

**EXISTENCE AND UNIQUENESS RESULTS FOR ψ -CAPUTO
FRACTIONAL BOUNDARY VALUE PROBLEMS INVOLVING THE
 p -LAPLACIAN OPERATOR.**

Ali El Mfadel¹, Said Melliani², M'hamed Elomari³

In this paper, we investigate the boundary value problems for nonlinear ψ -Caputo fractional differential equations involving the p -Laplacian operator. We establish a new result on the existence and uniqueness of solutions by employing Banach fixed point theorem. As application, several examples are presented to illustrate the proposed result.

Keywords: ψ -fractional integral, ψ -Caputo fractional derivative, p -Laplacian operator, Banach fixed point theorem.

Mathematics Subject Classification (2010): 34K37, 34A08.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration on an arbitrary order that can be noninteger. In recent years, fractional differential equations have emerged as a new branch of applied mathematics, due to the evolution of fractional calculus. This theory have attracted a considerable interest both in mathematics and in applications as material theory, transport processes, earthquakes, electrochemical processes, wave propagation, signal theory, electromagnetic theory, thermodynamics, mechanics, geology, astrophysics, economics and control theory (see[2, 7, 8, 10, 14, 20, 21]). Basic issues related to the different fractional derivatives such as Riemann-Liouville [16], Caputo [4], Hilfer [17], Erdelyi-Kober [19] and Hadamard [3]. Indeed, fractional differential equations have been of great interest due to the intensive development of theory of fractional calculus itself and its applications. For example the fractional differential equations with p -Laplacian operator which model some phenomena from many applied fields such as turbulent filtration in porous media, blood flow problems, rheology, biology and propagations of mechanical waves in viscoelastic media. For many works on the studies of the existence and uniqueness results of fractional differential equations with the p -Laplacian operator, we refer the readers to the articles [1, 11, 12, 13, 18, 22] and the references therein.

Motivated by the above mentioned papers, we develop the theory of p -Laplacian fractional equations involving ψ -Caputo fractional derivatives. To be more precise, we establish

¹Sultan Moulay Slimane University, Beni Mellal, Morocco, e-mail: elmfadeli@gmail.com

² Sultan Moulay Slimane University, Beni Mellal, Morocco, e-mail: s.melliani@usms.ma

³ Sultan Moulay Slimane University, Beni Mellal, Morocco, e-mail: m.elomari@usms.ma

the existence result the following p -Laplacian fractional equation:

$$\begin{cases} \left(\phi_p \left({}^C D_{0+}^{\alpha, \psi} u(t) \right) \right)' = f(t, u(t)), & t \in \Delta = [0, T], \\ u(0) = \sigma_1 u(T), \quad u'(0) = \sigma_2 u'(T). \end{cases} \quad (1)$$

where $T > 0$, ${}^C D_{0+}^{\alpha, \psi}$ is the ψ -Caputo fractional derivative of order $\alpha \in (1, 2)$ and ϕ_p is a p -Laplacian operator, i.e $\phi_p(t) = t^{p-1}$ such that $p-1 > 0$.

Our paper is organized as follows: In Section 2, we give some basic definitions and properties of ψ -fractional integral and ψ -Caputo fractional derivative which will be used in the rest of this paper. In Section 3, we establish the existence and uniqueness results for p -Laplacian fractional equation (1) by using some fixed point theorem. As application, an illustrative example is presented in Section 4 followed by conclusion in Section 5.

2. Preliminaries

In this section, we give some notations, definitions and results on ψ -fractional derivatives, ψ -fractional integrals and p -Laplacian fractional equations, for more details we refer the reader to [5, 9, 15, 23].

Notations

- We denote by $C(\Delta, \mathbb{R})$ the space of continuous real-valued functions defined on Δ provided with the topology of the supremum norm

$$\| u \| = \sup_{t \in \Delta} | u(t) | .$$

- We denote by $L^1(\Delta, \mathbb{R})$ the space of Lebesgue integrable real-valued functions on Δ equipped with the norm

$$\| u \|_{L^1} = \int_{\Delta} | u(t) | dt.$$

Definition 2.1. [6] Let $q > 0$, $g \in L^1(\Delta, \mathbb{R})$ and $\psi \in C^n(\Delta, \mathbb{R})$ such that $\psi'(t) > 0$ for all $t \in \Delta$.

The ψ -Riemann-Liouville fractional integral at order α of the function g is given by

$$I_{0+}^{\alpha, \psi} g(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \psi'(s)(\psi(t) - \psi(s))^{\alpha-1} g(s) ds.$$

Definition 2.2. [6] Let $\alpha > 0$, $g \in C^{n-1}(\Delta, \mathbb{R})$ and $\psi \in C^n(\Delta, \mathbb{R})$ such that $\psi'(t) > 0$ for all $t \in \Delta$.

The ψ -Caputo fractional derivative at order α of the function g is given by

$${}^C D_{0+}^{\alpha, \psi} g(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \psi'(s)(\psi(t) - \psi(s))^{n-\alpha-1} g_{\psi}^{[n]}(s) ds,$$

Where

$$g_{\psi}^{[n]}(s) = \left(\frac{1}{\psi'(s)} \frac{d}{ds} \right)^n g(s) \quad \text{and} \quad n = [\alpha] + 1.$$

And $[\alpha]$ denotes the integer part of the real number α .

Remark 2.1. In particular, if $\alpha \in]0, 1[$, then we have

$${}^C D_{0+}^{\alpha, \psi} g(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (\psi(t) - \psi(s))^{\alpha-1} g'(s) ds.$$

and

$${}^C D_{0+}^{\alpha, \psi} g(t) = I_{0+}^{1-\alpha, \psi} \left(\frac{g'(t)}{\psi'(t)} \right)$$

Proposition 2.1. [6] Let $\alpha > 0$, if $g \in C^{n-1}(\Delta, \mathbb{R})$, then we have

- 1) ${}^C D_{0+}^{\alpha, \psi} I_{0+}^{\alpha, \psi} g(t) = g(t)$.
- 2) $I_{0+}^{\alpha, \psi} {}^C D_{0+}^{\alpha, \psi} g(t) = g(t) - \sum_{k=0}^{n-1} \frac{g_{\psi}^{[k]}(0)}{k!} (\psi(t) - \psi(0))^k$.
- 3) $I_{a+}^{\alpha, \psi}$ is linear and bounded from $C(\Delta, \mathbb{R})$ to $C(\Delta, \mathbb{R})$.

Remark 2.2. [6] If $1 < \alpha < 2$ and $g \in C^2(\Delta, \mathbb{R})$, then we have

$$I_{0+}^{\alpha, \psi} {}^C D_{0+}^{\alpha, \psi} g(t) = g(t) - [c_0 + c_1(\psi(t) - \psi(0))]$$

where $c_0, c_1 \in \mathbb{R}$.

Some basic properties of the p -Laplacian operator which will be used in our paper are listed in the following lemma.

Lemma 2.1. [12] Let $\phi_p : \mathbb{R} \rightarrow \mathbb{R}$ be a p -Laplacian operator defined by $\phi_p(x) = |x|^{p-2} x$, then we have the following basic properties:

- (1) If $1 < p < 2$ and $x \neq 0$ then $(\phi_p(x))' = (p-1) |x|^{p-2}$.
- (2) If $1 < p < 2$, $xy > 0$ and $|x|, |y| \geq l > 0$, then

$$|\phi_p(x) - \phi_p(y)| \leq (p-1)l^{p-2} |x - y|.$$

- (3) If $p > 2$ and $|x|, |y| \leq L$, then

$$|\phi_p(x) - \phi_p(y)| \leq (p-1)L^{p-2} |x - y|.$$

- (4) ϕ_p is invertible such that $\phi_p^{-1}(x) = \phi_q(x)$ where $\frac{1}{p} + \frac{1}{q} = 1$.

3. Main result

In this section, we give our main existence and uniqueness result for the problem (1).

We assume the following assumptions throughout the rest of our paper.

(H₁) There exists a real constant $k > 0$ such that

$$|f(t, u) - f(t, v)| \leq k |u - v| \quad \text{for all } t \in \Delta \text{ and } u, v \in \mathbb{R}.$$

(H₂) There exists two constants $\gamma > 0$ and $0 < \rho < \frac{2}{2-q}$ such that

$$f(t, u) \geq \gamma \rho t^{\rho-1} \quad \text{for all } (t, u) \in \Delta \times \mathbb{R}.$$

Before we give the main result of our paper, we need to prove the following fundamental lemma.

Lemma 3.1. Suppose that the function $u(t) \in C(\Delta, \mathbb{R})$, $\alpha \in (1, 2)$ and $\sigma_1, \sigma_2 \in \mathbb{R}$.

If $\sigma_1 \neq 1$ and $\sigma_2 \neq \frac{\psi'(0)}{\psi(T)}$ then $u(t)$ is a solution of the fractional differential equation (1) if and only if it satisfies the the following fractional integral equation

$$u(t) = \frac{\sigma_1 \sigma_2 (\psi(T) - \psi(0))^2}{(1 - \sigma_1)(\psi'(0) - \sigma_2 \psi(T)) \Gamma(\alpha - 1)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau$$

$$\begin{aligned}
& + \frac{\sigma_1}{(1 - \sigma_1)\Gamma(\alpha)} \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\
& + \frac{\sigma_2(\psi(T) - \psi(0))(\psi(t) - \psi(0))}{(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha-1)} \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\
& + \frac{1}{\Gamma(\alpha)} \int_0^t \psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau.
\end{aligned}$$

Proof. Let $u(t)$ be a solution of the fractional differential equation (1).

By integrating (1), we obtain

$$\phi_p \left({}^C D_{0+}^{\alpha, \psi} u(t) \right) - \phi_p \left({}^C D_{0+}^{\alpha, \psi} u(0) \right) = \int_0^t f(s, u(s)) ds,$$

since ${}^C D_{0+}^{\alpha, \psi} u(0) = 0$ then we have

$$\phi_p \left({}^C D_{0+}^{\alpha, \psi} u(t) \right) = \int_0^t f(s, u(s)) ds,$$

By using the inverse operator ϕ_q of the p -Laplacian operator ϕ_p we get

$${}^C D_{0+}^{\alpha, \psi} u(t) = \phi_q \left(\int_0^t f(s, u(s)) ds \right), \quad (2)$$

we apply the ψ -fractional integral $I_{0+}^{\alpha, \psi}$ on both sides of (2) we have

$$I_{0+}^{\alpha, \psi} {}^C D_{0+}^{\alpha, \psi} u(t) = I_{0+}^{\alpha, \psi} \phi_q \left(\int_0^t f(s, u(s)) ds \right)$$

by using Remark 2.2 we obtain

$$u(t) = c_0 + c_1(\psi(t) - \psi(0)) + I_{0+}^{\alpha, \psi} \phi_q \left(\int_0^t f(s, u(s)) ds \right),$$

where $c_0, c_1 \in \mathbb{R}$.

It follows that

$$u(t) = c_0 + c_1(\psi(t) - \psi(0)) + \frac{1}{\Gamma(\alpha)} \int_0^t \psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau. \quad (3)$$

We can easily get also that

$$u'(t) = c_1\psi'(t) + \frac{1}{\Gamma(\alpha)} \frac{d}{dt} \left(\int_0^t \psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \right),$$

thus

$$u'(t) = c_1\psi'(t) + \frac{(\psi(t) - \psi(0))}{\Gamma(\alpha-1)} \int_0^t \psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau.$$

We can deduce that

$$\begin{aligned}
u(0) &= c_0, \\
u'(0) &= c_1\psi'(0),
\end{aligned}$$

and

$$u(T) = c_0 + c_1(\psi(T) - \psi(0)) + I_{0+}^{\alpha, \psi} \phi_q \left(\int_0^T f(s, u(s)) ds \right),$$

$$u'(T) = c_1 \psi'(T) + \frac{(\psi(T) - \psi(0))}{\Gamma(\alpha - 1)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau.$$

It follows that

$$c_1 = \frac{\sigma_2(\psi(T) - \psi(0))}{(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha - 1)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau.$$

and

$$c_0 = \frac{\sigma_1\sigma_2(\psi(T) - \psi(0))^2}{(1 - \sigma_1)(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha - 1)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\ + \frac{\sigma_1}{(1 - \sigma_1)\Gamma(\alpha)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau,$$

Substituting c_0 and c_1 in (3), we get

$$u(t) = \frac{\sigma_1\sigma_2(\psi(T) - \psi(0))^2}{(1 - \sigma_1)(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha - 1)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\ + \frac{\sigma_1}{(1 - \sigma_1)\Gamma(\alpha)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\ + \frac{\sigma_2(\psi(T) - \psi(0))(\psi(t) - \psi(0))}{(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha - 1)} \int_0^T \psi'(\tau) (\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\ + \frac{1}{\Gamma(\alpha)} \int_0^t \psi'(\tau) (\psi(t) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau.$$

This completes the proof. \square

We prove our main result by using the Banach fixed point theorem. For this purpose we set the following formulas

$$\omega_1 = k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \left(\frac{\sigma_1\sigma_2(\psi(T) - \psi(0))^{\alpha+1}}{(1 - \sigma_1)(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha)} + \frac{\sigma_1(\psi(T) - \psi(0))^{\alpha-1}}{(1 - \sigma_1)(1 - \alpha)\Gamma(\alpha)} \right). \\ \omega_2 = k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \left(\frac{\sigma_2(\psi(T) - \psi(0))^{\alpha+1}}{(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha)} + \frac{(\psi(T) - \psi(0))^{\alpha-1}}{(1 - \alpha)\Gamma(\alpha)} \right).$$

Theorem 3.1. Suppose that $p > 2$, $\sigma_1 \neq 1$ and $\sigma_2 \neq \frac{\psi'(0)}{\psi(T)}$. If the hypotheses (H_1) and (H_2) hold and $\omega_1 + \omega_2 < 1$ then the p -Laplacian fractional equation (1) has a unique solution on Δ .

Proof. By using the assumption (H_2) we can obtain

$$\int_0^t f(s, u(s)) ds \geq \gamma t^\rho \quad \text{for all } (t, u) \in \Delta \times \mathbb{R}.$$

Let $u, v \in C(\Delta, \mathbb{R})$, then by using Lemma 2.1 and the assumption (H_1) we have the following estimation

$$\left| \phi_q \left(\int_0^t f(s, u(s)) ds \right) - \phi_q \left(\int_0^t f(s, v(s)) ds \right) \right| \leq (q-1)(\gamma t^\rho)^{q-2} \left| \int_0^t f(s, u(s)) ds - \int_0^t f(s, v(s)) ds \right|,$$

$$\left| \phi_q \left(\int_0^t f(s, u(s)) ds \right) - \phi_q \left(\int_0^t f(s, v(s)) ds \right) \right| \leq (q-1)(\gamma t^\rho)^{q-2} \int_0^t |f(s, u(s)) - f(s, v(s))| ds,$$

$$\begin{aligned} \left| \phi_q \left(\int_0^t f(s, u(s)) ds \right) - \phi_q \left(\int_0^t f(s, v(s)) ds \right) \right| &\leq (q-1)(\gamma t^\rho)^{q-2} \int_0^t k \| u - v \| ds, \\ \left| \phi_q \left(\int_0^t f(s, u(s)) ds \right) - \phi_q \left(\int_0^t f(s, v(s)) ds \right) \right| &\leq k(q-1)\gamma^{q-2} t^{\rho(q-2)+1} \| u - v \| . \end{aligned} \quad (4)$$

Let $\mathcal{A} : C(\Delta, \mathbb{R}) \rightarrow C(\Delta, \mathbb{R})$ be the operator defined as follows:

$$\begin{aligned} \mathcal{A}u(t) = a(T) \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\ + b(\sigma_1) \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\ + c(t) \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau \\ + d \int_0^t \psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1} \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) d\tau. \end{aligned}$$

where

$$\begin{aligned} a(T) &= \frac{\sigma_1 \sigma_2 (\psi(T) - \psi(0))^2}{(1 - \sigma_1)(\psi'(0) - \sigma_2 \psi(T)) \Gamma(\alpha - 1)}, \\ b(\sigma_1) &= \frac{\sigma_1}{(1 - \sigma_1) \Gamma(\alpha)}, \\ c(t) &= \frac{\sigma_2 (\psi(T) - \psi(0)) (\psi(t) - \psi(0))}{(\psi'(0) - \sigma_2 \psi(T)) \Gamma(\alpha - 1)}, \end{aligned}$$

and

$$d = \frac{1}{\Gamma(\alpha)}.$$

Now, we will show that the operator \mathcal{A} is a contraction mapping.

Let $u, v \in C(\Delta, \mathbb{R})$, Then by hypothesis (H_2)

$$\begin{aligned} |\mathcal{A}u(t) - \mathcal{A}v(t)| &\leq \left| a(T) \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2} \left(\phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right) d\tau \right| \\ &\quad + \left| b(\sigma_1) \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-1} \left(\phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right) d\tau \right| \\ &\quad + \left| c(t) \int_0^T \psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2} \left(\phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right) d\tau \right| \\ &\quad + \left| d \int_0^t \psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1} \left(\phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right) d\tau \right|. \end{aligned}$$

thus

$$\begin{aligned} |\mathcal{A}u(t) - \mathcal{A}v(t)| &\leq |a(T)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| \left| \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right| d\tau \\ &\quad + |b(\sigma_1)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-1}| \left| \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right| d\tau \\ &\quad + |c(t)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| \left| \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right| d\tau \\ &\quad + |d| \int_0^t |\psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1}| \left| \phi_q \left(\int_0^\tau f(s, u(s)) ds \right) - \phi_q \left(\int_0^\tau f(s, v(s)) ds \right) \right| d\tau. \end{aligned}$$

By using (4) we obtain

$$\begin{aligned}
|\mathcal{A}u(t) - \mathcal{A}v(t)| &\leq |a(T)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| \left| k(q-1)\gamma^{q-2}\tau^{\rho(q-2)+1} \right| \|u - v\| d\tau \\
&\quad + |b(\sigma_1)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-1}| \left| k(q-1)\gamma^{q-2}\tau^{\rho(q-2)+1} \right| \|u - v\| d\tau \\
&\quad + |c(t)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| \left| k(q-1)\gamma^{q-2}\tau^{\rho(q-2)+1} \right| \|u - v\| d\tau \\
&\quad + |d| \int_0^t |\psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1}| \left| k(q-1)\gamma^{q-2}\tau^{\rho(q-2)+1} \right| \|u - v\| d\tau.
\end{aligned}$$

It follows that

$$\begin{aligned}
|\mathcal{A}u(t) - \mathcal{A}v(t)| &\leq \left| k(q-1)\gamma^{q-2}a(T) \right| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| \left| \tau^{\rho(q-2)+1} \right| \|u - v\| d\tau \\
&\quad + \left| k(q-1)\gamma^{q-2}b(\sigma_1) \right| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-1}| \left| \tau^{\rho(q-2)+1} \right| \|u - v\| d\tau \\
&\quad + \left| k(q-1)\gamma^{q-2}c(t) \right| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| \left| \tau^{\rho(q-2)+1} \right| \|u - v\| d\tau \\
&\quad + \left| k(q-1)\gamma^{q-2}d \right| \int_0^t |\psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1}| \left| \tau^{\rho(q-2)+1} \right| \|u - v\| d\tau.
\end{aligned}$$

Since $\gamma > 0$ and $0 < \rho < \frac{2}{2-q}$ we get

$$\begin{aligned}
|\mathcal{A}u(t) - \mathcal{A}v(t)| &\leq \left(|a(T)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| d\tau \right) k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \|u - v\| \\
&\quad + \left(|b(\sigma_1)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-1}| d\tau \right) k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \|u - v\| \\
&\quad + \left(|c(T)| \int_0^T |\psi'(\tau)(\psi(T) - \psi(\tau))^{\alpha-2}| d\tau \right) k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \|u - v\| \\
&\quad + \left(|d| \int_0^T |\psi'(\tau)(\psi(t) - \psi(\tau))^{\alpha-1}| d\tau \right) k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \|u - v\|.
\end{aligned}$$

Thus

$$\begin{aligned}
|\mathcal{A}u(t) - \mathcal{A}v(t)| &\leq \left(\frac{\sigma_1\sigma_2(\psi(T) - \psi(0))^{\alpha+1}}{(1-\sigma_1)(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha)} + \frac{\sigma_1(\psi(T) - \psi(0))^{\alpha-1}}{(1-\sigma_1)(1-\alpha)\Gamma(\alpha)} \right) k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \|u - v\| \\
&\quad + \left(\frac{\sigma_2(\psi(T) - \psi(0))^{\alpha+1}}{(\psi'(0) - \sigma_2\psi(T))\Gamma(\alpha)} + \frac{(\psi(T) - \psi(0))^{\alpha-1}}{(1-\alpha)\Gamma(\alpha)} \right) k(q-1)\gamma^{q-2}T^{\rho(q-2)+1} \|u - v\|.
\end{aligned}$$

Finally, we obtain

$$\| \mathcal{A}u - \mathcal{A}v \| \leq (\omega_1 + \omega_2) \| u - v \|.$$

By using the Banach contraction mapping principle, we can deduce that the operator \mathcal{A} has a unique fixed point in the space $C(\Delta, \mathbb{R})$ which is the unique solution of the differential equation (1) defined on Δ .

□

4. Illustrative example

In this section we give an example to illustrate our main result.

Consider the following fractional differential equation:

$$\begin{cases} \left(\phi_{\frac{5}{2}} \left({}^C D_{0^+}^{\frac{3}{2}, t^2} u(t) \right) \right)' = 3t^2 \cos^2 \left(\frac{\pi u(t)}{10} + \Theta \right), & t \in \Delta = [0, 1], \\ u(0) = \frac{1}{10} u(1), \quad u'(0) = \frac{1}{10} u'(1). \end{cases} \quad (5)$$

where $\Theta \in \mathbb{R}$.

The fractional differential equation (5) can be regarded as fractional differential equation(1), where

$$\begin{aligned} \alpha &= \frac{3}{2}, \quad T = 1, \quad \psi(t) = t^2, \quad p = \frac{5}{2} < 2, \quad \sigma_1 = \sigma_2 = \frac{1}{10} \text{ and} \\ f(t, u(t)) &= 3t^2 \cos^2 \left(\frac{\pi u(t)}{10} + \Theta \right). \end{aligned}$$

It is clear that $q = \frac{5}{3} < 2$ and $f \in C(\Delta \times \mathbb{R}, \mathbb{R})$.

We take $\gamma = 1$, $\rho = 3$ and $k = \frac{\pi}{3}$ then we obtain $0 < \rho < \frac{2}{2-q} = 6$.

To prove the assumption (H_1) , let $t \in \Delta$ and $u, v \in \mathbb{R}$, then we have

$$\begin{aligned} |f(t, u(t)) - f(t, v(t))| &= \left| 3t^2 \cos^2 \left(\frac{\pi u(t)}{10} + \Theta \right) - 3t^2 \cos^2 \left(\frac{\pi v(t)}{10} + \Theta \right) \right|, \\ |f(t, u(t)) - f(t, v(t))| &\leq \frac{\pi t^2}{3} |u(t) - v(t)|, \\ |f(t, u) - f(t, v)| &\leq \frac{\pi}{3} |u - v|. \end{aligned}$$

Thus, the assumption (H_2) in holds true with $k = \frac{\pi}{3}$.

It remains to verify the assumption (H_2) . Let $t \in \Delta$ and $u \in \mathbb{R}$, then we have

$$\gamma \rho t^{\rho-1} = 3t^2 \leq 3t^2 \cos^2 \left(\frac{\pi u(t)}{10} + \Theta \right) = f(t, u).$$

Moreover, we have

$$\omega_1 + \omega_2 = \frac{2\pi}{27\Gamma(\frac{3}{2})} < 1.$$

Finally, all the conditions of Theorem 3.1 are satisfied, thus the p -Laplacian fractional problem (1) has a unique solution on $[0, 1]$.

5. Conclusion

In this article, we have considered the boundary value problem for ψ -Caputo fractional differential equations involving the p -Laplacian operator. As a first step, by applying the tools of fractional calculus and using some basic properties of ψ -Caputo fractional derivative and ψ -fractional integral, we build a general structure of solutions associated with our proposed model. Once the fixed point operator equation is available, the existence result is established by using Banach fixed point theorem. Finally, the investigation of the result has been illustrated by providing suitable examples.

Acknowledgement

The authors would like to express their sincere appreciation to the referees for their very helpful suggestions and many kind comments.

REFERENCES

- [1] R.P. Agarwal, D. O'Regan and N.S. Papageorgiou, On the existence of two nontrivial solutions of periodic problems with operators of p -Laplacian type, *Differ. Equ.*, **34**(2)(2007), 157-163.
- [2] R.P. Agarwal, y. Zhou, J. Wang and X. Luo, Fractional functional differential equations with causal operators in Banach spaces, *Mathematical and Computer Modelling.*, **54** (2011)1440–1452.
- [3] R.P. Agarwal, S.K. Ntouyas, B. Ahmad and A.K. Alzahrani, Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, *Advances in Difference Equations.*, **1**(2016)1–15.
- [4] R.P. Agarwal, S. Hristova and D. O'Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, *Fract. Calc. Appl. Anal.*, **19** (2016) 290–318.
- [5] Almeida, R.: Caputo fractional derivative of a function with respect to another function. *Commun. Nonlinear Sci. Numer. Simul.***44**, 460–481 (2017)
- [6] R. Almeida, A.B. Malinowska and M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, *Mathematical Methods in the Applied Sciences.*, **41**(1)(2018) 336–352.
- [7] D. Baleanu, H. Jafari, H. Khan, and S.J. Johnston, Results for mild solution of fractional coupled hybrid boundary value problems, *Open Math.***13**(2015) 601–608.
- [8] ,D. Baleanu, H. Khan, H. Jafari and R.A. Alipour, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, *Advances in Difference Equations.*, **1**(2015)1–14.
- [9] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Frechet spaces, *Appl. Anal.*, **58**(2006)1459–1470.
- [10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, *International Journal of Geographical Information Science.*, **13**(5)(1967) 529–539.
- [11] G. Chai, Positive solutions for boundary value problem of fractional differential equation with p -Laplacian operator, *Boundary Value Problems.*, **1**(2012)1–20.
- [12] T. Chen and W. Liu, An anti-periodic boundary value problem for the fractional differential equation with a p -Laplacian operator, *Applied Mathematics Letters.***25**(11) (2012)1671–1675.
- [13] X. Chang and Y. Qiao, Existence of periodic solutions for a class of p -Laplacian equations, *Boundary Value Problems.*,**1**(2013) 1–11.
- [14] K. Diethelm, *The Analysis of Fractional Differential Equations.*, Springer-Verlag, Berlin, 2010.
- [15] T.L Guo and M. Jiang, Impulsive fractional functional differential equations, *Comput. Math. Appl.*,**64**(2012) 3414–3424.
- [16] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical studies 204. Ed van Mill. Amsterdam, 2006.
- [17] R. Hilfer, Applications of Fractional Calculus in Physics, Singapore, 2000.
- [18] S. Liang and S. Shi, Existence of multiple positive solutions for m-point fractional boundary value problems with p -Laplacian operator on infinite interval, *Journal of Applied Mathematics and Computing.*, **38**(1) (2012) 687-707.

- [19] Y. Luchko and J.J Trujillo, Caputo-type modification of the Erdelyi-Kober fractional derivative, *Fract. Calc. Appl. Anal.*, **10** (2007) 249–267.
- [20] F. Mainardi, Fractals and Fractional Calculus Continuum Mechanics, Springer Verlag, 1997.
- [21] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press. New York, 1999.
- [22] J. Wang, H. Xiang and Z. Liu, Existence of concave positive solutions for boundary value problem of nonlinear fractional differential equation with-Laplacian operator, *International Journal of Mathematics and Mathematical Sciences.*, 2010.
- [23] L. Wei, R.P. Agarwal and P.JY. Wong, Existence of solutions to nonlinear parabolic boundary value problems with generalized p-Laplacian operator, *Adv. Math. Sci. Appl.*, **20**(2)(2010)423–445.