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A DELAY DIFFERENTIAL EQUATION MODEL FOR CELL
EVOLUTION IN CHIKUNGUNYA

Karim Amin' and Andrei Halanay® and Ragheb Mghames® and Rawan Abdullah*

In this paper, we introduce a mew delay differential equation model of
Chikungunya that describes the evolution of the disease under treatment with Ribavirin.
A physiological model representing the hematopoietic cells, healthy and infected mono-
cytes, is considered together with the action of the immune system, such as the concen-
trations of APC, T cells, B lymphocytes and antibodies produced by the B cells. The
stability properties of the equilibrium point representing the most aggravated phase of
the disease are investigated: a critical case theorem is applied, followed by the study
of a transcendental equation. Finally, the numerical simulations show the estimated
favorable evolution from a medical point of view.
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1. Introduction

Chikungunya disease (CHIKD) is caused by the Chikungunya arbovirus. CHIKD
is transmitted to humans through the bite of Aedes mosquitoes that initially started its
outbreak in Africa in 1952 and then spreads to Asia, Europe and recently, in 2015, a ma-
jor outbreak occurred in America (see [14]). Individuals infected with Chikungunya virus
(CHIKV) show primarily fever and joint pain that last from 3 to 12 days after exposure to
virus. In addition, some individuals show varied degrees of myalgia, rash and joint swelling.
In severe cases, a molecule of viral RNA remains circulating in the synovial monocytes for
years and triggering joint inflammation associated arthralgia (see [13]).

Aedes aegypti and Aedes albopictus are the main types of mosquitoes that host the
replication of CHIKV. Aedes then transmit the virus to continue its replication cycle in a
human host and then it can be picked up back by other CHIKV free mosquitoes after feeding
on an infected human host. After a blood meal from an infected host the virus takes 2 to
3 days to inhabit the salivary glands of Aedes mosquitoes. It is a relatively fast cycle that
makes the transmission of CHIKV back to human hosts quicker than other mosquito- borne
virus (see [9]).

After the bite of an infected mosquito, CHIKV from the saliva of mosquito escapes
to the blood stream of the human host. The pathogenesis of CHIKV infection is still poorly
understood. Invitro analysis showed that CHIKYV is capable of infecting fibroblast, endothe-
lial cells and monocytes. In 10 % of infected patients, a copy of the viral genome circulates
within the perivascular synovial monocytes which might be the cause of the persistence of
CHIKD related chronic symptoms of arthralgia and joint inflammation (see [22]).

The primary immune cells involved in targeting CHIKV infection are the macrophages,
natural killer cells and dendritic cells that are the first line in confronting the virus and ac-
tivating the specific immune response of lymphocytes. B and T lymphocytes of the specific
immune defense then attack the viruses released into the blood stream and the infected host
cells respectively. After triggering an immune response and clearing the virus, it is believed
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that infected individuals become immune against CHIKV the disease being controlled by
the host memory cells, when the virus next infects the same host (see [16]).

The development of a vaccine against CHIKV is still in clinical trials.

While supportive anti-inflammatory drugs and analgesic were prominently used to
relieve joint pain and fever, the antiviral activity of Ribavirin (RBV) was evaluated as
monotherapy against CHIKV. In the absence of drug, CHIKV rapidly replicates, reaching a
peak of 1085 PFU/ml at day 2 after infection. The 100 pg/ml and 1000 ug/ml concentra-
tions of RBV were effective at suppressing CHIKV at day 1, resulting in a 2 —log;, PFU/ml
decrease in CHIKV level for the 100 p1g/ml concentration and a 4 —log,, PFU/ml decrease
for the 1000 pg/ml concentration (see [13]).

The paper is organized as follows. In Section 2 we introduce a new and complex DDE
model of Chikungunya under treatment incorporating the action of the immune system. In
Section 3, the equilibrium point F; representing the most aggravated phase of the disease
is found. In section 4 the stability analysis of E; is investigated, using a critical case
theorem that represents the Lyapunov-Malkin approach for delay differential equations.
The numerical simulations are presented in section 5 and conclusions are drawn in Section
6.

2. The Model

Denote y,(t) = y(t — 7).The following 12 equations describe the evolution of the
Chikungunya disease considering the action of the immune system and under treatment
with Ribavirin.
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The first equation represents the stem-like healthy cell population. This population
increases by n1e~ 7", with the cells that go through asymmetric division and by
2e” T (1 —ny—ny), with the cells that go through self-renewal. These cells return to the
stem-like cell population after a time period 7 (see [6]). Following [7] the rate of self-renewel
is

o7
Bly) = 5ow-
and the rate of differentiation is
0774
k(y)
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Equation 2 represents the dynamics of healthy monocytes governed by the amplifi-
cation of 279 + 11 stem-like cells that went through differentiation. A is an multiplication
(amplification) factor. 75 is the time for the stem-like cells to become mature. The third
term represents the infection process (see [12]). 73 is the time necessary for an uninfected
monocyte to become actively infected monocyte after the CHIKV entry (such monocyte
produces new CHIKV particles). The mortality of non-infected monocytes to the age 73 is
represented by e~ 7273, The fourth term is the description of monocyte migration to other
tissues, though the Lymph nodes (LNs).

Equation 3 describes the pharmacokinetic (PK) of the antiviral Ribavirin in the tissue.
Since static drug concentrations were used, a rapid fusion rate was used in R, the infusion-
rate constant. Additionally, the clearance rate (C), and the volume (V') parameters were
set to simulate a continuous infusion (see [13]).

Equation 4 describes the viral burden, where y, represents CHIKV titers (measured
in logl0 PFU per milliliter). k; is the first-order viral production rate, constant for CHIKV
and F is the concentration of drug at which viral production rate constants are reduced by
half. h represents the Hill constant, and p,, is the mayimal amount of total viral burden
and is part of the logistic carrying function. k, is the first order rate of disintegration of
infectious viral particles (see [13]). The Hill-type function:

Y1
Yy + k5
represents receptor-ligand binding kinetics between the virus and activated monocytes. ry is
the rate at which the virus are killed by inflammatory monocytes. Antibodies can opsonize
the virus and contribute to further virus clearance at the late stage of inflammation, as
represented by the fourth term, ro Po(y4)y12, where:

Y4

yi k5

Equation 5 describes the dynamics of infected monocytes. The first term represents
the infection process. A natural mortality with rate 73 is present through the second term.
Infected monocytes can be recognized and removed by C'D8+ T-cells. This process is de-
scribed by the third term. The fourth term represents the migration of infected monocytes
to other tissues and this term is important since infected monocytes are apparently the
main cellular reservoirs during the late stages of CHIKV infection in vivo. Infected blood
monocytes may therefore disseminate the virus to sanctuaries sites supporting persistent
viral replication in the chronic phase of the disease (see [22]).

The following feedback functions regulate the evolution of the immune system and its
interaction with infected cells (see [17] and [18]):

Pi(ys) =

Py (ys) =

as + y?

as +y?

Y 1
a2 (y) = maC1(y) =
Equation 6 represents the concentration of immature APCs, equation 7 the concen-
tration of mature APCs, equation 8 the concentration of naive T' cells of both CD4+ and
CD8+ phenotype, equation 9 the concentration of active CD4+ T-helper cells, equation 10
the concentration of active B lymphocytes, equation 11 the active CD8+ cytotoxic T-cells
that play a role in removing the infected cells and equation 12 the concentration of antibodies
produced by the B cells.

Y
2,11(:1/) =

I(y) = —2—
(y) Py

3. Equilibrium Points

We introduce the following notation for the previous system:

yi: fi(yayTj)7 1:17127]:15103 Y= (y17 """ ay12)'
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The lanscape of equilibrium points is varied but, in order to keep the number of pages in
a reasonable margin and due to its medical implications, we will analyse in this paper only

The equilibrium points are obtained solving the equations f;(y,y) =0, i = 1,12.
We notice first that, from f3 =0, f¢ = 0 and fs = 0 it follows that:

~ _ VR
Ys = 7>
/\_dl
Z/6—g>
~ o d
Ys = o=

the equilibrium point E; obtained for:
Y1 =Y2 = Y4 = Y5 = Y7 = Y9 = Y10 = Y11 = Y12 = 0,

that can be interpreted as the equilibrium representing the last stage of the disease. We

El = (Oa 073)37 Oa 07 g6707g83 070707 0)

leave for future work the analysis of other equilibrium points.

4. Stability Analysis

When linearizing the system around Ej, the following matrices are to be used in the

study of the stability of equilibrium point Fj.

an = =71 = (m +12)k(Yy2 +ys) = (1= m = 1m2) [B(y1) + 518" ()],
aig = —(m + Uz)k, (y2 + y5)y1,
ars = —(m + n2)k (y2 + ys)y1,

a2 = —72 — P,
C
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ki14= 2n,€5ylll, (ya) Ki111,= 2"esl1(ya) -

The general form of the characteristic equation is:
detMl — A — e B — e 20 — e D — e AME — A5
—e MG — e MTH — e8] — e7 A ] — e" AT ) = 0.

The characteristic equation corresponding to Fy is:

(A — a11 — bire™ ) (A — az2)(A — azz)(A — aaa)(A — as5)(A — age)
()\ - a77)()\ - QSS)()\ - 099)()\ - a10,10)()\ - a11,11)>\ = 0.

A = 0 is a root, so we are in a critical case for the stability of the nonlinear system.
Suppose the transcendental equation have only roots with negative real parts.Then the
critical case is completely investigated in [4] where we have the following theorem.

Consider the nonlinear system with time delays :

z(t) = Aox(t) + i::lij(t —75)+ Flz(@t),z(t — 1), ....,z(t — 7)), y(t)]
y(t) = G[.’L‘(t), m(t - Tl)7 ...,SC(t - Tm)’y(t)]y

where A; € M,(R), 7; > 0 for all 1 < j < m, G(0,0,...,0,y) = F(0,0,..,0,y) = 0,
Vy € R, F takes values in R” and G is scalar. F and G contain only powers of the variables
with sum greater or equal to two. Then, for every ¢ > 0, there exist M7 (d) and My(5) with
éiﬁ(L)Ml(é) = é%Mg(é) = 0 so that, whenever ||z(t)|| < 6, |lz(t—7;)|| < 6,1 <j <m,|y| <4,

(1)

1 (2(t),2(t = 71),. . 2(t = Tm), y(t))l\ <

< My(8) (@) + ot = 7o)l + - + [Jat — 7)) )
G (), x(t —71), ..., (t—Tm),y(t))H <

< Ma(6) (@I + N2t = )l + - - + [[2(E = 7)) -

Theorem 4.1. (see [4]) Consider the previous system (1). Suppose that the linear system:
z(t) = Agz(t) + ZA x(t (3)

is asymptotically stable, that is, if A is a root of the characteristic equation, then Re(\) < 0.
Then the zero solution of (1) is simple stable and, if ¢ is the initial data of (1) in C

([-=7,0]; R" ™) with 7 = max 7;, there exist 6 > 0 so that, if sup {||¢(t)||, /t € [-7,0]} <&
1<jsm
,then

tgnooa:i(t) =0,i=1,....,n and Etgnooy(t) =7.

Since we do not have the linear part of some equation equal to zero, then this theorem
is not directly applicable, so we will proceed to bring the system to the canonical form to
which this theorem can be applied.

We perform first a translation to zero by z; = y; — ¥;.

The new system becomes:

i = fi(z,x.,),i=1,12,j = 1,10.

We take n = an@1 + asxe + - - - + 012212
where # = Az and A = f(O) = [aij]ij

Then

1= 1T + a2 + - - - + a12T12.
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So
N = a11T1 + Q20202 + 303373 + (4044 + Qa4 + C7a74
+a12a12,4)Ta + Q5a5525 + asaeeTe + (ararr + asasr)Tr
+agagsxrs + agag9x9 + d10010,10210 + ¥11411,11T11-
Now if one imposes 1 = 0, it follows that
Q4044 + Qeags + 774 + 120124 = 0
ararr + agagy = 0.
Since ag = ag = 0, then a7 = 0.
For a2 = 1 we have oy = —%7 thus
N = 0Ty + T12,
and the equation of 1 has no linear part, that is
i=QY,
with Qf) containing only terms of order greater or equal to two. Take,
T12 = 1) — QiyTy4,

Replace the twelfth equation by the equation of 7 so this equation has a zero linear
term. Substitute x15 in the equations of the system and define:

T3 \h
94(3”2,%3,554777) = kyxy (1 - {;%éw}) (1 - ;7:,)
—kaxs — 1Py (24)12 — 1o Pa(4) (N — a4).

Remark that the linear part of g4 does not contain 7 and the other equations do
not contain 7 at all. From the previous calculations we conclude that the general theorem
on the critical case can be applied to the system. Since ass, ass, 44, ass, aes, 477, s, gy,
a10,10,@11,11 are all negative, the stability depends on the study of the transcendental term
in the characteristic equation.

This term has the following form:

A—a—be =0 (4)

and is completely investigated in many places. For example, from [8], we have the
following theorem:

Theorem 4.2. All the roots of equation (4) have negative real parts if and only:

(1) ar <1

(2) a+b<0

(3) —br < V6?4 a*72 where 0 is the unique root of § = artan6, 0 < 0 < mor § = T if
a=0

Remark 4.1. If b > 0, then the conditions reduce to ar <1 and a + b < 0.

As shown also in [8], if equation (4) is stable for 7 = 0, then either it is stable for
all 7 > 0, or there is a value 7*such that it is stable for 7 < 7* and unstable for 7 > 7%,
without the possibility of restabilization for larger 7.

In our case the equation is:

A —aj —bje ™ =0 (5)
Proposition 4.1. Assume that the following condition holds true:
(1 —=m —n2)Bo < 71+ n2ko- (6)

Then equation (5) is stable for 71 = 0 and remains stable for 71 > 0.
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Proof: For the equilibrium point E; we have 21 = 2o = 0, and k(0) = ko, 5(0) = So,
S
air = =71 — (m +n2)ko — (1 —=m1 —m2)B0 <0,
b1 = 26_71T1(1 —-m — ng)ﬂo +me "Mk > 0.
For 71 = 0 equation (5) becomes:

A+ 7+ nm2ko — (1 —m —n2)Bo = 0.
Equation (5) is stable for 7 = 0 if:

(I —=m —m2)Bo <7 + n2ko.
When 71 > 0, since by; > 0, using Theorem (4.2) and Remark (4.1) the following
conditions must hold for stability:
(1) a11<%
(2) a11+b11< 0
Since we have,
1
air = —y1— (M +n2)ko — (1 —=m —12)B <0 < g
1
the first condition holds true. For the second condition to hold we must have :
e o (m +m2)ko + (1 —m —n2)B0
2(1 = m = n2)Bo + mko
We notice that condition (7) follows from (6) and the Proposition is proved.

(7)

5. Numerical Simulations

In figure 1, the trajectories starting in a neighborhood of equilibrium F4, representing
the most aggravated phase of the disease, are plotted. The values and the interpretation
of the parameters are given in Table 1. In this case, the left hand side of the inequality
giving the stability of Ej is equal to 0.345, while the right hand side is 0.11, hence the
inequality is not satisfied. Moreover, one can easily notice that y; and ys representing the
healthy monocyte population and precursors are unstable while y, and ys5 representing the
Chikungunya virus population and the infected monocytes population are stable. From
a medical point of view, this might translate into the recovery of the patient, since the
Chikungunya virus and the infected monocytes are vanishing while the healthy monocytes
are recovering.
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FIGURE 1. Small disturbances in initial conditions near F1.
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Maximal value of the § function [7], [1] Bo 1.77
Maximal value of the function k [1] ko 0.1
Parameter for the 8 function [7 61 0.5
Parameter for the function & [5 0 36
Parameter in the Hill function S [6] m 2
Parameter in the Hill function & [6] n 2
Loss of stem cells due to mortality [1] " 0.1
Rate of asymmetric division for healthy cells [5] R 0.7
Rate of symmetric division for healthy cells [5] 2 0.1
Instant mortality of mature monocytes [12] Y2 2.4
Amplification factor of healthy cells [7] A 120
The extent of ligands binding to receptors (estimated) r 2
Concentration of monocytes which phagocytose half of the virus (estimated) ko 0.002
Concentration of antibody which kills half of the virus (estimated) k3 0.035
Rapid fusion rate of the virus [13] R 0.36
clearence rate of the virus [13] C 15.3
volume [13] v 3506
viral production rate [13] k¢ 0.85
Drug concentration [13] E 142.7
Hill constant [13] h 4.28
maximum amount of total viral burden [13] Dm 8.54
Rate of disintegration of infictious viral particles [13] kq 0.37
Rate at which the virus are killed by monocytes (estimated) r1 7
Rate at which the virus are killed by antibodies (estimated) o 1
Instant mortality of infected monocytes (estimated) 73 0.15
Fraction of monocytes migrating to LNs (estimated) p 0.4
A fraction of actively infected monocytes (estimated) D1 0.5
Rate of CD8+ removes infected cells (estimated) k1 2.5
Recognition rate of infected moncytes (estimated) 0 0.001
Supply daily rate of immature APCs [5] dq 0.3
Death/turnover dayly rate of immature APCs [5] co 0.03
Coeflicient of the feedback function [ [6] a 1.5
Coefficient of the feedback function [; [6] as 5
Coefficient of the ”regulatory process” function (; [6 as 0.2
Coefficient of the ”regulatory process” function (; [6 ay 3.48
Coeflicient of feedback maturation of immature APCs (estimated) bo 1
Death/turnover dayly rate of mature APCs [18] c3 0.01
Supply rate of naive T cells of both fenotypes [18] ds 2
Death/turnover dayly rate of naive CD4+ and CD8+ T cells [18] c4 0.03
Kinetic coefficient [17] b3 20
Kinetic coefficients [17] ba1, bao, b3 10, 10,10
Death/turnover dayly rate of effector CD4+ T helper cells [5] s 0.23
Death/turnover rate of effector B lymphocytes (estimated) e 0.4/day
Number of divisions in minimal CD4+ developmental program (estimated) my 2
Number of divisions in minimal B lymphocytes developmental program (estimated) ma 7
Coefficient of the autocrine loop function (estimated) ey 0.2
Coefficient of the positive growth signal function (estimated) e 40
Maximum reproduction rate [20] €6 0.6
Decay rate of antibodies [20] cs 5+ 1072
Population when the antibodies grow half of its maximum growth rate [20] as 150
Death/turnover rate of effector CD8+ T cytotoxic cells [18] c7 0.4
Coefficient of the ”positive growth signal” function ¢ [18] e3 40
Coefficient of the regulatory process function ¢; [18] ey 60
Coefficient of the ”regulatory process” function (; [18] es 0.2
Number of divisions in minimal CD8+ developmental program (estimated) ms 7
Coefficient for apopthosis rate and regulatory mechanism (estimated) by 0.8
The number of antigen depending divisions (estimated) n 2
Duration of stem cells’ cycle of self-renewall [7] T1 2.8
Duration of stem cells’ cycle of differentiation [7] T2 3.5
Time between CHIKV entry monocytes to become actively infected [12] T3 2.3086
Duration of one CD4™ T cell division (estimated) T4 2.6
Duration of one B lymphocyte cell division (estimated) Ts 14
Duration of minimal developmental program [6 T6 14+ (mp—1)my
Duration of minimal developmental program [6 T7 14 (mo— 1)1
Duration of one CD8" T cell division [6] 73 1
Duration of minimal developmental program [6 Ty 14+ (m3— )73
Duration of minimal developmental program [6 T10 nry

TABLE 1. Parameters of the model.




A DDE Model For Cell Evolution in Chikungunya 105

6. Conclusion

The Chikungunya virus is a re-emerging mosquito-borne virus that causes a broad
range of severe clinical symptoms in humans. In this paper a complex model of DDEs
for the evolution of Chikungunya under treatment is introduced. A critical case appears
in the characteristic equation of one equilibrium point, representing an aggravated stage
of the disease . The critical case theorem from [4] is applied, followed by the study of a
transcendental equations. The numerical results complete the study, emphasizing that the
mathematical model is in line with medical evidence.
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