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HYPERBOLIC EMBEDDING MODEL FOR A CLASS OF
MICRORNA-DISEASE NETWORKS

Radu Angelescu! and Radu Dobrescu?

The main goal of this paper is to study the embedding of net-
works in a form that can be used in differential programming. We prove that
certain networks have better embeddings in an appropriate metric space and
provide a numerically stable embedding solution. We generate embeddings
for the disease-microRNA network.
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1. Introduction

Network embedding is a method that generates low-dimensional repre-
sentations of vertexes in networks, aiming to capture and preserve the network
structure. Many real-world applications need to mine information from net-
works (recommendation systems [10], biological networks [34] [23], narrative
network analysis [20]).

For large networks, such as those with thousands of nodes the traditional
network representation poses several challenges for processing and analysis:
high computational complexity, low parallelizability, inapplicability of differ-
entiable programming methods. Network embeddings are used to solve these
problems.

To be able to provide insight, the embedding is required to preserve the
network structure. This is not trivial because network structures, are usually
highly non-linear [13] and complex [11].
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We provide an embedding method in which we use random walks and Rie-
mann optimization [17] in the Poincare ball [4]. We then convert a microRNA-
disease network to a proper input form for differentiable programming algo-
rithms. We evaluate by doing a network reconstruction and calculating its
MAP. The results are presented in section 6.

2. Preliminaries

We denote a network G(V,E) where V is the vertex set and E is the edge

set.
Definition 2.1. As in [25, 3, 21] we define Mean Average Precision (MAP):
As the average precision over all nodes: Z’ﬁf(z) where

3, precision@h() T {Eprea; (F)EFqt, }

AP(i) = [EBprea, (F)E€Bgr, and

precision@Qk(i) = M where Eyeq and Ey are the predicted
and ground truth edges respectively.

Definition 2.2. As in [22] we define a network embedding as a mapping of
the network data into a low-dimensional latent space, where each vertex is
represented as a low-dimensional vector and the network computing can be
directly-realized.

2.1. Poincare ball

In geometry, the Poincare disk model also called the conformal disk model
hyperbolic geometry in which the points of the geometry are inside the unit
disk, and the straight lines consist of all segments of circles contained within
that disk that are orthogonal to the boundary of the disk, plus all diameters
of the disk.

The Poincare ball model is the Poincare disk model in the n-dimensional
unit ball B¢ = {x € R? | ||z]| < 1} with metric g, = (ﬁ)QgE where x €

B4, We have the distance between two points: arcosh <1 + 2%)

Fig.1. Tree embedding in Poincare Disk
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Fig. 2. Phylogenetic trees in three dimensional Poincare ball gen-
erated with the phylo3D[8] program

From Fig. 1 and [2] we can see that a tree has a natural representation in
the Poincare disk. We may also note the existing visualization techniques in
hyperbolic space [7] used for phylogenetic trees in Fig. 2.

3. Building the network

We downloaded and parsed the latest data from MESH [35] into our own
pair representation of the disease network. The disease network is composed
of 22 main disease categories, that have cross links (because diseases may
be in multiple categories) so we can assume with no approximation that by
combining these we are dealing with a complex network that is not a tree.

We downloaded data from mirWayDB [33] containing 66 diseases with
experimentally validated associations between microRNAs and diseases and
also the biological pathways in which they act as controllers. We construct
a relationship network linking microRNAs through common pathways and
diseases. The resulting network contains information about known microRNA-
disease relationships.

= K

Fig. 3. Example of an subnetwork included in our final network

We determined the relationship between the diseases in MESH and mir-
WayDB and created a bigger network (figure 3) where the other two networks
mentioned above are linked through common diseases.



222 Radu Angelescu, Radu Dobrescu

4. Network Analysis

Trees can be embedded with arbitrarily low distortion in hyperbolic space
261,114 hut they cannot be embedded into euclidean space with arbitrarily low
distortion for any number of dimensions /. We are dealing with a complex
network but we can compare its hiperbolicity to that of a tree to gain insight.

Definition 4.1. As defined in [1] a metric space (V,d) is § — hyperbolic for
a constant & > 0 if for every four points w,x,y,z € V that are ordered such
that d(w, z) +d(y, z)d(w, y) + d(z, 2)d(w, z) + d(z, y)d(w, z) + d(z, y)d(w, y) +
d(z,z) + 6 holds.

In our network G we denote:
a,b,c,d € V (recall V' as the set of nodes of the network G).

Si(a,b,c,d) = dg(a,b) + dg(d,c)
82<a7 ba Cy d) = dG(a'7 C) + dG(ba d) (1)
Ss(a,b,c,d) = dg(a,d)+ dg(b,c)
Where dg is the network distance (defined as the shortest path in the
network)

We calculate the hyperbolicity of our network GG with the following for-
mula:

IG) = %max(]mam(Sl(a,b, ¢,d), So(a,b,c,d))—
— max(Se(a, b, c,d), S3(a,b,c,d))|) (2)

We found that for §(G) = 2 our network is hyperbolic.

We know that a tree is hyperbolic for 6 = 0, an NXN grid ford = N — 1,
and a N length cycles is hyperbolic for § = %.

As in [19] we also analyzed the network by calculating the Ricci curvature
of the edges of our network.

MiRNA-Disease Edge Ricci Curvature Histogram
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For comparison, on a square lattice network each edge has a zero Ricci
curvature. For a tree the Ricci curvature is negative for all edges except those
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connecting leaves. On a complete network with at least two vertices the Ricci
curvature is all positive. The average ricci curvature as defined on edges is -
0.29 but it is also evident from the histogram that most edges have negative or
0 curvature. This indicates that doing a hyperbolic approximation should be
better than an euclidean one, as negative curvature indicates that a negatively
curved space is better than the 0 or positive curved space.

Unfortunately we can also see some positive curvature edges that will
make our embedding require more than 2 dimensions. This was not a surprise
as the network is not a tree.

5. Finding the hyperbolic embeddings

We generate a cost matrix F'S on network G(V, E) such that FS[i, j| =
dg(i,7) where i,5 € {0..card(V)}. Where dg(i,j) is the shortest path [12]
between node ¢ and node j. Our problem becomes approximating points for
the network nodes in B¢ unit ball, so that by using the Poincare ball metric
we may reconstruct the graph. To achieve this hyperbolic embedding space
for our network we use the RSGD manifold optimization [15, 37, 16] on an
adaptation of the skip-gram embedding loss function [9]

So we need to optimize the loss:

7(¢) = > log ‘

ZU’GN(u) e~d(w’)

Where we have wu,v point embeddings representing nodes that are directly
linked in the network and v nodes from the negative set (in our case, not
linked with u).

For optimisations we actually random sample for the negative space,
judging that our data is not fully connected but rather weakly connected, we
picked a negative sample of 20. Intuitively the loss would go up when we have
big distances between linked nodes or small distances between unlinked nodes.
We then apply the basic formula for Riemann stochastic gradient optimization
[16] on our Poincare disk (as our space is a Riemann manifold).

0" < argmingt(0),0 = {0; | |0:]| < 1}

—d(u,v)

Ors1 < 0y — 1 VRT(6;)
Detailing the update procedure:

. 1— 2] 2\2
01 = proj <€t — Nt%VE)

Where VE is the euclidean space gradient of the € function and p, € (0,1] is
the learning rate.
e 10z 1

proj(0) = { g

otherwise
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o OT(6) 0d(o.2)
dd(¢,xz) ¢

Furthermore for the final microRNA functional similarity network we cre-
ate a new weighted fully connected network where the nodes are all microRNAs
and edges represent the functional distance between them. The functional dis-
tance is calculated by finding the shortest path between microRNAs. This
network is pruned with the average maximum distance and we generate net-
work chains with weighted random walks[36].

We generate 60 chains per node so we sample the most important neigh-
bours and then feed the resulting links in to an “online” version of Poincare
embedding generation. The negative edges are no longer sampled randomly
(because we are dealing with a fully connected network) but picked from the
pruned links. The resulting microRNA embeddings converge quicker, and the
algorithm is now “online” (may be updated after generation) version of the
previous one.

6. Results and discussions

To have a base comparison we did an euclidean matrix factorization
(single value decomposition) method first [18] on the big network. The results
were very bad:

Vector embedding size | 2 4 16 | 32 64 128
mAP 0.097 [ 0.098 | 0.1 | 0.11 | 0.098 | 0.098

We first ran the experiments on different vector sizes, and for different
epochs. We also did embeddings for trees, subtrees, the disease network, the
microRNA network and finally the disease-network. The attached images il-
lustrate our resulting embeddings in the Poincare disk (two dimensions) with
the original links superimposed, for intuitive clarity over the obtained results.

o ”ﬁ#&”‘m‘%\
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AlIMESH diseases

The above images are plots of the embeddings in the Poincare disk, these
have the following mAP values

network mAP
all diseases (MESH) 0.55
bacterial infections and mycoses (sub DAG) 0.75

microRNA-disease from mirway 0.56
diseases (MESH) + microRNA-disease (mirway) | 0.45

Embedding size 2

The above map values from the table implies that the resulting images are
just to check our intuition but for better embeddings we need a bigger vector
size. The best results we obtained were on the Poincare disk with vector size
16. These cannot be represented in pictures but you may check the attached
table for microRNA to microRNA resulting distances.
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network mAP

all diseases (MESH) 0.7

bacterial infections and mycoses (sub DAG) 0.85
microRNA-disease from mirway 0.6

diseases (MESH) + microRNA-disease (mirway) | 0.5

Embedding size 16
For a better understanding of the resulting 2d embeddings we did the
interactive plots [29, 30, 31, 32] The disease-mirway network did not achieve a
good representation (the mAP was very small) so we used the above described

improved the algorithm.
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Analyzing the results of small subnetwork embedding and retracing a
network of neighbours based on distance cutoff we may observe particular
results that correspond to biological reality:

We observe BCL2 and AKT, two pathways that are common to hsa-miR-
150 and hsa-miR-155, both these connections are supported by paper [24, 5]
, we also notice that these connections were not present in the investigating
database but were inferred because of the small embedding distance. As future
directions we may turn to neural hyperbolic networks for improving predictions
but also add more information about microRNA structure itself to encompass
the biological reality of microRNA - microRNA networks through common
messenger RNA targets. A new improvement to the embeddings themselves
could be done using the hyperboloid model [28] (Minkowski, Lorentz) that
would result in an easier optimization problem because of the Minkowski bi-

linear form
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B((IO ce l’n), (yo Ce yn)) = ZoYo — szyz
i=1

d(u,v) = arcosh(B(u,v))
that makes the hyperbolic distance easier and more numerically stable to com-
pute.

7. Conclusions

The results of our method show that hiperbolic embeddings for mi-
croRNA networks generated from data are a good way of exploring and pre-
dicting underlying connections. These will provide a good fit for functional
clustering of microRNAs but also a basis for disease prediction. The resulting
distances from the more computationally expensive 16 dimensional hyperbolic
embeddings are a good way of embedding our data into a form that is fit for
differential programming. We may use these for disease-microRNA exploration
(just calculating the hyperbolic distance between a disease and a microRNA)
or for microRNA-microRNA distance calculation (for a sort of functional clas-
sification). The resulting embeddings could provide a good starting point for
a hiperbolic machine learning algorithm for disease-prediction. The tool pro-
vided in this article may be used to exploit the already existing big databases
of experiments and combine them with new experiments so to better explain
certain phenomenon.

*Edit in proof: Similar efforts have been made in using Poincare embed-
dings to clarify phenotypes from hierarchical medical concepts. [27]
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