

**INTERIOR APPROXIMATE CONTROLLABILITY OF A CLASS OF
REACTION-DIFFUSION EQUATIONS OF SEMILINEAR PARABOLIC
TYPE**

Mourad RAGHDI¹, Salah BADRAOUI²

We prove in this paper a new result about approximate controllability of a semilinear parabolic equation. This equation is given by
 $y_t = a\Delta y + 1_\omega u + f(t, y, u)$, $x \in \Omega \subset \mathbb{R}^n$ ($n \geq 1$), $t \in (0, T]$, with $y = 0$ on $(0, T) \times \partial\Omega$,
 $y(0, x) = y^0(x)$, $x \in \Omega$, where Ω is a bounded domain in \mathbb{R}^n ($n \in \mathbb{N}^*$), 1_ω is the characteristic function of a subset $\omega \subset \Omega$, u is the distributed control. $f : [0, T] \times \mathbb{R} \times \mathbb{R} \rightarrow f(t, y, u) \in \mathbb{R}$ is a nonlinear function locally Lipschitz in y uniformly in t on bounded intervals and there are two bounded positive functions $b_0, b_1 : [0, T] \rightarrow \mathbb{R}$ such that $|f(t, y, u)| \leq b_1(t)|u| + b_0(t)$ for all $y, u \in \mathbb{R}$, $|z|, |u| \geq R$.

Keywords: compact semigroups, fixed point, existence of solutions, approximate controllability, semilinear parabolic equation.

MSC2020: 93B05, 35K58, 93C10.

1. Introduction

This paper is concerned with the interior approximate controllability of the following reaction-diffusion of semilinear parabolic type equation

$$y_t(t, x) = a\Delta y(t, x) + 1_\omega u(t, x) + f(t, y, u(t, x)), \quad (t, x) \in (0, T] \times \Omega, \quad (1.1.a)$$

$$y(t, x) = 0, \quad (t, x) \in (0, T) \times \partial\Omega, \quad (1.1.b)$$

$$y(0, x) = y^0(x), \quad x \in \Omega, \quad (1.1.c)$$

where $a > 0$ is a real constant, Ω is a bounded open set in \mathbb{R}^n , $y^0 \in L^2(\Omega)$, $\omega \subset \Omega$ is an open nonempty subset of Ω , 1_ω denotes the characteristic function of ω , u is a control function belonging to $L^2(0, T; L^2(\Omega))$ and the nonlinear function $f : [0, T] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz in y uniformly in t on bounded intervals and there are two positive bounded functions $b_0, b_1 \in \mathcal{B}([0, T]; \mathbb{R})$ such that

$$|f(t, y, u)| \leq b_1(t)|u| + b_0(t), \quad (1.2)$$

for all $y, u \in \mathbb{R}$, $|y|, |u| \geq R$.

Definition 1.1. The system (1.1) is said to be approximately controllable on $[0, T]$ if for every $y^0, y^1 \in L^2(\Omega)$ and $\varepsilon > 0$, there exists $u \in L^2(0, T; L^2(\Omega))$ such that the solution y of (1.1) corresponding to u verifies $\|y(T) - y^1\|_2 < \varepsilon$.

¹PhD student, University of 8 May 1945 Guelma, Dept. Mathematics, Labo. Analysis and Control of Differential Equations "ACED", Algeria, e-mail: raghdi.mourad@univ-guelma.dz

²Professor, University of 8 May 1945 Guelma, Dept. Mathematics, Labo. Analysis and Control of Differential Equations "ACED", Algeria, e-mail: badraoui.salah@univ-guelma.dz

The approximate controllability of the problem (1.1) was studied in [3] and [4] in the particular case where the nonlinear perturbation f is independent of the variables t and u

$$y_t(t, x) = \Delta y(t, x) + 1_\omega u(t, x) + f(y(t, x)), \quad (t, x) \in (0, T] \times \Omega, \quad (1.3.a)$$

$$y(t, x) = 0, \quad (t, x) \in (0, T) \times \partial\Omega, \quad (1.3.b)$$

$$y(0, x) = y^0(x), \quad x \in \Omega, \quad (1.3.c)$$

and f is sublinear.

$$|f(y)| \leq a_1 |y| + a_0, \quad a_0, a_1 \in \mathbb{R} \text{ are constants.} \quad (1.4)$$

The problem (1.1) was studied in [7]. It is proved that if there exist two real constants a_1, b_1 with $a_1 \neq -1$ such that

$$\sup_{(t, z, u)} |f(t, z, u) - a_1 z - b_1 u| < \infty \quad (1.5)$$

then, the equation is approximately controllable.

Recently, H. Leiva, N. Merentes and Sanchez proved in [8] the approximate controllability of the following problem

$$y_t(t, x) = \Delta y(t, x) + 1_\omega u(t, x) + f(t, y, u(t, x)), \quad (t, x) \in (0, T] \times \Omega, \quad (1.6.a)$$

$$y(t, x) = 0, \quad (t, x) \in (0, T) \times \partial\Omega, \quad (1.6.b)$$

$$y(0, x) = y^0(x), \quad x \in \Omega, \quad (1.6.c)$$

if f is smooth enough and there are real constants $a_1, b_0, b_1 \in \mathbb{R}$, $R > 0$ and $1/2 \leq \beta < 1$ such that

$$|f(t, y, u) - a_1 y| \leq b_1 |u|^\beta + b_0. \quad (1.7)$$

For more information on basic results on exact and approximate controllability of parabolic equations, you can consult [10] and [11] and [5] and references therein.

2. Notations and preliminaries

Let $\Omega \subset \mathbb{R}^n$ a bounded domain and $T > 0$ a real constant, we denote by

$C_0^\infty(\Omega)$: the space of infinitely continuously differentiable functions on Ω and compactly supported in Ω .

$$L^2(\Omega) = \left\{ u : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R} \text{ measurable function and } \int_{\Omega} |u(x)|^2 dx < \infty \right\}, \text{ with norm} \\ \|u\|_2 = \left\{ \int_{\Omega} |u(x)|^2 dx \right\}^{1/2} \quad (2.1)$$

$$L^2(0, T; L^2(\Omega)) := \left\{ \begin{array}{c} u : (0, T) \subset \mathbb{R} \rightarrow L^2(\Omega) \\ \text{measurable function and } \int_0^T \|u(s)\|_2^2 ds = \int_0^T \int_{\Omega} |u(s, x)|^2 dx ds < \infty \end{array} \right\},$$

with norm

$$\|u\|_{2,2} = \left\{ \int_0^T \int_{\Omega} |u(s, x)|^2 dx ds \right\}^{1/2} = \left(\int_0^T \|u(t)\|_2^2 dt \right)^{1/2} \quad (2.2)$$

$C([0, T]; L^2(\Omega)) := \{u : [0, T] \rightarrow L^2(\Omega) \text{ continuous function}\}$ with norm

$$\|u\|_{2,\infty} = \max_{t \in [0, T]} \|u(t)\|_2 \quad (2.3)$$

$\mathcal{B}(E; X) := \{u : E \rightarrow X : u \text{ is a bounded function on } E\}$, where E is a nonempty set and X a Banach space.

$B(v, r)$ the open ball of center v and radius r .

$B'(v, r)$ the closed ball of center v and radius r .

$\partial B(v, r)$ the boundary of $B(v, r)$.

t_{\max} the maximal interval of existence.

To prove the approximate controllability of (1.1) we need to some known results.

Theorem 2.1 (Rothe's theorem [6], page 129). Let $E(\tau)$ be a Hausdorff topological vector space. Let $B \subset E$ be a closed convex subset such that the zero of E is contained in the interior of B . Let $\Phi : B \rightarrow E$ be a continuous mapping with $\Phi(B)$ relatively compact in E and $\Phi(\partial B) \subset B$. Then there is a point $x^* \in B$ such that $\Phi(x^*) = x^*$.

Theorem 2.2 (cf. [12] on page 286 and 307, [1] on page 192). Let us consider the following classical boundary-eigenvalue problem for the laplacian

$$\begin{cases} -\Delta u = \lambda u, & \text{on } \Omega \\ u = 0, & \text{on } \partial\Omega \end{cases}$$

where Ω is a nonempty bounded open set in \mathbb{R}^N and $D(-\Delta) = H^2(\Omega) \cap H_0^1(\Omega)$.

This problem has a countable system of eigenvalues $0 < c \leq \lambda_1 < \lambda_2 < \dots < \lambda_j < \dots$ and $\lambda_j \rightarrow +\infty$ as $j \rightarrow \infty$ and

(i) All the eigenvalues λ_j have finite multiplicity m_j equal to the dimension of the corresponding eigenspace S_j .

(ii) Let $\{\varphi_{jk}\}_{k=1}^{m_j}$ a basis of the S_j for every j , then the eigenvectors $\{\varphi_{jk}\}_{k=1,j=1}^{m_j,\infty}$ form a complete orthonormal system in the space $L^2(\Omega)$. Hence for all $u \in L^2(\Omega)$ we have $u = \sum_{j=1}^{\infty} \sum_{k=1}^{m_j} \langle u, \varphi_{jk} \rangle \varphi_{jk}$. If we put $E_j u = \sum_{k=1}^{m_j} \langle u, \varphi_{jk} \rangle \varphi_{jk}$ then we get $u = \sum_{j=1}^{\infty} E_j u$.

Also, the eigenfunctions $\{\varphi_{jk}\}_{k=1,j=1}^{m_j,\infty} \subset C_0^{\infty}(\Omega) \cap H_0^1(\Omega)$.

(iii) For all $u \in D(-\Delta)$ we have $-\Delta u = \sum_{j=1}^{\infty} \lambda_j E_j u$.

(iv) The operator Δ generates an analytic semigroup S on $L^2(\Omega)$ defined by

$$S(t)u = \sum_{j=1}^{\infty} e^{-\lambda_j t} E_j u \text{ and } \|S(t)\| \leq e^{-\lambda_1 t}, \text{ for all } t \geq 0$$

3. Main results

Let :

$A : D(A) = H_0^1(\Omega) \cap H^2(\Omega) \subset L^2(\Omega) \rightarrow L^2(\Omega)$ be the linear operator defined by $Au = -a\Delta u$.

$B_{\omega} : L^2(\Omega) \rightarrow L^2(\Omega)$ the operator defined by $B_{\omega}u = 1_{\omega}u$. The operator B_{ω} is trivially linear and bounded.

$f : [0, T] \times L^2(\Omega) \times L^2(\Omega) \rightarrow L^2(\Omega) : (t, y, u) \rightarrow f(t, y, u)$ be a function.

Then the equation (1.1a) can be written in the form

$$y'(t) = -Ay(t) + B_\omega u(t) + f(t, y(t), u(t))$$

Proposition 3.1. Let $u \in L^2(0, T; L^2(\Omega))$ be a fixed function and let f be continuous in t on $[0, T]$ and Lipschitz in y uniformly in t with constant $L = L(u) > 0$

$$\|f(t, v_1, u) - f(t, v_2, u)\|_2 \leq L \|v_1 - v_2\|_2, \quad (3.1)$$

for all $t \in [0, T]$ and all $v_1, v_2 \in L^2(\Omega)$

Then, the problem (1.1) has a unique solution $y \in L^2(0, T; L^2(\Omega))$.

Proof. Define the function $F : [0, T] \times L^2(\Omega) \rightarrow L^2(\Omega)$ as $F(t, v) = B_\omega u + f(t, v, u)$ and the application $\Psi : C([0, T]; L^2(\Omega)) \rightarrow C([0, T]; L^2(\Omega))$ by

$$\begin{aligned} \Psi(v)(t) &= S(t)v^0 + \int_0^t S(t-s)F(s, v(s))ds \\ &= S(t)v^0 + \int_0^t S(t-s)[B_\omega u(s) + f(s, v(s), u(s))]ds \end{aligned} \quad (3.2)$$

where S is the C_0 -semigroup generated by the operator $-A$.

It follows from (3.2) that

$$\|\Psi(v_1)(t) - \Psi(v_2)(t)\|_2 \leq L \|v_1 - v_2\|_{\infty, 2}, \quad (3.3)$$

for all $t \in [0, T]$ and all $v_1, v_2 \in L^2(0, T; L^2(\Omega))$.

Then the theorem 1.2 on page 184 in the reference [9] is applicable, and the application Ψ admits a unique fixed point $u \in C([0, T]; L^2(\Omega))$, this fixed point is the solution (mild solution in reality) of the problem (1.1)

$$y(t) = S(t)y^0 + \int_0^t S(t-s)[B_\omega u(s) + f(s, v(s), u(s))]ds \quad (3.4)$$

As $C([0, T]; L^2(\Omega)) \subset L^2(0, T; L^2(\Omega))$, the solution is in $L^2(0, T; L^2(\Omega))$.

Proposition 3.2. Let $u \in L^2(0, T; L^2(\Omega))$ be a fixed function and let $f : [0, T] \times L^2(\Omega) \times L^2(\Omega) \rightarrow L^2(\Omega) : (t, v, u) \rightarrow f(t, v, u)$ be a continuous function in t on $[0, T]$ and locally Lipschitz in v uniformly in t on bounded intervals, i.e; for every $t' \geq 0$ and every constant $c \in \mathbb{R}_+$ there exists a constant $L = L(c, t', u) \in \mathbb{R}_+$ such that

$$\|f(t, v_1, u) - f(t, v_2, u)\|_2 \leq L(c, t', u) \|v_1 - v_2\|_2, \quad (3.5)$$

for all $t \in [0, t']$ and all $v_1, v_2 \in B'(0, c)$.

where $B'(0, c)$ is the closed ball in $L^2(\Omega)$ with center 0 and radius c .

Then, there is a $t_{\max} \in]0, \infty[$ such that the problem (1.1) has a unique mild solution $y \in C([0, t_{\max}[; L^2(\Omega))$. Moreover, if $t_{\max} < \infty$ then $\lim_{t \uparrow t_{\max}} \|y(t)\|_2 = \infty$.

Proof. The same proof as in Proposition 3.1, and apply the theorem 1.4 on page 185 in [9].

Theorem 3.3. Assume that the equation (1.1) admits a solution $y \in L^2(0, T; L^2(\Omega))$ where $0 < T < t_{\max}$ (for example if (3.1) or (3.2) is verified) and assume also that there

are two positive bounded functions $b_0, b_1 \in \mathcal{B}([0, T]; \mathbb{R})$ and a real constant $R > 0$ such that

$$|f(t, y, u)| \leq b_1(t) |u| + b_0(t) \quad (3.6)$$

for all $y, u \in \mathbb{R}$, $|y|, |u| \geq R$.

Then, we can construct a sequence of controls $(u_{\alpha_k})_{k \in \mathbb{N}} \subset L^2(0, T; L^2(\Omega))$ steering the system (1.1) from any initial state y^0 to an ε -neighborhood of a final state y^1 at time $T \in \mathbb{R}_+^*$ for every $\varepsilon \in \mathbb{R}_+^*$:

$$\lim_{k \rightarrow \infty} y_{\alpha_k} \equiv \lim_{k \rightarrow \infty} \{e^{\gamma T} S(T)y^0 + G_1(u_{\alpha_k}) + G_2(u_{\alpha_k})\} = y^1 \quad (3.7)$$

where y_{α_k} is the corresponding solution to the control u_{α_k} and $G_1, G_2 : L^2(0, T; L^2(\Omega)) \rightarrow L^2(\Omega)$ are defined as

$$G_1 u = \int_0^T e^{-\gamma(T-s)} S(T-s) B_\omega u(s) ds, \quad (3.8)$$

$$G_2 u = \int_0^T e^{-\gamma(T-s)} S(T-s) g(s, y(s), u(s)) ds. \quad (3.9)$$

Whence, the system (1.1) is approximately controllable on $[0, T]$.

Proof. Our proof is inspired from the work in [8]. If we put for every real positive constant γ

$$g(t, u, w) = f(t, y, u) + \gamma y \quad (3.10)$$

then the equation (1.1a) become

$$y_t(t, x) = a\Delta y(t, x) - \gamma y(t, x) + 1_\omega u(t, x) + g(t, y(t, x), u(t, x)), \quad (t, x) \in (0, T] \times \Omega \quad (3.11)$$

The solution y verify the integral equation

$$y(t) = e^{-\gamma t} S(t)y^0 + \int_0^t e^{-\gamma(t-s)} S(t-s) [B_\omega u(s) + g(s, y(s), u(s))] ds, \quad (3.12)$$

where S is the C_0 -semigroup generated by the operator $-A$, then we have from Theorem 2.2 (iv) that

$$S(t)u = \sum_{j=1}^{\infty} e^{-a\lambda_j t} E_j u \text{ and } \|S(t)\|_2 \leq e^{-a\lambda_1 t}, \text{ for all } t \geq 0. \quad (3.13)$$

If we put

$$Gu = G_1 u + G_2 u \quad (3.14)$$

From (3.8) and (3.9) into (3.12), the solution y is written as

$$y(T) = e^{-\gamma T} S(T)y^0 + Gu \quad (3.15)$$

Claim 1. We have

$$\|g(t, y(t), u(t))\|_2 \leq \sqrt{2}\gamma \|y(t)\|_2 + B_1 \|u(t)\|_2 + B_0 \quad (3.16)$$

where

$$B_1 = \sqrt{2} \sup_{s \in [0, T]} b_1(s), \quad B_0 = \sqrt{2\mu(\Omega)} \sup_{s \in [0, T]} b_0(s) \quad (3.17)$$

In fact, we have

$$\begin{aligned}\|g(t, y(t), u(t))\|_2^2 &= \int_{\Omega} |g(t, y(t, x), u(t, x)|^2 dx \\ &\leq \int_{\Omega} (\gamma |y(t, x)| + b_1(t) |u(t, x)| + b_0(t))^2 dx \\ &\leq 2 \int_{\Omega} (\gamma^2 |y(t, x)|^2 + b_1^2(t) |u(t, x)|^2 + b_0^2(t)) dx\end{aligned}$$

then

$$\|g(t, y(t), u(t))\|_2 \leq \sqrt{2}\gamma \|y(t)\|_2 + \sqrt{2} \sup_{s \in [0, T]} b_1(s) \|u(t)\|_2 + \sup_{s \in [0, T]} b_0(s) \sqrt{2\mu(\Omega)}$$

If we take $\gamma = 0$ we get

$$\|f(t, y(t), u(t))\|_2 \leq B_1 \|u(t)\|_2 + B_0 \quad (3.18)$$

Claim 2. Let $u \in L^2(0, T; L^2(\Omega))$ a control, then the corresponding solution y verifies

$$\|y\|_{2,2} \leq \sqrt{2} \left[\|y^0\| + B_0 \sqrt{T} + B_2 \sqrt{T} \|u\|_{2,2} \right] \quad (3.19)$$

In fact, the solution y verify (3.4)

$$y(t) = S(t)y^0 + \int_0^t S(t-s) [B_\omega u(s) + f(s, y(s), u(s))] ds$$

Then, by (3.18) we get

$$\|y(t)\|_2 \leq \|y^0\| + B_0 \sqrt{T} + B_2 \int_0^t \|u(s)\|_2 ds \quad (3.20)$$

where $B_2 = 1 + B_1$.

By Cauchy-Schwarz inequality we get $\int_0^t \|u(s)\|_2 ds \leq \sqrt{t} \left(\int_0^t \|u(s)\|_2^2 ds \right)^{1/2}$, which implies

$$\left(\int_0^t \|u(s)\|_2 ds \right)^2 \leq t \int_0^t \|u(s)\|_2^2 ds \leq T \|u\|_{2,2}^2 \quad (3.21)$$

From (3.21) into (3.20) we get

$$\begin{aligned}\int_0^t \|y(t)\|_2^2 dt &\leq 2 \left[\left(\|y^0\| + B_0 \sqrt{T} \right)^2 + B_2^2 \left(\int_0^t \|u(s)\|_2 ds \right)^2 \right] \\ &\leq 2 \left[\left(\|y^0\| + B_0 \sqrt{T} \right)^2 + B_2^2 T \|u\|_{2,2}^2 \right]\end{aligned}$$

Whence (3.19).

Claim 3. Let $C_0 = \|G_1^*(\alpha I + G_1 G_1^*)^{-1}\| := \|G_1^*(\alpha I + G_1 G_1^*)^{-1}\|_{L^2(\Omega) \rightarrow L^2(0, T; L^2(\Omega))}$. Then, there exist two real constants $\gamma_0 > 0$ and $R > 0$ such that

$$\frac{\|G_2 u\|_2}{\|u\|_{2,2}} \leq \frac{1}{2C_0} \quad (3.22)$$

for all $\gamma \geq \gamma_0$ and $\|u\|_{2,2} \geq R$.

By Cauchy-Schwarz inequality and (3.16)

$$\begin{aligned} \|G_2 u\|_2 &\leq \int_0^T e^{-(\gamma+a\lambda_1)(T-s)} \|g(s, y(s), u(s))\|_2 ds \\ &\leq \left(\int_0^T e^{-2(\gamma+a\lambda_1)(T-s)} ds \right)^{1/2} \left(\int_0^T \|g(s, v(s), u(s))\|_2^2 ds \right)^{1/2} \\ &\leq \left(\frac{-1}{2(\gamma+a\lambda_1)} e^{-2(\gamma+a\lambda_1)T} + \frac{1}{2(\gamma+a\lambda_1)} \right)^{1/2} \\ &\quad \left(\int_0^T \left(\sqrt{2}\gamma \|y(s)\|_2 + B_1 \|u(s)\|_2 + B_0 \right)^2 ds \right)^{1/2} \\ &\leq \left(\frac{-1}{2(\gamma+a\lambda_1)} e^{-2(\gamma+a\lambda_1)T} + \frac{1}{2(\gamma+a\lambda_1)} \right)^{1/2} \\ &\quad \left(\int_0^T \left(4\gamma^2 \|y(s)\|_2^2 + 4B_1^2 \|u(s)\|_2^2 + 4B_0^2 \right) ds \right)^{1/2} \\ &\leq \left(\frac{-1}{2(\gamma+a\lambda_1)} e^{-2(\gamma+a\lambda_1)T} + \frac{1}{2(\gamma+a\lambda_1)} \right)^{1/2} \left(2\gamma \|y\|_{2,2} + 2B_1 \|u\|_{2,2} + 2B_0 \sqrt{T} \right) \end{aligned} \quad (3.23)$$

From (3.19) into (3.23)

$$\|G_2 u\|_2 \leq \left(\frac{-1}{2(\gamma+a\lambda_1)} e^{2(-\gamma-a\lambda_1)T} + \frac{1}{2(\gamma+a\lambda_1)} \right)^{1/2} \left(B_3 \|u\|_{2,2} + B_4 \right) \quad (3.24)$$

where $B_3 = 2\sqrt{2}\gamma B_2 \sqrt{T} + 2B_1$, $B_4 = 2\sqrt{2}\gamma \left(\|y^0\| + B_0 \sqrt{T} \right) + 2B_0 \sqrt{T}$.

As $\lim_{\gamma \rightarrow +\infty} \left(\frac{-1}{2(\gamma+a\lambda_1)} e^{-2(\gamma+a\lambda_1)T} + \frac{1}{2(\gamma+a\lambda_1)} \right)^{1/2} = 0$, then exists a real constant $\gamma_0 > 0$ such that, for all $\gamma \geq \gamma_0$

$$\left(\frac{-1}{2(\gamma+a\lambda_1)} e^{-2(\gamma+a\lambda_1)T} + \frac{1}{2(\gamma+a\lambda_1)} \right)^{1/2} \leq \frac{1}{4B_3 C_0}, \quad (3.24a)$$

and as $\lim_{\|u\|_{2,2} \rightarrow +\infty} \frac{1}{\|u\|_{2,2}} = 0$, then, there exists a real constant $R > 0$ big enough such that for all $\|u\|_{2,2} \geq R$

$$\frac{1}{\|u\|_{2,2}} \leq \frac{B_3}{B_4} \quad (3.24b)$$

Whence, for all $\gamma \geq \gamma_0$ and all $\|u\|_{2,2} \geq R$ we get the relation (3.22) from (3.24a)-(3.24b) into (3.24).

Claim 4. For each $v \in L^2(\Omega)$ fixed, define the family of nonlinear operators $\{K_\alpha\}_{\alpha \in]0,1]}$ by $K_\alpha : L^2(0, T; L^2(\Omega)) \rightarrow L^2(0, T; L^2(\Omega))$ and

$$K_\alpha(u) = G_1^*(\alpha I + G_1 G_1^*)^{-1}(v - G_2(u)) \quad (3.25)$$

Then, there exist two real constants $0 < \rho < 1$ and $R_\alpha > 0$ such that for all $\|u\|_{2,2} \geq R_\alpha$ we have

$$\frac{\|K_\alpha(u)\|_{2,2}}{\|u\|_{2,2}} \leq \rho \quad (3.26)$$

In fact, from the definition of K_α we have

$$\begin{aligned} \frac{\|K_\alpha(u)\|_{2,2}}{\|u\|_{2,2}} &\leq \frac{\|G_1^*(\alpha I + G_1 G_1^*)^{-1} v\|_{2,2}}{\|u\|_{2,2}} + \frac{\|G_1^*(\alpha I + G_1 G_1^*)^{-1} G_2(u)\|_{2,2}}{\|u\|_{2,2}} \\ &\leq \frac{\|G_1^*(\alpha I + G_1 G_1^*)^{-1} v\|_{2,2}}{\|u\|_{2,2}} + \|G_1^*(\alpha I + G_1 G_1^*)^{-1}\| \cdot \frac{\|G_2(u)\|_{2,2}}{\|u\|_{2,2}} \end{aligned}$$

As $\lim_{\|u\|_{2,2} \rightarrow \infty} \frac{\|G_1^*(\alpha I + G_1 G_1^*)^{-1} v\|_{2,2}}{\|u\|_{2,2}} = 0$ and $\frac{\|G_2(u)\|_{2,2}}{\|u\|_{2,2}} \leq \frac{1}{2C_0}$ for $\gamma \geq \gamma_0$ and $\|u\|_{2,2} \geq R$ (from the claim 3), then (3.26) is verified.

Claim 5. For every $\alpha \in]0, 1]$, the operator K_α admits a fixed point $u_\alpha \in L^2(0, T; L^2(\Omega))$: $K_\alpha(u_\alpha) = u_\alpha$.

In fact, from claim 4 : $K_\alpha(\partial B(0, R_\alpha)) \subset B(0, R_\alpha)$. Also, the C_0 -semigroup S generated by $-A = a\Delta$ in $L^2(\Omega)$ is compact ([2] on page 394), then G_2 and K_α are compacts. Applying theorem 2.1, there exists a fixed point u_α of K_α .

Claim 6. The family of fixed point $\{u_\alpha\}_{\alpha \in]0,1]}$ is bounded in $L^2(0, T; L^2(\Omega))$.

In fact, suppose the contrary; then, there exists a sequence $(u_{\alpha_k})_{k \in \mathbb{N}} \subset \{u_\alpha\}_{\alpha \in]0,1]}$ such that

$$\lim_{k \rightarrow \infty} \|u_{\alpha_k}\|_{2,2} = \infty \quad (3.27)$$

As $K_{\alpha_k}(u_{\alpha_k}) = u_{\alpha_k}$ we obtain that $\frac{\|K_{\alpha_k}(u_{\alpha_k})\|_{2,2}}{\|u_{\alpha_k}\|_{2,2}} = 1$, for all $k \in \mathbb{N}$, which contradicts the inequality (3.26).

Claim 7. There exists a sequence $(G_2(u_{\alpha_k}))_{k \in \mathbb{N}} \subset \{G_2(u_\alpha)\}_{\alpha \in]0,1]}$ such that for every $v \in L^2(\Omega)$

$$\lim_{k \rightarrow \infty} \{\alpha_k (\alpha_k I + G_1 G_1^*)^{-1} (v - G_2(u_{\alpha_k}))\} = 0 \quad (3.28)$$

In fact; according to claim 6 and Bolzano Weierstrass theorem, the set $(G_2(u_\alpha))_{\alpha \in]0,1]}$ admits a convergent subsequence $(G_2(u_{\alpha_k}))_{k \in \mathbb{N}}$ in $L^2(\Omega)$.

The rest of the proof is the same as in ([8] on page 6).

Finally; we have for all $k \in \mathbb{N}$

$$G_1(u_{\alpha_k}) + G_2(u_{\alpha_k}) = v - \alpha_k (\alpha_k I + G_1 G_1^*)^{-1} (v - G_2(u_{\alpha_k})) \quad (3.29)$$

Really; from claim 5, for all $k \in \mathbb{N}$: $u_{\alpha_k} = K_{\alpha_k}(u_{\alpha_k})$, but from (3.25) we can write

$$u_{\alpha_k} = G_1^*(\alpha_{\alpha_k} I + G_1 G_1^*)^{-1}(v - G_2(u_{\alpha_k})) \quad (3.30)$$

Applying the operator G_1 on the expression (3.30) we get

$$\begin{aligned} G_1 u_{\alpha_k} &= G_1 G_1^*(\alpha I + G_1 G_1^*)^{-1}(v - G_2(u_{\alpha_k})) \\ &= [(\alpha_k I + G_1 G_1^*) - \alpha_k I](\alpha I + G_1 G_1^*)^{-1}(v - G_2(u_{\alpha_k})) \\ &= v - G_2(u_{\alpha_k}) - \alpha_k (\alpha I + G_1 G_1^*)^{-1}(v - G_2(u_{\alpha_k})) \end{aligned}$$

Whence (3.29).

From (3.29) taking into account (3.28) we find that

$$\lim_{k \rightarrow \infty} \{G_1(u_{\alpha_k}) + G_2(u_{\alpha_k})\} = v, \quad \text{for all } v \in L^2(\Omega). \quad (3.31)$$

Now, let $y^1 \in L^2(\Omega)$ arbitrary and put $v = y^1 - e^{-\gamma T} S(T) y^0$ we get from (3.31) that

$$\lim_{k \rightarrow \infty} \{G_1(u_{\alpha_k}) + G_2(u_{\alpha_k})\} = y^1 - e^{-\gamma T} S(T) y^0,$$

whence

$$\lim_{k \rightarrow \infty} \{e^{-\gamma T} S(T) y^0 + G_1(u_{\alpha_k}) + G_2(u_{\alpha_k})\} = y^1,$$

which proves the approximate controllability of the equation (1.1).

At the end, it's worth to mention that the proof is similar to that of theorem 16 in [8] from claim 4.

Remark. By examining the proof of the theorem 3.3 we observe that it's also applicable to the case studied in [8] where there is a constant $\beta \in [\frac{1}{2}, 1[$ and two positive bounded functions $b_0, b_1 \in \mathcal{B}([0, T]; \mathbb{R})$ such that $|f(t, y, u)| \leq b_1(t)|u|^\beta + b_0(t)$ for all $y, u \in \mathbb{R}$, $|y|, |u| \geq R$.

Perspectives. In our next work, we will try to apply these techniques to study :

1. Exact and null controllability of this type of equations.
2. Approximate controllability of systems of parabolic equations.

REFERENCES

- [1] *H. Brezis*, Analyse fonctionnelle théorie et applications, Masson, 1983.
- [2] *R. Dautray, J. L. Lions*, Mathematical analysis and numerical methods for science and technology, Vol. 5 : Evolution problems, Springer, Berlin, Heidelberg, New York, 2000.
- [3] *C. Fabre, J. P. Puel and E. Zuazua*, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh, 125A, 31-61, 1995.
- [4] *E. Fernandez-Cara and E. Zuazua*, Controllability of blowing semilinear parabolic equations, Comptes rendus de l'académie des sciences I, Vol. 330, No. 3, pp. 199-204, 2000.
- [5] *Oleg Yu. Imanuvilov & Masahiro Yamamoto*, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci. 39, No. 2, pp. 227-274, 2003.
- [6] *G. Isac*, On the Rothe's fixed point theorem in logigeneral topocal vector space, Analele Științifice ale Universității din Constanța, Vol. 12, No. 2, pp. 127-134, 2004.
- [7] *H. Leiva, N. Merentes, and J. Sanchez*, Approximate controllability of a semilinear reaction diffusion, Mathematical control and related fields, Vol. 2, No. 2, 2012.

- [8] *H. Leiva, N. Merentes, and J. Sanchez*, Approximate controllability of a semilinear heat equation, International Journal of Partial Differential Equations, Vol. 2013, Art. ID 424309, 7 pages.
- [9] *A. Pazy*, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag New York, 1983.
- [10] *M. Sonego and R. Roychowdhury*, A note on control of one-dimensional heterogeneous reaction-diffusion equations, Evolution Equations and Control Theory, Volume 12, Issue 2, 2023.
- [11] *M. Yamamoto & J. Y. Park*, Controllability for parabolic equations with uniformly bounded nonlinear terms, J. Optim. Theory Appl. Vol. 66, No. 3, pp. 515-532, 1990.
- [12] *E. Zeidler*, Applied functional analysis, Vol. 108, Springer Verlag, 1991.