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AN EFFICIENT APPROACH FOR SOLUTION OF MODIFIED
CAMASSA-HOLM AND DEGASPERIS-PROCESI
EQUATIONS

Laiq ZADA!, Rashid NAWAZ?

In this article, optimal homotopy asymptotic method (OHAM) has been
introduced for finding the approximate solutions of modified Camassa-Holm (mCH)
and Degasperis-Procesi (mDP) equations. The obtained results give higher accuracy
than that of Variational Homotopy Perturbation Method (VHPM) [1]. It is shown that
the proposed technique is effective, suitable, and reliable for solving these types of
equations.
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1. Introduction:

Most of the problems in nature can be expressed in terms of nonlinear partial
differential equations. In such situation, it is very difficult to achieve the exact
solution for these types of equations. Therefore analytical methods have been used
to find approximate solutions. Recently, variety of analytical methods such as the
Adomian decomposition method(ADM) [2-3], the Homotopy Analysis
Method(HAM) [4-5], the Variational Iteration Method (VIM) [6-7], the Homotopy
Perturbation Method (HPM) [8-11], and Variational Homotopy Perturbation
Method (VHPM)[12-13] have been tested to solve linear and nonlinear partial
differential equations. Optimal Homotopy Asymptotic Method (OHAM) is one of
the powerful techniques which was introduced by Marinca and Herisanu et al. for
solving Non-linear Differential equations and for steady flow of a fourth-grade fluid
past a porous plate [14-18]. By means of the more elastic supporter function called
the auxiliary function the proposed technique give us more precise results.

Our aim in this paper is to find accurate approximate solution of mCH and mDP
equations by using OHAM. They are the special cases of the modifiedb —equation
[19]

u —u, +(+Yuu, —buu, —uu, =0,

1)

! Department of Mathematics Abdul Wali Khan University Mardan KP Pakistan, Pakistan, email:
laigzada_25@yahoo.com

2 Department of Mathematics Abdul Wali Khan University Mardan KP Pakistan, Pakistan, email:
rashid_uop@yahoo.com


mailto:laiqzada_25@yahoo.com
mailto:rashid_uop@yahoo.com

26 Laig Zada, Rashid Nawaz

where b is a positive integer. For b = 2, Eq. (1.1) reduces to mCH equation, while
for b = 3 mDP equation is obtained.

Different techniques have been used in the literature to find the approximate
solution of mCH and mDP equations. Zhang et al. employed HPM for finding the
solution of MCH and mDP equations [20]. Behera et al. found approximate solution
of mCH and mDP equations using wavelet optimized finite difference method [21].
Yildirim employed VIM for solving mCH and mDP equations. Yousif et al. found
the solitary wave solutions of mCH and mDPby VHPM [1].

2. Basic Mathematical Theory of OHAM
Consider the general form of the partial differential equation as:

Z(u(x,t))+g(x,t)+77(u(x,t))=O,UeQ (2.1)
B (”’%) =0, (2.2)

where 7,5 and g are linear ,nonlinear and boundary operator respectively. & (x,t)
is a unknown function and g(X,t) is a known function ,z and x denote temporal

and spatial variables, respectively, o is the domain of the problem.
According to homotopy 7(x,¢;¢): & x[0,1]— R which satisfied:
- {¢(5(x.t:q))+ e} = H@{¢(5(x.6:q))+ gCe,t) +1(5(x.5:9))},
(2.3)
whereq €[ 0,1] is an embedding parameter, H(g) is an auxiliary function. When
q =0, or q=1 then clearly, we have:
q=0= H(5(x,£0),0) = «(5(x,;0)) + &(x,t) =0, (2.4)
q=1= H(5(x,51),1) = HO){{(5(x,5;)) + g(x,t) + (5 (x,1:q))} =0.  (2.5)
Obviously, when q=0 andq=1. It keeps that
§(x,t;0) = u, (x,t) and 5(x,41) =u(x,t ) respectively. So as ¢ varies from

0 to 1, the result 5(x,t;q) approaches from u,(x,t) tou(x,t) , where u,(x,t) is
achieved from Eq.(3.1). Forg =0
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f(uo(x,t))+ g(x,t) =0, ﬂ(u0,8u0 /6t)=0. (2.6)
By choosing auxiliary function H(q) as:
H(q):qC1 +q°C, +... 2.7

Here C,,C, ... are constants to be determined. by expanding 5(x,t;q,Ci) in

Taylor’s series about q as

5(x,t;q,Ci) =u, (x,t)+ iuk (x,t;Ci)q”, 1=1,2,... (2.8)

k=1

Substituting Eq. (2.8) into Eqg. (2.2) and equating the coefficient of ¢, we get zeroth
order equation, given by Eq. (2.4), the first and second order equations are given by
Egs. (2.9-2.10) respectively andu_(x,t) are given by Eq. (2.11):

£(w(x,0)) = Cyrgy (u(x,0)), B(w,0u, 1 0t)=0 (2.9)
0wy (2,8)) = £ (1, (0,2) ) = Cy 1 (2 (0,2 ) + C, [ £ (e (2,)) + 17, (14 (2,8), 0, (2,1)) .
B(u,,0u,10t)=0
(2.10)
(u (x, t))— ( 1(x,t))=C'K770 (uo(u,t))+
ZC [Z U (x,0))+ 1, (to(x,8), 1, (x,1),.. uK_i(x,t))], (2.11)
,B(uk,auk / 815) =0. x=23,....

K—1

Heren,H.(uo(x,t),ul(x,t),...,ukfi(x,t)) is the coefficient of ¢" in the expansion

of 77(5(x,t;q)) about the embedding parameter o .
n(é(x,t;q,Ci)) =10 (16 (0., 0)) + D7, (W Uy Uy .. 1, )" (2.12)
K>1

The convergence of the series in Eq. (2.8) depends upon the convergence control
parameters C,,C, ..., If it is convergent atq =1, one has:

u(x,t;Ci)=u0(x,t)+ Zuk(x,t;Ci). (2.13)

k21

Substituting Eq. (2.13) into Eqg. (2.1), we gained residual:



28 Laig Zada, Rashid Nawaz

R(x,t; CL.) = U(u(x,t;C))) + g(x,t) + n(u(x,t; C,)). (2.14)
If R(x,t;C;)=0, then u(x,tC,) will be the exact solution. For calculating the

of convergence control parameters, C,,i =1,2,...,m there are many methods. We
used Least Squares method as

Jj(C) :j [ R*(x,t,C)dx dt, (2.15)

where R is the residual,
R(x,t;Ci) = E(u(x,t;Ci )) + g(x,t)+ n(u(x,t;Ci )),

and
g _4a _ .9 _ (2.16)
oC, oC, oC,
To determine the convergence control parameters C, we used another method as.
R(n;C))=R(hy;C)=...=R(h,;C,)=0, i=12,..,m. (2.17)

atany time¢ , where 7, €0 .

3. Application of OHAM
3.1: Application of OHAM to mCH Equation:

Consider mCH equation with initial condition as follow:
u, —u, +3u’u,—2uu_—uu, =0,

XXt

3.1.1
u(x,0) = —2sech? (% xj. 311

The exact solution of eq. (3.1.1) is [19]
u(x,t) =—ZSech26x—tj. (3.1.2)

According to OHAM formulation, the zeroth and 1% order problems are given under
as:
Zeroth order problem
ou, (x,t)
ott
Its solution is given under as

U, (x,t) = —2sech? [gj (3.1.4)

0, u(x,0) =—25ech2(% xj. (3.1.3)
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1%t order problem:

—0U, (X, t) ou, (x,t) N ou, (x,t) ou (x t) auo(x,t)

_Cl _3C1U ( t)
ot ot ot OX
O%Uy (1) . O°Uy(X,t) 02U, (x,t) (3.1.5)
60x2, G 8(;(6{ +C1u°(x’t)#=0’ u,(x,0) =0.

Its solution is given under as

ul(x,t,Cl):(lzsech ( JC tanh( j+sech4( jCltanha(KD_ (3.1.6)
2 2 2 2

At last we can have obtained the following expression as,
u(x,t,C) =u,(x,t) +u,(x,t,C). (3.1.7)
The value of convergence control parameter is calculated by using least square
method and its optimum value is
C, = -0.16706435582136045.

3.2: Application of OHAM to mDP Equation:

Consider mDP equation with initial condition as:
u, —u, +4u’u —-3uu_—uu, =0,

i 15 (1 ] (3.2.1)
S X

u(x,0) _—Esech
Exact solution of eq.(3.2.1) is [19],
15 1 5
u(x,t) = ——sech?| =x-=t |. 3.2.2
() = seot [ 112t 322

According to OHAM formulation, the zeroth and 1% order problems are given under
as:
Zeroth order problem
6u0(x,t)
ott
Its solution is given under as

U, (1) =—%sech2(§j.

1t order problem:
—0U, (X, t) _C ou, (x,t) N ou, (x,t)

u(x,0) = ——sech G j (3.2.3)

—acu2(xt) MY g0 oY)

ot Yoot at X X
2

FU (Y, ¢ D o nTWD gy 0y,

Ox? oxot

(3.2.4)
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Its solution is given under as
u,(x,t,C,) =%t seche(zjq tanh (§J+sech4(§jq tanhS(zj . (325
16 2 2 2 2

At last we can obtained the following expression as,
u(x,t,C,) =u,(x,t)+u,(xt,C),

u(x,t,Cl):—Esech2(§j+@t sech6(fjcltanh(ijﬂech“(chltanh{zj :
8 2 16 2 2 2 2

(3.2.6)
The value of convergence control parameter is calculated by using least square
method and its optimum value is
C, = -0.15288211787484748.

4. Tables and Figures

In tables (4.1-4.2) the absolute error of 1% order approximate solution by OHAM
are compared with VHPM solution for mCH equation at t=0.01and t =0.001
respectively. Table 4.3 and 4.4 shows comparison of 1% order approximate solution
by OHAM with VHPM solution for mDP equation at t=0.01and t=0.001

respectively. From absolute errors it is clear that 1% order approximate solution by
OHAM is more accurate than that of VHPM. Figures (5.1-5.3) show the 3D plots
of exact solution, 1%t order OHAM solution and VHPM solution for mCH equation
respectively. Figure 5.4 shows the comparison of 1% order OHAM and exact
solution while Figure 5.5 shows the comparison of VHPM and exact solution for
mCH equation at t =0.1. Figures (5.6-5.8) show the 3D plots of exact solution, 1%
order OHAM solution and VHPM solution for mDP equation respectively. Figure
5.9 shows the comparison of 1% order OHAM and exact solution while figure 5.10
shows the comparison of VHPM and exact solution mDP equation att =0.1. from
all these figures we can see that 1% order OHAM solution is in close agreement with

exact solution than that of VHPM solution.
Table 4.1
Comparison of absolute errors of 1%t order OHAM and VHPM solution [1] for mCH
equation at t =0.01.

X OHAM Exact Absolute Error VHPM [1] Absolute Error OHAM
-1, -1.56717 -1.5583 0.0197059 0.00886242
-0.5 -1.87569 -1.87067 0.0166079 0.00502347

0. -2. -1.9998 0.000199987 0.000199987

0.5 -1.88437 -1.88908 0.0169162 0.00471514

1. -1.57863 -1.58737 0.0198189 0.00874937
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Table 4.2

Comparison of absolute errors of 1% order OHAM and VHPM solution [1] for mCH

equation at t=0.001.

X OHAM Exact Absolute Error VHPM [1] Absolute Error OHAM
-1. -1.57232 | -1.57144 0.00197555 0.000881285
-0.5 -1.8796 -1.87911 0.00167455 0.000488583
0. -2. -2. 2.x10® 2.x10®
0.5 -1.88046 | -1.88095 0.00167764 0.000485499
1. -1.57347 | -1.57435 0.00197668 0.000880154
Table 4.3
Comparison of absolute errors of 1% order OHAM and VHPM solution [1] for mDP equation at
t=0.01.
X OHAM Exact Absolute error VHPM [1] Absolute Error OHAM
-1, -1.46844 -1.45747 0.0230771 0.0109714
-0.5 -1.75788 | -1.75151 0.019418 0.00636291
0. -1.875 -1.87471 0.000292938 0.000292938
0.5 -1.76718 | -1.77309 0.0198696 0.00591127
1. -1.48073 | -1.49154 0.0232427 0.0108058
Table 4.4
Comparison of absolute errors of 1% order OHAM and VHPM solution [1] for mDP  equation at
t =0.001.
X OHAM Exact Absolute Error VHPM [1] Absolute Error OHAM
-1 -1.47398 -1.47289 0.00231493 0.00108992
-0.5 -1.76206 -1.76145 0.00196192 0.00061617
0. -1.875 -1.875 2.92968x106 2.92968x10°
0.5 -1.76299 -1.7636 0.00196643 0.000611654
1. -1.4752 -1.47629 0.00231658 0.00108827

Fig 5.1: 3D plot exact solution

equation for mCH eqution

Fig 5.2: 3D plot 15t order OHAM

solution for mCH equation

Fig 5.3: 3D plot VHPM for mCH

solution mCH equation
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Fig 5.4: 2D plot for exact and 1% order approximate solution Fig 5.5: 2D plot for exact and VHPM solution at

by OHAM at t = 0.1 for mCH equation t =0.1 for mCH equation

Fig 5.6: 3D plot exact solution Fig 5.7: 3D plot 1* order OHAM Fig 5.8: 3D plot VHPM solution

of mDP equation solution for mDP equation for mDP equation

Fig 5.9: 2D plot for exact and 1* order approximate solution Fig 5.10: 2D plot for exact and VHPM solution
by OHAM at t = 0.1 for mDP equation at t =0.1 for mDP equation

6. Conclusion

OHAM formulation is tested upon Modified Camassa-Holm and
Degasperis-Procesi equations. The solutions obtained by proposed method are
compared with the VHPM [1] and exact solution. It is shown that the results
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obtained by OHAM have good agreement with exact solution than that of VHPM.
We concluded that the proposed method is simple, effective and reliable for solving
nonlinear equations.
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