78e-04
N-K 2.91e-09 NaN NaN

Table 2. (FRNST) vs (N-K)

4. Conclusion

In this study, we introduced an innovative method, the Finite-Rank Newton-Star
(FRNS), to solve nonlinear equations in infinite-dimensional spaces. By replacing the in-
verse operator with the adjoint operator and using finite-rank approximations, we simplified
the solution process while ensuring convergence under specific conditions. Our theoretical re-
sults, supported by numerical tests on a Fredholm-Hermite integral equation, demonstrated
the efficiency and robustness of this approach.

Compared to the Newton-Kantorovich (N-K) method, our approach has a key ad-
vantage: it works for initial points that are farther from the desired solution, whereas NK
requires an initial guess close to the solution for convergence. This flexibility makes our
method particularly suited to a wider range of complex problems. As a result, FRNS proves
to be more robust and versatile, offering significant potential for practical applications.

Looking forward, the development of a fixed slope version of our method could rep-
resent a further enhancement. This variant would aim to stabilize the slopes used in the
iterations, potentially improving convergence speed and reducing the requirements for initial
approximations. Such an extension could be particularly beneficial for problems where the
derivative of the nonlinear operator is highly sensitive.
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