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In this paper, we shall introduce the motion of modular b-gauge spaces with
the help of pseudomodular b-metrics. We shall also prove some fized point theorems
for multivalued mappings on modular b-gauge spaces. Moreover, we shall construct an
application of our result in nonlinear integral equations.
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1. Introduction and Preliminaries

Czerwik [1] introduced the concept of b-metric spaces which appears as a novel gener-
alization of metric spaces. This notion helps us to standardize the measurement of distance
between the elements of I, spaces, specially for p € (0,1). Czerwik [1] defined this space by
modifying the triangular axiom of metric space (X, d) as:

d(x,z) < s[d(x,y) + d(y, 2)] for each z,y,z € X, where s > 1.

After Czerwik [1] many articles published in this direction, see for example, [2, 3] with those
cited in these two articles.

Another generalized form of metric spaces is introduced by Chistyakov [4] known as
modular metric spaces. In this space the distance between two elements may depends upon
a parameter X\. Moreover it is not necessary that the distance between two elements must
be finite. Recently Ali [5] extended modular metric spaces by introducing the terminology
of modular b-metric spaces, this concept involves the idea of Czerwik [1].

Frigon [6] studied the Banach fixed point result on gauge spaces. After this study
many authors worked in the direction of gauge spaces, like, [7, 8, 9, 10, 11, 12, 13]. Recently,
Ali et al. [14] introduced the notion of modular gauge spaces induced through the family of
pseudomodular metrics.

In this paper we define the concept of modular b-gauge spaces induced through the
family of pseudomodular b-metrics. We will also prove fixed point results for multivalued
mappings in the setting of modular b-gauge spaces induced through the family of pseu-
domodular b-metrics. An as application of our work we will provide an existence result
for nonlinear integral equations. Further, we will provide a particular nonlinear integral
equation as an example of our existence theorem.

With the help of bibliography we collect few definitions and results which will be
required subsequently.
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Definition 1.1. [4] A modular metric wpys : (0,00) X X x X — [0,00] on X is a function
with these axioms: for each x,y,z € X, we have

2 (1) wns(B,2,y) =0VB >0 =y;

: (ZZ) Wms(/B, 1'7 y) = wms(67 y’ :L.) V/B > 0’.

2 (161) Wins (B + 7,2, 2) < wins(B,2,Y) + wms (1,9, 2) V8,7 > 0.

For a brief study of modular metric spaces and fixed point results stated on it, we

refer the readers to [5, 15, 16, 17, 18, 19]. Ali [5] extended the concept of modular metric
space by defining the modular b-metric space as:

Definition 1.2. [5] A modular b-metric wp;s : (0,00) x X x X — [0,00] on X is a function
with these axioms: for each x,y,z € X, we have
2 (1) wms (B, 2, y) = wms(B,y,x) VB > 0;
: (“Z) wms(ﬂ +")/,£L',Z) S wms(%%y) +wm5(%7y72) VB,’)’ > 0; h@’f"@ S Z 1is aﬁxed 'I“GCLZ
number.

The modular b-metric on X is called modular b-metric space and denoted by (X, wpms, S)

A modular metric space is also a modular b-metric space but converse statement is
not true in general.

Example 1.1. [5] Take X = [0,00) with wy,s(5,x,y) = % is the simplest example
of modular b-metric space with s = 2. Note that it is not a modular metric space.

Definition 1.3. [5] A regular modular b-metric wp,s : (0,00) x X x X — [0,00] on X is a
function with these axioms: for each x,y,z € X, we have
(i) x =y S wns(B,2,y) =0 for some 5 > 0;
2 (i) Wins (B, 2,y) = wms(B,y,z) V8 > 0;
2 (141) wms(B+ 7,2, 2) < wms(g,m,y) +wms(L,y,2) V8,7 >0, here s > 1 is a fized real
number.

A pseudomodular b-metric on X is obtained by replacing axiom (i) of a modular
b-metric with (i) for each x € X, wpns(8,2,2) = 0 VS8 > 0. Note that the function 8 —
wWms(B, x, z) is nonincreasing on (0, 00). This fact can be proven by taking 0 < 5 < v (with
8= %) in triangular axiom, that is,

- A A
wms(’Y7m7Z) S (JJmS(’YT,JHl') +wms(ga'raz) = wms(/@amaz)'

Further note that when w,,s is a pseudomodular b-metric on X and xzg € X is a fixed
element, then the sets

X

Wms

= Xo,,.(@0) ={z € X : wns(7,20,2) = 0 as v — o}
and
X5 =X (wo) ={r € X :3y=r(x) >0 such that wps(\, zo,z) < o0}

Wms
are modular spaces (around ).
The concepts like w,,s-convergent sequence, w,,s-Cauchy sequence, w,,s-closed sets
and w,,s-complete sets in modular b-metric spaces are defined in the similar way as defined
for modular metric spaces in [19].

Definition 1.4. Let (X,wms,s) be a modular b-metric space, let {z,} C X, and x € X,,.
Then:

2 (i) the {xn} is wms-convergent sequence in X with the limit point x, if Wms(B, Tn,x) —
0 for some B >0 as n — ooy
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s (ii) the {xn} i wims-Cauchy sequence if limy, m—s 0o Wims (B, Tn, Tm) = 0 for some § >0

2 (13) a subset M of X, . 1S wms-complete if every w,s-Cauchy sequence in M is wy,s-
convergent in M,

: () a subset M of X, . is wms-closed if it contains the limit point of each wys-
convergent sequence contained in M.

: (v) a subset M of X, 1S wms-bounded if we have

J

Wms

ms

(M) = sup{wms(1,2,y) : z,y € M} < o0.

In the literature we have seen that the fixed point results on modular metric spaces
involve the A-condition and Fatou property. Ali [5] extended these conditions for modular
b-metric spaces as follows:

Definition 1.5. [5] Let (X, wms, ) be a modular b-metric space. Then wp,s s satisfies:
: (a) the Ay-condition, if the following axioms hold:
: (i) for each {x,,} in X satisfying wpms(B, Tn, Tnt1) < r™C for some 8 > 0 and for
each n € N, where r € [0,1/s) and C > 0 is some fized real numbers, then we
have Wps (Y, Ty Tnt1) < r*C for each v > 0 and for each n € N;
: (it) for each {z,} in X and x € X with lim,—,cc wims(B, Tn,x) = 0 for some 5 > 0,
then we have limy, 00 Wms (Y, Tn,x) = 0 for all v > 0.

: (b) the Fatou property if for each {x,} wms-convergent to x and {y,} wms-convergent
to y, we have wpms(1, z,y) < lUminf, oo wWims(L, Tn, Yn)-

2. Main Results

This section begins with w,,s-ball with respect to pseudomodular b-metric.

Definition 2.1. Take a pseudomodular b-metric wy,s on X. Then the wy,s-ball having the
radius B > 0 with x € X as a center is the set

Blz,wms, 8] = {2z € X : ¥y > 0 wims(v,z,9) < B}
Example 2.1. Take X =R with the pseudomodular b-metric wp,s(B,z,y) = % for
each x,y € X and > 0, where s =2. Then
Blzg,8,1] = {2 € X : VB >0, zf + 2> — 2220 < B} = {20}

Example 2.2. Take X = R with the pseudomodular b-metric wp,s(B,z,y) = gﬁﬁ# for
each x,y € X and 8 > 0, where s = 2. Then
Blzo,8,1] = {2€X:V3>0, 22+ 2% — 222 < [B]}

= {yeX a2 +2%—2zm9<1}=(xg—1,20+1).

Definition 2.2. A collection § = {wms, with s, > 1: 1 € A} of pseudomodular b-metrics
is called separating if for every pair (x,y) with x # y, we have atleast one wps, € § with

Wmsn (ﬂvxay) 7& 0 Vﬂ > 0.

Definition 2.3. Take a collection § = {wmsﬂ with s, > 1 :n € A} of pseudomodular
b-metrics on X # 0. The topology T(F) with a collection of subbases

B(F) = {Blz, wWms, V] : 2 € X, wims, €T and v > 0}

of the balls is a modular topology induced by the collection § of pseudomodular b-metrics.
The pair (X, %(F)) is said to be a modular b-gauge space.

Before going towards a next definition we define the following notion:
Xz = Xz(20) = {z € X : ¥ € A wps, (B,20,7) — 0 as § — oo}

where x( is fixed in X.
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Definition 2.4. Take modular b-gauge space (X,%(F)) with respect to the collection F =
{Wms, with s, > 1:n € A} of pseudomodular b-metrics on X and also take {x,} C Xz and
x € Xz. Then:

2 (1) {zn} 15 Wms, -convergent to x if for every n € A we have limy, o0 Wins, (B, Tn, ) =
0 for some 8 >0 . We denote it as x, =3 x;

: (1i) {Tn} 98 Wi, -Cauchy if for every n € A we have limy, 00 Wms, (B, Tn, Tm) = 0 for
some 8 > 0;

2 (1ii) Xg 18 Wms, -complete if every Wy, -Cauchy sequence in Xg is wps, -convergent in
Xg,'

: () a subset W of X5 is said to be wps, -closed if it contains the limit of each Wy, -
convergent sequence of its elements.

2 (v) a subset W of Xz is wps, -bounded if we have

O5(W) = sup{wms, (1,z,y) : x,y € W,n € A} < oco.

Take a separating modular b-gauge space induced through the collection of pseudo-
modular b-metrics § = {wns, with s, > 1:n € A} on X # 0 and {z,} is Wy, -convergent
in Xz, then {z,} wns, -converges to unique limit point.

On contrary we take z,, =% a and z,, —5 b. Then for every € 2, there are v;, v > 0
such that limy, oo Wms, (71, Zn,a) = 0 and lim,, o0 Wins, (72, Tn,b) = 0. By the triangular
axiom we obtain

Wins, (Sn71 + SpY2,a,0) < Wi, (V1,5 Tn) + Wins, (Y2, Tn,b) ¥n € N and n € 2

This yields, limy, 0o Wms, (Sy71 +5y72,a,0) =0Vn € A As § = {wys, With s, > 1:n €A}
is separating, hence we get a = b.

Subsequently, in the article, 2 is an indexed set and X # () equipped with a modular
b-gauge space induced through the collection § = {wms, with s, > 1:7n € 2} of separating
pseudomodular b-metrics which also satisfy the Fatou property and Aj-condition. Further-
more, M is wmsn—bounded and wmsn—complete subset of X under the above considered
modular b-gauge space (X, %(F)). Moreover, X is a mapping from M x M into [0,00). By
CL(M), we denote the collection of nonempty wy,s,-closed subsets of M under the above
modular b-gauge space.

Theorem 2.1. Consider a map T: M — CL(M) such that for each x,y € M with A(z,y) >
1 and u € Tx, there exists v € Ty satisfying the following inequality:

Wms,, (1,z,u) + Wms,, (1L,y,v)
2 )

} + Lywms, (1,9, u) (1)

Wms, (1, u,v) < rpymax {wmsn (1,z,y),

Wmsn (287']7 z, U) + wmsn (17 Y, U)
2

for all n € A, where ry, € [0,1/s,) and L, > 0 Vn € A. Further, assume the given below
conditions hold:

: (i) there are two elements xg € M and x1 € Txg with A(zo,x1) > 1;

2 (i) for x € M and y € Tx with A(z,y) > 1, we have A(y,z) > 1 for each z € Ty;

s (iii) if {x,} is a sequence in M with x,, =5 © € M and \N(xp,T,+1) > 1Vn €N, then
AMzp,x2) >1Vn eN.

Then atleast one fized point of T must exists.
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Proof. By hypothesis (i), there are two elements zg € M and x; € Tz such that A(zg,21) >
1. From (1), for A(zo,x1) > 1 and x1 € T'xg, we have x5 € Tx; such that

wmsn(l,xo,fl) + wmsn(laxla CCQ)

wms,,,(lyxlaan) < 'pnax {wms,,,(laxO;xl)a

2 )
Wms, (285, To, T2) + Wins, (1, 21, 21
(2sy )2 ( )} + Lywms, (1,21, 1)
Wms, (1, 0, 1) + Wms, (1, 21,2
< 7,max {Wmsn(17x07x1), (1, 20, 21) 5 (21 2),
Wms,,(lnyaxl)+wmsn(17x1>x2)}
2
< r,max {wmsn(l,xo,xl),wmsn(l,xl,scg)} n € 2. (2)

If we take max {wms, (1,20, 1), wms, (1,21, 32)} = wms, (1,21, 22), then from (2) we get
Wins, (1,21, 2) < Tywms, (1,71, 22) < Wms, (1,21, 72), which is impossible. Thus, we have
max {wmsn(l,xg,xl),wmsn(lwl,xg)} = Wms, (1,20, 1). From (2), we have

Wins, (1,21, 22) < rywms, (1,20, 21) Vi € 2. (3)

As zg € M and z1 € Txo with A(xg,z1) > 1, then by hypothesis (ii), for zo € Tz, we have
Mz, 22) > 1. From (1), for A(z1,22) > 1 and x5 € Tzq, we have x5 € Tz such that

wms,,, (17 X, .’1,‘2) + wms,,, (17 x2, 373)
2 7

Wins, (1, 22,23) < 7 max {wm&7 (1,21, x2),

W?n&7 (28177]"1a 333) + Wmsn(lax%xQ)

}+anmsn(1,x2,m2)

2
< r;max {UJmSn(]-, T1,T2), W (1,21, 72) —;—wmsn(l, e 1:3)’
Wns, (1,21, 02) + wms, (1, 72, 73) }
2
< rpmax {wmsn(l, T1,22), Wns, (1, T2, x3)}
= TyWms, (1, 21,22) Vn € A, (4)

From (3) and (4), we have wys, (1, %2, 3) < rowms, (1,20, 21) ¥ € A. Continuing this pat-
tern we get {x,} in M such that x,, € Txp_1, M@p_1,7,) > 1 and wps, (1, Tn, Tng1) <
rpw(l,zo,z1) < 1705(M) for each n € N and 7 € 2. By using the Ap-condition and the
above inequality, for each € 2, we get wys, (11, Tn, Tni1) < 7705 (M) for each > 0 and n €
N. For each m,p € N, we get

m+p—1 1 m+p—1
Wms,,(pv xmaxm+p) < Z wmsn(sTvxivxi-H) < Z T;KSS(M)
i=m n i=m

IA

o
Z T:]ég(M) — 0 as m — ocoVn € 2.
i=m

Hence {z,} is wmsn—Cauchy in M. As M is Wms,-complete then there is z* € M such that
for each n € & we have lim,, 00 Wins, (B, n,x*) = 0 for some B > 0. Since the Ap-condition
holds for the collection § then, for each n € 2, we get lim, o0 Wms, (7, Tn, 2*) = 0 Vy > 0.
Hypothesis (iii) yields A(xn,2*) > 1 ¥n € N. From (1), for May,,2*) > 1 and 2,11 € Tz,
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there is v* € T'x* such that
Wms,,(lal"ruanrl) + wmsn(17$*7v*)
2 )

b+ Lywoms, (1,3" 1)

Wms,,(laxnvxn—f—l) + wmsn(l,l‘*,’t)*)
2 i
wms,,(la Ty, ") + Wmsn(lv z*,v*) + Wms, (L, 2", 2p41) }
2
+Lywms, (1, 2%, 0p41) V0 € 2 (5)

wmsn(lvxn—klvv*) < rpmax {wmsn(l,xn,x*),

wmsn (2577, Tn, ’U*) + Wms,,] (1a x*’ xn+1)
2

IN

Ty, Max {wmsn(l,xn,x*),

In the above inequality by keeping the Fatou property and the case as n — co, we get

Wins, (1,27, %)

Wmsn(la (E*,’U*) S Ty 9 V?] S Q(,
which is only possible if wps, (1,2%,0*) = 0 Vn € 2. As we know that the collection
{Wms, with s, > 1:7 €2} is separating, thus we get z* = v*. Hence, 2* € Tz". O

Theorem 2.2. Consider a map T: M — CL(M) such that for each x,y € M with A(z,y) >
1 and u € Tz, there exists v € T'y satisfying the following inequality:
wmsn(]wuvv) < anwmsn(]-vxay) +bn"‘)rnsn(l;x,u) +anms7,(17yav)
"’enwms77 (237” z, ’U) + anmsn (17 Y, u) vned (6)
where ay, by, ¢y, ey, Ly > 0, and sya, + syby + sycp + 28%677 < 1Vn e A. Further, assume
the given below conditions hold:

: (i) there are two elements xo € M and x1 € Txo with A(xg,z1) > 1;

2 (i) for x € M and y € Tx with A(z,y) > 1, we have A(y,z) > 1 for each z € Ty;

s (iii) if {x,} is a sequence in M with x, =5 x € M and \(xp,T,11) > 1Vn €N, then
Azp,x) >1V¥n eN.

Then atleast one fized point of T must exists.

Proof. Hypothesis (i) gives the existence of two elements zy € M and z1 € Txzo with

Mz, z1) > 1. From (6), for M(zg,z1) > 1 and z1 € T'zp, we get x2 € Tx1 such that
wmsn(1,$1,$2) S anwmsn(Lanxl) +bnwmsn(17x0ax1)+C'r]wmsn(1ux17x2)

+enwmsn (25777 Xo, x2) + anmsn (]-a Z, xl)

(ay + by + ey)wms, (1,20, 1) + (cy + €y)wms, (1, 21, 72)

+L,0Vned

By performing some necessary simplification we obtain wy,s, (1,21, 22) < §ywims, (1,70, 21)

for all n € A, here &, = mi”j;" < 1. Since xg € M and x1 € Txo with A(zg,z1) > 1, then

by hypothesis (ii), for zo € Tz, we have A(x1,22) > 1. Thus from (6), for A(x1,z2) > 1

and x4 € Tx1, we have x3 € Txs such that

IN

Wins, (1, 22,23) < apWms, (1,21, 22) + bywms, (1, 21, Z2) + cpWms, (1,2, 23)
+enWms, (289, T1,23) + Lywms, (1, T2, T2)

(ay + by + €n)wms, (1, 21, 72) + (¢ + €y)wms, (1, 22, 73)

+L,0¥ e

Again by performing necessary simplification, we obtain wy,s, (1, 72, z3) < (fn)mesn (1,20, 21)
for all n € 2, here &, = % < 1. Proceeding with this pattern we obtain {z,}

—Cn—€n

in M with Ty € Txn—lv )\(xn—lazn) Z 1 and wmsn(an»zn-&-l) S (gn)nwmsn(LIO;zl) S

IN
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(&,)"0z (M) for all n € A and n € N. By considering the Aj-condition and the last inequal-
ity, for each n € 2, we get Wi, (7, Tn, Tny1) < (&) 05(M) for each v > 0 and n € N.
Following we will show {z,,} is wps,-Cauchy. For each p,m € N and n € 2, we get

p+m—1 1 p+m—1 ‘
Wms, (p;xpvxp+m) < Z wmsn(sﬁaxiaxi+l) < Z (fn)Z(;S(M)
1=p n i=p
< Z(fn)iég(M) —0as p— oo.
i=p

Hence {x,} is wWys,-Cauchy in M. As M is wy,,,-complete then there is 2* € M such that
for each n € & we have lim,, o0 Wins, (B, xpn,x*) = 0 for some B > 0. Since the Ap-condition
holds for the collection § then, for each n € 2, we get limy, o0 Wms, (7, Tn, 2*) = 0 Vy > 0.
By considering hypothesis (iii) and the facts about {z,}, we get A(z,,z*) > 1 for each
n € N. From (6), for A(zp,2*) > 1 and @41 € Tz, there is v* € T'x* with
wmsn(lvxn-&-lav*) S anwmsn(laxnax*) +bnwm,s,,(la:L'naﬂcn+1) +anmsn(1ax*7v*)
FenWms, (287, Tn, V) + Lywms, (1,27, Znq1)
S anwms,, (1; Tn, .’L'*) + bnwms,, (1; Tn, anrl) + anms,, (17 m*a U*>
+en[wmsn (]-» Tn, (E*) + wmsn (]-, CL'*, U*)}
+an7nsn (17 JC*, ‘Tn-i-l) v n el
In the above inequality by applying the Fatou property and the limit as n — oo, we get
Wins, (1,27, 0%) < (¢ + €5)Wms, (1, 27,0%) < Wi, (1, 2%,07) V€ A,
this is impossible if wy,s, (1,2%,v*) # 0. Thus, wys, (1,2%,v*) = 0V n € A Since the

collection {wy,s, with s, > 1 : 7 € 2} is separating, thus we get z* = v*. Hence, z* €

Tx*. |

The above theorem implies to the following result, when we assume that T: M — M
and A(z,y) =1 for each z,y € M.
Corollary 2.1. Consider a map T: M — M such that for each x,y € M we get

Wins, (1, Tz, Ty) < anWms, (1, 2,y) + bywms, (1,2, Tx) + cywms, (1,y, Ty)
+enwms, (28n, ©,TY) + Lywms, (1,y,Tx) ¥n € A (7)

where, syay, + s,by + s,c,) + 25%% < 1 and ay,by,cy, ey, Ly >0, ¥n € A. Then atleast one
fized point of T must exists.
Remark 2.1. Note that

: (i) if the collection of pseudomodular b-metrics § = {wms, with s, >1:n € A} on X
is such that wy(y,z,y) < oo (that is, finite number) ¥n € A and v > 0, and every
x,y € X, then wy,s, -boundedness of M may be ignored from the results.

: (i) one may use continuous operator in the results instead of Hypothesis (iii).

3. Consequences

In this section, we consider G = (V, E) as directed graph with vertex set V equal to
M and edge set E contains {(z,z) : x € V'}. Moreover, no parallel edges contained in G.
Define a map A : M x M — [0,00) by

May) = 1, if (x,y) € E
W= 0, otherwise.

Then Theorem 2.1 and 2.2 yields the following results, respectively.
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Corollary 3.1. Consider a map T: M — CL(M) such that for each x,y € M with (x,y) €
FE and u € Tx, there is v € Ty satisfying the following inequality:

Wms,, (L, z,u) + Wms,, (1,y,v)
2 )
§ o+ Lome, (Ly,u) vy € 2,

wy(l,u,v) < rpmax {wmsn(l, z,y),

Wms, (257]7 €, U) + Wms, (13 Y, U)
2
where 1, € [0,1/s,) and L, > 0 ¥n € A. Further, assume the given below conditions hold:

: (i) there are two elements xo € M and x1 € Txg with (xg,z1) € E;

2 (i) forx € M and y € Tx with (z,y) € E, we have (y,z) € E for each z € Ty;

s (iii) if {x,} is a sequence in M with x, =5 x € M and Ny, T,+1) > 1Vn €N, then
AMzp,x) >1V¥n eN.

Then atleast one fived point of T must exists.
Corollary 3.2. Consider a map T: M — CL(M) such that for each x,y € M with (x,y) €
E andu € Tz, there is v € Ty satisfying the following inequality:
Wms, (17 u, U) < AnWms,, (17 x, y) + bnwmsn (1, Z, U) + CyWms, (1, Y, U)
+enWms, (287, ,0) + LyWms, (1,y,u) ¥n € A
where s,y + syby + sycy +2s0ey < 1 and ay, by, ¢y, €, Ly > 0 ¥ € A. Further, assume the
given below conditions hold:

: (i) there are two elements xo € M and x1 € Txy with (g, 1) € E;

2 (i) forx € M and y € Tx with (z,y) € E, we have (y,z) € E for each z € Ty;

s (i) if {x,} is a sequence in M with x, =% x € M and XNz, 2,41) > 1 Yn €N, then
Mzp,z) > 1Vn eN.

Then atleast one fized point of T must exists.

4. Application and Example

As an application, we prove the existence theorem for nonlinear integral equation of
the below mentioned form:

2(t) = plt) + /0 S(t, wg(u, 2(u))du, teY (8)

where p: Y - R, g: Y xR — R are continuous functions and S : Y x Y — [0, 00) is such
that S(t,-) € L}(Y) forall t € Y.

Denote X = (C0, b],R) with the collection of all bounded and continuous realvalued
functions on Y = [0,b], where b is any fixed natural number. Consider a collection of
pseudomodular b-metrics as

1 2
wn (7, 2,y) = ] ﬁ&’i](x“) —y(t)"

Clearly, modular b-gauge space obtained by the collection § = {w,, with s, =2:n € J =
{1,2,---,b}} on X is separating and wy,s,-complete. Also it satisfies the Aj-condition and
Fatou property.

Theorem 4.1. Let X = (C[0,b],R) and let the operator
¢
T: X - X, Tux(t)=pt) —|—/ S(t,u)g(u, x(u))du, teY =]0,b]
0

wherep:Y - R, g: Y x R = R are continuous functions and S : Y xY — [0,00) is such
that S(t,-) € LY(Y) for allt € Y, and b > 1. Further, assume the given below conditions
hold, for each natural number n < b:
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s (i) for each s € [0,n] and x,y € X, we obtain

lg(s,x(s)) — g(s,y(s))]> < %trﬁgx () — y(t)* for each n € J;

: (ii) there is 6 € (0,1) with

¢ 2
max (/ S(t,u)du) <n’.
te[o,n] \Jo

Then the integral equation (8) has at least one solution.

Proof. For any z,y € X and t € [0,n] for n € J, we have

Tx(t) - Ty < </ S(t,u)llg(u, 2(u)) = g(u, y(u ))I]dU>

< _ _ 2
: W%Jgﬁ’;'w wop | st )

_ ;b( /Otsa,u)du) mas [2(0) — (0"

This yields the inequality wy (v, Tz, Ty) < anwn(y,2,y) ¥V 2,y € X, v > 0 and n € J with
an = 55 < % Hence, we say (7) holds with a,, = '2’—2, and b, = ¢, = e, = L, = 0 for
each n € J. Therefore, by Corollary 2.1, there exists a fixed point of T, that is, the integral

equation (8) has at least one solution. O

Remark 4.1. Consider the integral equation of the form:
t
t) = t— ~y—1 x(u)
o) = [ (=t
where b > 1 is a fixed natural number and v € (0,1). Note that Theorem 4.1 validate the
existence of solution of the integral equation (9).

du, teY =10,b] 9)

Example 4.1. Take 8 as the collection of all real sequences with wy, (7, z,y) = ﬁm’n — Y |?
VY néeN andy >0, where v = {x,}, y={yn} €8. Define the mapping T : 8 — CL(8) by

T({2p }nen) = {222} en, {228 en}, if {n tnen C [0, 00)
e {0, {zn?}nen}, otherwise
and A : 8 x 8 = [0,00) by

]-a Zf {xn}nGN, {yn}nGN C [0,00)
0, otherwise.

A{zn tnen, {Untnen) = {
Here, it can be seen that (1) holds for each x,y € 8 with A(z,y) = 1, where r, = §, $p =2
and L, = 0 for each n € N. Also for xo = {l}neN € 8 we obtain v, = {HB”}neN c Txg
with A({ 2 }nen, {422 }nen) = 1. Further for each x € 8 and y € Tx with A(x,y) = 1 we get
Ay, z) =1 for each z € Ty. Moreover, every {z,} in 8 with A(xy, Tnt1) =1V n €N and
Wins, -converges to x € 8, we have N(z,,r) =1V n € N. Hence, Theorem 2.1 conclude that
T has a fixed point.

5. Conclusion

We conclude this article with these sentences: First, we defined the notion of modular
b-gauge spaces and proved few fixed point results on this structure. Secondly, we applied
our result to study about the existence of the solution of nonlinear integral equations. In
last, we gave the examples of our results.
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