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INTERIOR APPROXIMATE CONTROLLABILITY OF A CLASS OF 
REACTION-DIFFUSION EQUATIONS OF SEMILINEAR PARABOLIC 

TYPE

Mourad RAGHDI1, Salah BADRAOUI2

We prove in this paper a new result about approximate controllability of a

semilinear parabolic equation. This equation is given by

yt = a∆y+1ωu+f(t, y, u), x ∈ Ω ⊂ Rn(n ≥ 1), t ∈ (0, T ] , with y = 0 on (0, T )×∂Ω,

y(0, x) = y0(x), x ∈ Ω, where Ω is a bounded domain in Rn (n ∈ N∗), 1ω is the

characteristic function of a subset ω ⊂ Ω, u is the distributed control. f : [0, T ]× R×
R −→ f(t, y, u) ∈ R is a nonlinear function locally Lipschitz in y uniformly in t

on bounded intervals and there are two bounded positive functions b0, b1 : [0, T ] −→ R
such that |f(t, y, u)| ≤ b1(t) |u|+ b0(t) for all y, u ∈ R, |z| , |u| ≥ R.
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1. Introduction

This paper is concerned with the interior approximate controllability of the following reaction-

diffusion of semilinear parabolic type equation

yt(t, x) = a∆y(t, x) + 1ωu(t, x) + f(t, y, u(t, x)), (t, x) ∈ (0, T ]× Ω, (1.1.a)

y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, (1.1.b)

y(0, x) = y0(x), x ∈ Ω, (1.1.c)

where a > 0 is a real constant, Ω is a bounded open set in Rn, y0 ∈ L2(Ω), ω ⊂ Ω is an

open nonempty subset of Ω, 1ω denotes the characteristic function of ω, u is a control

function belonging to L2(0, T ;L2(Ω)) and the nonlinear function f : [0, T ]× R× R −→ R
is locally Lipschitz in y uniformly in t on bounded intervals and there are two positive

bounded functions b0, b1 ∈ B([0, T ] ;R) such that

|f(t, y, u)| ≤ b1(t) |u|+ b0(t), (1.2)

for all y, u ∈ R, |y| , |u| ≥ R.

Definition 1.1. The system (1.1) is said to be approximately controllable on [0, T ] if for

every y0, y1 ∈ L2(Ω) and ε > 0, there exists u ∈ L2(0, T ;L2(Ω)) such that the solution

y of (1.1) corresponding to u verifies
∥∥y(T )− y1

∥∥
2
< ε.
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The approximate controllability of the problem (1.1) was studied in [3] and [4] in the

particular case where the nonlinear perturbation f is independent of the variables t and

u

yt(t, x) = ∆y(t, x) + 1ωu(t, x) + f(y(t, x)), (t, x) ∈ (0, T ]× Ω, (1.3.a)

y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, (1.3.b)

y(0, x) = y0(x), x ∈ Ω, (1.3.c)

and f is sublinear.

|f(y)| ≤ a1 |y|+ a0, a0, a1 ∈ R are constants. (1.4)

The problem (1.1) was studied in [7] . It is proved that if there exist two real constants a1,

b1 with a1 ̸= −1 such that

sup
(t,z,u)

|f(t, y, u)− a1y − b1u| < ∞ (1.5)

then, the equation is approximately controllable.

Recently, H. Leiva, N. Merentes and Sanchez proved in [8] the approximate controllability

of the following problem

yt(t, x) = ∆y(t, x) + 1ωu(t, x) + f(t, y, u(t, x)), (t, x) ∈ (0, T ]× Ω, (1.6.a)

y(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, (1.6.b)

y(0, x) = y0(x), x ∈ Ω , (1.6.c)

if f is smooth enough and there are real constants a1, b0, b1 ∈ R, R > 0 and 1/2 ≤ β < 1

such that

|f(t, y, u)− a1y| ≤ b1 |u|β + b0. (1.7)

For more information on basic results on exact and approximate controllability of parabolic

equations, you can consult [10] and [11] and [5] and references therein.

2. Notations and preliminaries

Let Ω ⊂ Rn a bounded domain and T > 0 a real constant, we denote by

C∞
0 (Ω) : the space of infinitely continuously differentiable functions on Ω and compactly

supported in Ω.

L2(Ω) =

{
u : Ω ⊂ Rn −→ R measurable function and

∫
Ω

|u(x)|2 dx < ∞
}
, with norm

∥u∥2 =

{∫
Ω

|u(x)|2 dx
}1/2

(2.1)

L2(0, T ;L2(Ω)) : =


u : (0, T ) ⊂ R −→ L2(Ω)

measurable function and

∫ T

0

∥u(s)∥22 ds =
∫ T

0

∫
Ω

|u(s, x)|2 dxds < ∞

,

with norm

∥u∥2,2 =

{∫ T

0

∫
Ω

|u(s, x)|2 dxds

}1/2

=

(∫ T

0

∥u(t)∥22 dt

)1/2

(2.2)
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C([0, T ] ;L2(Ω)) :=
{
u : [0, T ] −→ L2(Ω) continuous function

}
with norm

∥u∥2,∞ = max
t∈[0,T ]

∥u(t)∥2 (2.3)

B(E;X) : = {u : E −→ X : u is a bounded function on E}, where E is a nonempty

set and X a Banach space.

B(v, r) the open ball of center v and radius r.

B′(v, r) the closed ball of center v and radius r.

∂B(v, r) the boundary of B(v, r).

tmax the maximal interval of existence.

To prove the approximate controllability of (1.1) we need to some known results.

Theorem 2.1 (Rothe’s theorem [6], page 129). Let E(τ) be a Hausdorff topological vector

space. Let B ⊂ E be a closed convex subset such that the zero of E is contained in the

interior of B. Let Φ : B −→ E be a continuous mapping with Φ(B) relatively compact

in E and Φ(∂B) ⊂ B. Then there is a point x∗ ∈ B such that Φ(x∗) = x∗.

Theorem 2.2 (cf. [12] on page 286 and 307, [1] on page 192). Let us consider the following

classical boundary-eigenvalue problem for the laplacian{
−∆u = λu, on Ω

u = 0, on ∂Ω

where Ω is a nonempty bounded open set in RN and D(−∆) = H2(Ω) ∩H1
0 (Ω).

This problem has a countable system of eigenvalues 0 < c ≤ λ1 < λ2 < . . . < λj < . . . and

λj→ +∞ as j → ∞ and

(i) All the eigenvalues λj have finite multiplicity mj equal to the dimension of the

corresponding eigenspace Sj .

(ii) Let {φjk}
mj

k=1 a basis of the Sj for every j, then the eigenvectors {φjk}
mj ,∞
k=1,j=1 form

a complete orthonormal system in the space L2(Ω). Hence for all u ∈ L2(Ω) we have

u =

∞∑
j=1

mj∑
k=1

⟨u, φjk⟩φjk. If we put Eju =

mj∑
k=1

⟨u, φjk⟩φjk then we get u =

∞∑
j=1

Eju.

Also, the eigenfunctions {φjk}
mj ,∞
k=1,j=1 ⊂ C∞

0 (Ω) ∩H1
0 (Ω).

(iii) For all u ∈ D(−∆) we have −∆u =

∞∑
j=1

λjEju.

(iv) The operator ∆ generates an analytic semigroup S on L2(Ω) defined by

S(t)u =

∞∑
j=1

e−λjtEju and ∥S(t)∥ ≤ e−λ1t, for all t ≥ 0

3. Main results

Let :

A : D(A) = H1
0 (Ω) ∩H2(Ω) ⊂ L2(Ω) −→ L2(Ω) be the linear operator defined by Au =

−a∆u.

Bω : L2(Ω) −→ L2(Ω) the operator defined by Bωu = 1ωu. The operator Bω is trivially

linear and bounded.

f : [0, T ]× L2(Ω)× L2(Ω) −→ L2(Ω) : (t, y, u) −→ f(t, y, u) be a function.
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Then the equation (1.1a) can be written in the form

y′(t) = −Ay(t) +Bωu(t) + f(t, y(t), u(t))

Proposition 3.1. Let u ∈ L2
(
0, T ;L2(Ω)

)
be a fixed function and let f be continuous

in t on [0, T ] and Lipschitz in y uniformly in t with constant L = L(u) > 0

∥f(t, v1, u)− f(t, v2, u)∥2 ≤ L ∥v1 − v2∥2 , (3.1)

for all t ∈ [0, T ] and all v1, v2 ∈ L2(Ω)

Then, the problem (1.1) has a unique solution y ∈ L2(0, T ;L2(Ω)).

Proof. Define the function F : [0, T ] × L2(Ω) −→ L2(Ω) as F (t, v) = Bωu + f(t, v, u)

and the application Ψ : C([0, T ] ;L2(Ω)) −→ C([0, T ] ;L2(Ω)) by

Ψ(v)(t) = S(t)y0 +

∫ t

0

S(t− s)F (s, v(s))ds

= S(t)y0 +

∫ t

0

S(t− s) [Bωu(s) + f(s, v(s), u(s))] ds (3.2)

where S is the C0-semigroup generated by the operator −A.

It folows from (3.2) that

∥Ψ(v1)(t)−Ψ(v2)(t)∥2 ≤ L ∥v1 − v2∥∞,2 , (3.3)

for all t ∈ [0, T ] and all v1, v2 ∈ L2
(
0, T ;L2(Ω)

)
.

Then the theorem 1.2 on page 184 in the reference [9] is applicable, and the application

Ψ admits a unique fixed point u ∈ C([0, T ] ;L2(Ω)), this fixed point is the solution (mild

solution in reality) of the problem (1.1)

y(t) = S(t)y0 +

∫ t

0

S(t− s) [Bωu(s) + f(s, v(s), u(s))] ds (3.4)

As C([0, T ] ;L2(Ω)) ⊂ L2(0, T ;L2(Ω)), the solution is in L2(0, T ;L2(Ω)).

Proposition 3.2. Let u ∈ L2
(
0, T ;L2(Ω)

)
be a fixed function and let f : [0, T ]×L2(Ω)×

L2(Ω) −→ L2(Ω) : (t, v, u) −→ f(t, v, u) be a continuous function in t on [0, T ] and

locally Lipschitz in v uniformly in t on bounded intervals, i.e; for every t′ ≥ 0 and every

constant c ∈ R+ there exists a constant L = L(c, t′, u) ∈ R+ such that

∥f(t, v1, u)− f(t, v2, u)∥2 ≤ L(c, t′, u) ∥v1 − v2∥2 , (3.5)

for all t ∈ [0, t′] and all v1, v2 ∈ B′(0, c).

where B′(0, c) is the closed ball in L2(Ω) with center 0 and radius c.

Then, there is a tmax ∈ ]0,∞[ such that the problem (1.1) has a unique mild solution

y ∈ C([0, tmax[ ;L
2(Ω)). Moreover, if tmax < ∞ then lim

t↑tmax

∥y(t)∥2 = ∞.

Proof. The same proof as in Proposition 3.1, and apply the theorem 1.4 on page 185 in [9].

Theorem 3.3. Assume that the equation (1.1) admits a solution y ∈ L2(0, T ;L2(Ω))

where 0 < T < tmax (for exemple if (3.1) or (3.2) is verified) and assume also that there
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are two positive bounded functions b0, b1 ∈ B([0, T ] ;R) and a real constant R > 0 such

that

|f(t, y, u)| ≤ b1(t) |u|+ b0(t) (3.6)

for all y, u ∈ R, |y| , |u| ≥ R.

Then, we can construct a sequence of controls (uαk
)k∈N ⊂ L2(0, T ;L2(Ω)) steering the

system (1.1) from any initial state y0 to an ε-neighborhood of a final state y1 at time

T ∈ R∗
+ for every ε ∈ R∗

+ :

lim
k→∞

yαk
≡ lim

k→∞

{
eγTS(T )y0 +G1(uαk

) +G2(uαk
)
}
= y1 (3.7)

where yαk
is the corresponding solution to the control uαk

and G1, G2 : L2(0, T ;L2(Ω)) −→
L2(Ω) are defined as

G1u =

∫ T

0

e−γ(T−s)S(T − s)Bωu(s)ds, (3.8)

G2u =

∫ T

0

e−γ(T−s)S(T − s)g(s, y(s), u(s))ds. (3.9)

Whence, the system (1.1) is approximately controllable on [0, T ] .

Proof. Our proof is inspired from the work in [8]. If we put for every real positive constant

γ

g(t, u, w) = f(t, y, u) + γy (3.10)

then the equation (1.1a) become

yt(t, x) = a∆y(t, x)− γy(t, x) + 1ωu(t, x) + g(t, y(t, x), u(t, x)), (t, x) ∈ (0, T ]× Ω (3.11)

The solution y verify the integral equation

y(t) = e−γtS(t)y0 +

∫ t

0

e−γ(t−s)S(t− s) [Bωu(s) + g(s, y(s), u(s))] ds, (3.12)

where S is the C0-semigroup generated by the operator −A, then we have from Theorem

2.2 (iv) that

S(t)u =

∞∑
j=1

e−aλjtEju and ∥S(t)∥2 ≤ e−aλ1t, for all t ≥ 0. (3.13)

If we put

Gu = G1u+G2u (3.14)

From (3.8) and (3.9) into (3.12), the solution y is written as

y(T ) = e−γTS(T )y0 +Gu (3.15)

Claim 1. We have

∥g(t, y(t), u(t)∥2 ≤
√
2γ ∥y(t)∥2 +B1 ∥u(t)∥2 +B0 (3.16)

where

B1 =
√
2 sup
s∈[0,T ]

b1(s), B0 =
√

2µ (Ω) sup
s∈[0,T ]

b0(s) (3.17)



50 Mourad Raghdi, Salah Badraoui

In fact, we have

∥g(t, y(t), u(t)∥22 =

∫
Ω

|g(t, y(t, x), u(t, x)|2 dx

≤
∫
Ω

(γ |y(t, x)|+ b1(t) |u(t, x)|+ b0(t))
2
dx

≤ 2

∫
Ω

(
γ2 |y(t, x)|2 + b21(t) |u(t, x|

2
+ b20(t)

)
dx

then

∥g(t, y(t), u(t)∥2 ≤
√
2γ ∥y(t)∥2 +

√
2 sup
s∈[0,T ]

b1(s) ∥u(t)∥2 + sup
s∈[0,T ]

b0(s)
√
2µ (Ω)

If we take γ = 0 we get

∥f(t, y(t), u(t)∥2 ≤ B1 ∥u(t)∥2 +B0 (3.18)

Claim 2. Let u ∈ L2
(
0, T ;L2(Ω)

)
a control, then the corresponding solution y verifies

∥y∥2,2 ≤
√
2
[∥∥y0∥∥+B0

√
T +B2

√
T ∥u∥2,2

]
(3.19)

In fact, the solution y verify (3.4)

y(t) = S(t)y0 +

∫ t

0

S(t− s) [Bωu(s) + f(s, y(s), u(s))] ds

Then, by (3.18) we get

∥y(t)∥2 ≤
∥∥u0
∥∥+B0

√
T +B2

∫ t

0

∥u(s)∥2 ds (3.20)

where B2 = 1 +B1.

By Cauchy-Schwarz inequality we get

∫ t

0

∥u(s)∥2 ds ≤
√
t

(∫ t

0

∥u(s)∥22 ds
)1/2

, which im-

plies (∫ t

0

∥u(s)∥2 ds
)2

≤ t

∫ t

0

∥u(s)∥22 ds ≤ T ∥u∥22,2 (3.21)

From (3.21) into (3.20) we get∫ t

0

∥y(t)∥22 dt ≤ 2

[(∥∥y0∥∥+B0

√
T
)2

+B2
2

(∫ t

0

∥u(s)∥2 ds
)2
]

≤ 2

[(∥∥y0∥∥+B0

√
T
)2

+B2
2T ∥u∥22,2

]
Whence (3.19).
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Claim 3. Let C0 =
∥∥∥G∗

1 (αI +G1G
∗
1)

−1
∥∥∥ :=

∥∥∥G∗
1 (αI +G1G

∗
1)

−1
∥∥∥
L2(Ω)→L2(0,T ;L2(Ω))

.

Then, there exist two real constants γ0 > 0 and R > 0 such that

∥G2u∥2
∥u∥2,2

≤ 1

2C0
(3.22)

for all γ ≥ γ0 and ∥u∥2,2 ≥ R.

By Cauchy-Schwarz inequality and (3.16)

∥G2u∥2 ≤
∫ T

0

e−(γ+aλ1)(T−s) ∥g(s, y(s), u(s))∥2 ds

≤

(∫ T

0

e−2(γ+aλ1)(T−s)ds

)1/2(∫ T

0

∥g(s, v(s), u(s))∥22 ds

)1/2

≤
(

−1

2(γ + aλ1)
e−2(γ+aλ1)T +

1

2(γ + aλ1)

)1/2

(∫ T

0

(√
2γ ∥y(s)∥2 +B1 ∥u(s)∥2 +B0

)2
ds

)1/2

≤
(

−1

2(γ + aλ1)
e−2(γ+aλ1)T +

1

2(γ + aλ1)

)1/2

(∫ T

0

(
4γ2 ∥y(s)∥22 + 4B2

1 ∥u(s)∥
2
2 + 4B2

0

)
ds

)1/2

≤
(

−1

2(γ + aλ1)
e−2(γ+a1λ1)T +

1

2(γ + aλ1)

)1/2 (
2γ ∥y∥2,2 + 2B1 ∥u∥2,2 + 2B0

√
T
)

(3.23)

From (3.19) into (3.23)

∥G2u∥2 ≤
(

−1

2(γ + aλ1)
e2(−γ−a1λ1)T +

1

2(γ + aλ1)

)1/2 (
B3 ∥u∥2,2 +B4

)
(3.24)

where B3 = 2
√
2γB2

√
T + 2B1, B4 = 2

√
2γ
(∥∥y0∥∥+B0

√
T
)
+ 2B0

√
T .

As lim
γ→+∞

(
−1

2(γ+aλ1)
e−2(γ+aλ1)T + 1

2(γ+aλ1)

)1/2
= 0, then exists a real constant γ0 > 0

such that, for all γ ≥ γ0(
−1

2(γ + aλ1)
e−2(γ+aλ1)T +

1

2(γ + aλ1)

)1/2

≤ 1

4B3C0
, (3.24a)

and as lim
∥u∥2,2→+∞

1
∥u∥2,2

= 0, then, there exists a real constant R > 0 big enough such

that for all ∥u∥2,2 ≥ R

1

∥u∥2,2
≤ B3

B4
(3.24b)

Whence, for all for γ ≥ γ0 and all ∥u∥2,2 ≥ R we get the relation (3.22) from (3.24a)-

(3.24b) into (3.24) .



52 Mourad Raghdi, Salah Badraoui

Claim 4. For each v ∈ L2 (Ω) fixed, define the family of nonlinear opperators {Kα}α∈]0,1]

by Kα : L2(0, T ;L2 (Ω)) −→ L2(0, T ;L2 (Ω)) and

Kα(u) = G∗
1 (αI +G1G

∗
1)

−1
(v −G2(u)) (3.25)

Then, there exist two real constants 0 < ρ < 1 and Rα > 0 such that for all ∥u∥2,2 ≥ Rα

we have
∥Kα(u)∥2,2

∥u∥2,2
≤ ρ (3.26)

In fact, from the definition of Kα we have

∥Kα(u)∥2,2
∥u∥2,2

≤

∥∥∥G∗
1 (αI +G1G

∗
1)

−1
v
∥∥∥
2,2

∥u∥2,2
+

∥∥∥G∗
1 (αI +G1G

∗
1)

−1
G2(u)

∥∥∥
2,2

∥u∥2,2

≤

∥∥∥G∗
1 (αI +G1G

∗
1)

−1
v
∥∥∥
2,2

∥u∥2,2
+
∥∥∥G∗

1 (αI +G1G
∗
1)

−1
∥∥∥ .∥G2(u)∥2,2

∥u∥2,2

As lim
∥u∥2,2→∞

∥G∗
1(αI+G1G

∗
1)

−1v∥
2,2

∥u∥2,2
= 0 and

∥G2(u)∥2,2

∥u∥2,2
≤ 1

2C0
for γ ≥ γ0 and ∥u∥2,2 ≥ R

(from the claim 3), then (3.26) is verified.

Claim 5. For every α ∈ ]0, 1] , the operator Kα admits a fixed point uα ∈ L2(0, T ;L2 (Ω)) :

Kα(uα) = uα.

In fact, from claim 4 : Kα (∂B(0, Rα)) ⊂ B(0, Rα). Also, the C0−semigroup S genrated

by −A = a∆ in L2(Ω) is compact ([2] on page 394), then G2 and Kα are compacts.

Applying theorem 2.1, there exists a fixed point uα of Kα.

Claim 6. The family of fixed point {uα}α∈]0,1] is bounded in L2(0, T ;L2 (Ω)).

In fact, suppose the contrary; then, there exists a sequence (uαk
)k∈N ⊂ {uα}α∈]0,1] such

that

lim
k→∞

∥uαk
∥2,2 = ∞ (3.27)

As Kαk
(uαk

) = uαk
we obtain that

∥Kαk
(uαk

)∥
2,2

∥uαk∥2,2

= 1, for all k ∈ N, which contradicts

the inequality (3.26).

Claim 7 . There exists a sequence (G2(uαk
))k∈N ⊂ {G2(uα)}α∈]0,1] such that for every

v ∈ L2(Ω)

lim
k→∞

{
αk

(
αkI +G1G

∗
1)

−1 (v −G2(uαk
)
)}

= 0 (3.28)

In fact; according to claim 6 and Bolzano Weierstrass theorem, the set (G2(uα))α∈]0,1]

admits a convergent subsequence (G2(uαk
))k∈N in L2(Ω).

The rest of the proof is the same as in ([8] on page 6).

Finally; we have for all k ∈ N

G1(uαk
) +G2(uαk

) = v − αk

(
αkI +G1G

∗
1)

−1 (v −G2(uαk
)
)

(3.29)
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Really; from claim 5, for all k ∈ N : uαk
= Kαk

(uαk
), but from (3.25) we can write

uαk
= G∗

1 (ααk
I +G1G

∗
1)

−1
(v −G2(uαk

)) (3.30)

Applying the operator G1 on the expression (3.30) we get

G1uαk
= G1G

∗
1 (αI +G1G

∗
1)

−1
(v −G2(uαk

))

= [(αkI +G1G
∗
1)− αkI] (αI +G1G

∗
1)

−1
(v −G2(uαk

))

= v −G2(uαk
)− αk (αI +G1G

∗
1)

−1
(v −G2(uαk

))

Whence (3.29).

From (3.29) taking into account (3.28) we find that

lim
k→∞

{G1(uαk
) +G2(uαk

)} = v, for all v ∈ L2(Ω). (3.31)

Now, let y1 ∈ L2(Ω) arbitrary and put v = y1 − e−γTS(T )y0 we get from (3.31) that

lim
k→∞

{G1(uαk
) +G2(uαk

)} = y1 − e−γTS(T )y0,

whence

lim
k→∞

{
e−γTS(T )y0 +G1(uαk

) +G2(uαk
)
}
= y1,

which proves the approximate controllability of the equation (1.1).

At the end, it’s worth to mention that the proof is similar to that of theorem 16 in [8] from

claim 4.

Remark. By examining the proof of the theorem 3.3 we observe that it’s also applicable

to the case studied in [8] where there is a constant β ∈
[
1
2 , 1
[

and two positive bounded

functions b0, b1 ∈ B([0, T ] ;R) such that |f(t, y, u)| ≤ b1(t) |u|β + b0(t) for all y, u ∈ R,
|y| , |u| ≥ R.

Perspectives. In our next work, we will try to apply these techniques to study :

1. Exact and null controllability of this type of equations.

2. Approximate controllabilty of systems of parabolic equations.
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Universităţii din Constanţa, Vol. 12, No. 2, pp. 127-134, 2004.

[7] H. Leiva, N. Merentes, and J. Sanchez, Approximate controllability of a semilinear reaction diffusion, 
Mathematical control and related fields, Vol. 2, No. 2, 2012.



54 Mourad Raghdi, Salah Badraoui

[8] H. Leiva, N. Merentes, and J. Sanchez, Approximate controllability of a semilinear heat equation, 
International Journal of Partial Differential Equations, Vol. 2013, Art. ID 424309, 7 pages.

[9] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-
Verlag New York, 1983.

[10] M. Sonego and R. Roychowdhury, A note on control of one-dimensional heterogeneous reaction-diffusion 
equations, Evolution Equations and Control Theory, Volume 12, Issue 2, 2023.

[11] M. Yamamoto & J. Y. Park, Controllability for parabolic equations with uniformly bounded nonlinear 
terms, J. Optim. Theory Appl. Vol. 66, No. 3, pp. 515-532, 1990.

[12] E. Zeidler, Applied functional analysis, Vol. 108, Springer Verlag, 1991.


