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INSTABILITY OF A FIFTH ORDER NON-LINEAR VECTOR 
DELAY DIFFERENTIAL EQUATION WITH MULTIPLE 

DEVIATING ARGUMENTS 

Cemil TUNÇ1 
In this work, we study a fifth order non-linear vector delay differential 

equation with multiple deviating arguments.  Some criteria for guaranteeing the 
instability of zero solution of the equation are given by using the Lyapunov-
Krasovskii functional approach. Comparing with the previous literature, our result 
is new and complements some known results. 
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1. Introduction 

In applied sciences, some practical problems concerning mechanics, the 
engineering technique fields, economy, control theory, physics, chemistry, 
biology, medicine, atomic energy, information theory, etc. are associated with 
certain differential equations of the higher order with and without delay. Perhaps, 
the most effective basic tool in the literature to investigate the qualitative 
behaviors of certain differential equations of the higher order with and without 
delay is the Lyapunov function and Lyapunov-Krasovskii functional approach. 
Lyapunov functions and functionals have been successfully used and are still 
being used to obtain stability, instability, boundedness and the existence of 
periodic solutions of differential equations, differential equations with functional 
delays and functional differential equations (Ezeilo [2],  Li and Duan [4],  Li and 
Yu [5],  Sadek [6], Sun and Hou [7], Tiryaki [8], Tunç [9-17],  Tunç and Erdogan 
[18], Tunç and Karta [19],   Tunç and Şevli [20]).   

It should be noted that in 2000, using the Lyapunov function approach,  Li 
and Duan [4] discussed the instability of the solutions of the fifth order nonlinear 
scalar differential equation without delay  
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Later, in 2011, using the same technique, Tunç [14] studied the instability of 
the solutions for the fifth order nonlinear scalar delay differential equation 
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Therefore, it is worthwhile to continue the discussion of the instability to 
differential equations of the higher order. 

In this paper, we consider the fifth order nonlinear vector delay differential 
equation with multiple deviating arguments: 
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where the primes in Eq. (1) denote differentiation with respect to  ,t  
);,0[  , ∞=ℜℜ∈ ++t  

,nX ℜ∈ iτ   are certain positive constants, the fixed delays, ,0>− it τ  A  is an 
−× nn  symmetric matrix,  F  and  G  are continuous −× nn symmetric matrix 

functions for  the respective arguments,  ,: nn
iH ℜ→ℜ  nn ℜ→ℜΨ :  with 

0)0()0( =Ψ=iH  are continuous for the respective arguments. Let   )(XJ
iH ′′   

and )(XJ ′Ψ  denote the linear operators from )(XHi ′′  and  )(X ′Ψ  to 
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where ),,...,( 1 nxx ′′  ),,...,( 1 nxx ′′′′   )(),...,( 1 nii hh  and ),...,( 1 nψψ    are the components 
of ,X ′  ,X ′′ iH   and ,Ψ  respectively. In what follows, it is assumed that  

)(XJ
iH ′′  and )(XJ ′Ψ  exist and are symmetric and continuous. 

Equation (1) is the vector version for systems of real nonlinear differential 
equations of the fifth order:   
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Instead of Eq. (1), we consider the corresponding differential system 
),()( tYtX =  ),()( tZtY =    ),()( tWtZ =    ),()( tUtW =                   
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which was obtained  by setting ),()( tYtX =  ),()( tZtX =  )()()3( tWtX =  and 

)()()4( tUtX =  from Eq. (1).  
It is worth mentioning that a review to date of the literature indicates that the 

instability of solutions of vector differential equations of the fifth order with a 
deviating argument has not been investigated up to now. This paper is the first 
known work regarding the instability of solutions for the nonlinear vector delay 
differential equations of the fifth order with multiple deviating arguments. The 
motivation of this paper comes from the above papers done on scalar nonlinear 
differential equations of the fifth order without and with delay and the vector 
differential equations of the fifth order without delay. Defining a Lyapunov-
Krasovskii functional and taking into account the Krasovskii’s criteria [3],  we 
prove our main result on the subject.  

Note that the instability criteria of Krasovskii [3] can be summarized as the 
following: According to these criteria, it is necessary to show here that there exists 
a Lyapunov- Krasovskii functional ),,,,((.) ttttt UWZYXVV ≡  which has 
Krasovskii properties, say ),( 1P )( 2P  and :)( 3P   

)( 1P  In every neighborhood of ),0,0,0,0,0(  there exists a point ),...,( 51 ξξ   
such that ,0),...,( 51 >ξξV  

)( 2P  the time derivative (.)V
dt
d  along solution paths of (2) is positive semi-

definite,  
)( 3P  the only solution ))(),(),(),(),((),,,,( tUtWtZtYtXUWZYX =  of  (2) 

which satisfies ,0(.) =V
dt
d ),0( ≥t  is the trivial solution ).0,0,0,0,0(   
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The symbol YX ,  corresponding to any pair ,X  Y  in nℜ  stands for the 

usual scalar YX , = ;
1
∑
=

n

i
ii yx  thus ,, 2XXX =  and ),(Ωiλ  ),,...,2,1( ni =  are 

the eigenvalues of the real symmetric −× nn  matrix .Ω  The matrix Ω  is said to 
be negative semidefinite, when 0, ≤Ω XX   for all nonzero X  in .nℜ  

By this work, we improve the results in ([4], [14]) to a vector delay 
differential equation of the fifth order with multiple deviating arguments.  The 
result to be obtained is new and has a contribution to the topic, and may be useful 
for the researchers working on the qualitative behaviors of solutions of the 
differential equations. 

 
2. Results used 

 
Before stating the main result, we need the following result. 
Lemma. Let A  be a real symmetric nn× -matrix and  

,0)( >≥≥′ aAa iλ  ),,...,2,1( ni =  
where a′and  a  are constants. 
Then                                 XXaXAXXXa ,,, ≥≥′  

and                                     XXaAXAXXXa ,,, 22 ≥≥′  
(Bellman [1]). 

Let 0≥r  be given, and let )  ],0,([ nrCC ℜ−=  with .  ,)(max
0
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For  0>H  define CCH ⊂  by }.:{ HCCH <∈= φφ  

If nArx ℜ→− ) ,[:   is continuous,  ,0 ∞≤< A  then, for each t  in ),,0[ A  tx  
in C  is defined by  

),()( stxsxt += ,0≤≤− sr  .0≥t   
Let G  be an open subset of C  and consider the general autonomous delay 

differential system with finite delay  
),( txFx = ,0)0( =F  ),( θ+= txxt  ,0≤≤− θr  ,0≥t  

where nGF ℜ→:  is continuous and maps closed and bounded sets into bounded 
sets. It follows from these conditions on F  that each initial value problem  

),( txFx =  Gx ∈= φ0   
has a unique solution defined on some interval ),,0[ A .0 ∞≤< A  This solution 
will be denoted by )(.)(φx  so that  .)0)(( φφ =x    
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Definition. The zero solution, ,0=x  of )( txFx =  is stable if for each  0>ε  
there exists 0)( >= εδδ  such that δφ <  implies that εφ <))(( tx  for all    

.0≥t  The zero solution is said to be unstable if it is not stable.  

3. Main result 

The main result of this paper is given by the following theorem. 
Theorem. In addition to the basic assumptions imposed on ,  , GF ,iH Ψ  and  

A    that appear in Eq. (1), we assume that there exist positive constants  ,1a  ,4a  
iβ  and δ  such that the following conditions hold: 
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then the zero solution  of   Eq.  (1) is unstable. 
Proof. We define a Lyapunov-Krasovskii functional  
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where iμ  are certain positive constants and  will be determined later in the proof.   
It is clear that .0)0,0,0,0,0( =V  
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Using the assumption ,)( 1aAi −≤λ  we have   

)0,0,0,,0( εV = εε ,
2
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for all arbitrary ,0≠ε  ,nℜ∈ε  which verify the property )( 1P  of  Krasovskii [3]. 
Using a basic calculation, the time derivative of  (.)V   along the solutions of 

(2) results in  
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Under the assumptions of the theorem and the Schwarz inequality, it can be easily 
seen that  
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which verifies that V   has the property )( 2P  of  Krasovskii [3]. 
Besides,  

⇔= 0(.)V .0=== UWZ                         
The substitution of this estimate into system (2) results in 
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=′X constant vector, for all .0>t  Hence, since A  is not 

the zero matrix, we have  =X constant vector, for all .0>t  But, in view of the 
assumptions of the theorem,  this implies that 0=′X  and thus also, by

,0)( =+′Ψ AXX  that  0,=X  .0 allfor >t  These estimates result in   
.0===== UWZYX  Hence,  the property )( 3P  of  Krasovskii [3] holds for 

the Lyapunov -Krasovskii functional (.).V
 
 

The proof of the theorem is completed.  
 

4. Conclusion 
  

A non-linear vector delay differential equation of the fifth order with multiple 
deviating arguments is considered.  The instability of the zero solution of this 
equation is discussed. In proving our result, we employ the Lyapunov-Krasovskii 
functional approach by defining a new Lyapunov- Krasovskii functional. 
Comparing with the previous literature, our result is new and complements some 
known results. 
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