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In this paper, we generalize the left-zero semigroup by introducing

two different algebras, called a weak-zero groupoid and an (X,N)-zero groupoid,

respectively and describe some properties related to Bin(X).1 Moreover, we fuzzify

the notion of a weak-zero groupoid.
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1. Introduction

In the study of groupoids (X, ∗) defined on a set X, it has also proven useful to

investigate the semigroups (Bin(X),�) where Bin(X) is the set of all binary systems

(groupoids) (X, ∗) along with an associative product operation (X, ∗)�(X, •) =

(X,�) such that x�y = (x ∗ y) • (y ∗ x) for all x, y ∈ X. Thus, e.g., it becomes

possible to recognize that the left-zero-semigroup (X, ∗) with x∗y = x for all x, y ∈ X

acts as the identity of this semigroup [5]. H. F. Fayoumi [1] introduced the notion of

the center ZBin(X) in the semigroup Bin(X) of all binary systems on a set X, and

showed that a groupoid (X, •) ∈ ZBin(X) if and only if it is a locally-zero groupoid.

J. S. Han et al. [2] introduced the notion of hypergroupoids (HBin(X),�), and

showed that (HBin(X),�) is a supersemigroup of the semigroup (Bin(X),�) via

the identification x ←→ {x}. They proved that (HBin∗(X),⊖, [∅]) is a BCK-

algebra. For the references on BCK-algebras and BCI-algebras, we refer to [3], [4]

and [6].

The notion of a fuzzy subset of a set was introduced by L. A. Zadeh [9].

His seminal paper in 1965 has opened up new insights and applications in a wide

range of scientific fields. A. Rosenfeld [8] used the notion of a fuzzy subset to set
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down corner stone papers in several areas of mathematics. J. N. Mordeson and D.

S. Malik [7] published a remarkable book, Fuzzy commutative algebra, presented a

fuzzy ideal theory of commutative rings and applied the results to the solution of

fuzzy intersection equations. The book included all the important work that has

been done on L-subspaces of a vector space and on L-subfields of a field.

Given that the left-zero semigroup on the set X is the identity element of

(Bin(X),�) it is a question of interest in the study of the semigroups to identify

related types of groupoids within the class Bin(X) and identify these as themselves

also having algebraic properties, including the property of being a subsemigroup of

(Bin(X),�) which identifies the type being described as representing a certain type

of property. In the situation discussed below, we shall deal with weak-zero-groupoids

and (X,N)-zero-groupoids as groupoid types of interest. As a by-product we will

also consider a fuzzification of the notion of a weak-zero-groupoid.

2. Preliminaries

Given a non-empty set X, we let Bin(X) denote the collection of all groupoids

(X, ∗), where ∗ : X × X → X is a map and where ∗(x, y) is written in the usual

product form. A groupoid (X, ∗) is said to be a left-zero-semigroup (resp., right-

zero-semigroup) if x ∗ y = x (resp., x ∗ y = y) for all x, y ∈ X. Given elements (X, ∗)
and (X, •) of Bin(X), define a product “�” on these groupoids as follows:

(X, ∗)� (X, •) = (X,�)

where

x� y = (x ∗ y) • (y ∗ x)
for any x, y ∈ X. Using that notion, H. S. Kim and J. Neggers proved the following

theorem.

Theorem 2.1. [5] (Bin(X), �) is a semigroup, i.e., the operation “�” as defined

in general is associative. Furthermore, the left- zero-semigroup is the identity for

this operation.

H. Fayoumi [1] introduced the notion of the center of the semigroup Bin(X)

as follows:

ZBin(X) := {(X, •) ∈ Bin(X)|(X, ∗)�(X, •) = (X, •)�(X, ∗), ∀(X, ∗)}

She obtained several interesting properties.

Proposition 2.1. [1] The left-zero semigroup and right-zero semigroup on X are

both in ZBin(X).

Proposition 2.2. [1] If (X, •) ∈ ZBin(X), then x • x = x for all x ∈ X.
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Theorem 2.2. [1] If (X, •) ∈ ZBin(X), then x ̸= y implies that {x, y} = {x•y, y•x}

Proposition 2.3. [1] Let (X, ∗) ∈ ZBin(X). If x ̸= y in X, then ({x, y}, •) is

either a left-zero semigroup or a right-zero semigroup.

Proposition 2.4. [1] ({x, y}, •) is either a left-zero semigroup or a right-zero semi-

group for any x ̸= y in X, then (X, •) ∈ ZBin(X).

3. Weak-zero groupoids.

We shall consider a groupoid (X, ∗) to be a weak-left-zero groupoid if x∗y = a∗b
implies x = a. Thus, if (X, ∗) is a left-zero-semigroup then it is also a weak-left-zero

groupoid. Similarly, a groupoid (X, ∗) is said to be a weak-right-zero groupoid if

x ∗ y = a ∗ b implies y = b.

Example 3.1. Let (X, ∗) be a left-zero-semigroup, i.e., x ∗ y = x for all x, y ∈ X.

If x ∗ y = a ∗ b, then x = a, i.e., it is a weak-left-zero groupoid. Similary, every

right-zero-semigroup (X, ∗), i.e., x ∗ y = y for all x, y ∈ X, is a weak-right-zero

groupoid.

Example 3.2. Let N = {1, 2, 3, · · · } be the set of all natural numbers and let p, q

be distinct prime numbers. If we define x ∗ y := pxqy, then 1 ∗ 1 = p1q1 = pq. If

we assume x ∗ y = a ∗ b, then pxqy = paqb and hence x = a and y = b, proving that

(N, ∗) is both a weak-left-zero groupoid and a weak-right-zero groupoid.

A groupoid (X, ∗) is said to be a leftoid for f if x ∗ y := f(x) for a map

f : X → X. The groupoid (N, ∗) in Example 3.2 is not a leftoid, since x ∗ y = pxqy

is not a function of x alone.

Proposition 3.1. Let (X, ∗) be a leftoid for f . If f is one-one, then (X, ∗) is a

weak-left-zero groupoid.

Proof. If x ∗ y = a ∗ b, then f(x) = f(y). Since f is one-one, we obtain x = a,

proving the proposition. �

Let N = {1, 2, 3, · · · } be the set of all natural numbers. If we define x∗y := 2x

for all x, y ∈ N, then (N, ∗) is not a left-zero-semigroup, but it is a weak-left-zero-

semigroup, since the map f(x) := 2x is one-one.

Corollary 3.1. Let (X, ∗) be a leftoid for f . If f is the identity map, then (X, ∗)
is a weak-left-zero groupoid.
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A groupoid (X, ∗) is said to be a rightoid for f for some map f : X → X. We

obtain the similar proposition.

Proposition 3.1′. Let (X, ∗) be a rightoid for f . If f is one-one, then (X, ∗) is a

weak-right-zero groupoid.

Theorem 3.1. Let (X, ∗) be a finite weak-left-zero groupoid and let y0 ∈ X be a

fixed element. If we define a map f : X → X by f(x) := x ∗ y0 for all x ∈ X, then

(X, ∗) is a leftoid for f .

Proof. We claim that f is one-one. If f(α) = f(β) then α ∗ y0 = β ∗ y0. Since (X, ∗)
is a weak-left-zero groupoid, we obtain α = β. Since |X| < ∞, f is onto. Given

a, b ∈ X, we let a ∗ b = u for some u ∈ X. Since f is a bijection, there exists x ∈ X

such that u = f(x) = x ∗ y0. It follows that a ∗ b = u = x ∗ y0, which shows that

a = x. Hence a ∗ b = u = f(x) = f(a), proving the theorem. �

We may obtain the similar result for weak-right-zero groupoids.

Theorem 3.1′. Let (X, ∗) be a finite weak-right-zero groupoid and let x0 ∈ X be

a fixed element. If we define a map f : X → X by f(y) := x0 ∗ y for all y ∈ X, then

(X, ∗) is a rightoid for f .

Proposition 3.2. Let (X, ∗) be both a weak-left-zero groupoid and a weak-right-zero

groupoid. If X is finite, then |X| = 1.

Proof. Let (X, ∗) be both a weak-left-zero groupoid and a weak-right-zero groupoid.

Since (X, ∗) is a weak-left-zero groupoid, by Theorem 3.1, (X, ∗) is a leftoid for a

bijective map f : X → X. Similarly, since (X, ∗) is a weak-right-zero groupoid,

by Theorem 3.1′, (X, ∗) is a rightoid for a bijective map g : X → X. It follows

that x ∗ y = f(x) = g(y) for all x, y ∈ X. Assume that x1 ̸= x2 in X. Then

x1 ∗ y = f(x1) = g(y) and x2 ∗ y = f(x2) = g(y) for all y ∈ X. This shows that

f(x1) = f(x2). Since f is a bijection, we obtain x1 = x2, a contradiction, proving

the proposition. �

Theorem 3.2. Let (X, ∗), (X, •) ∈ Bin(X) and let (X,�) := (X, ∗)�(X, •). Then

the following hold:

(i) if (X, ∗) and (X, •) are weak-left-zero groupoids, then (X,�) is also a weak-

left-zero groupoid,

(ii) if (X, ∗) is a weak-left-zero groupoid and (X, •) is a weak-right-zero groupoid,

then (X,�) is a weak-right-zero groupoid,

(iii) if (X, ∗) is a weak-right-zero groupoid and (X, •) is a weak-left-zero groupoid,

then (X,�) is a weak-right-zero groupoid,

(iv) if (X, ∗) and (X, •) are weak-right-zero groupoids, then (X,�) is a weak-left-

zero groupoid.
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Proof. (i) Assume that x�y = a�b for some x, y, a, b ∈ X. Then (x ∗ y) • (y ∗ x) =
(a ∗ b) • (b ∗ a). Since (X, •) is a weak-left-zero groupoid, we obtain x ∗ y = a ∗ b.
Since (X, ∗) is a weak-left-zero groupoid, we have x = a. The proofs of the others

are similar to (i), and we omit them. �

Remark 3.1. Theorem 3.2 suggests that weak-left-zero groupoids may be assigned

a parity even (or 0) while right-left-zero groupoids may be assigned a parity odd (or

1). Theorem 3.2 then has the form (i) 0�0 = 0; (ii) 0�1 = 1; (iii) 1�0 = 1 and

(iv) 1�1 = 1. Thus we obtain a version of addition mod 2 in this setting.

A groupoid (X, ∗) is said to be right cancellative if x ∗ y = z ∗ y, then x = z.

Clearly, every weak-left-zero groupoid is right cancellative.

Proposition 3.3. Let (X, ∗) be a weak-left-zero groupoid. If (X, ∗) is a semigroup,

then it is a left-zero semigroup.

Proof. If (X, ∗) is a semigroup, then (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X. Since

(X, ∗) is a weak-left-zero groupoid, we have x ∗ y = x for all x, y ∈ X, proving the

proposition. �

Proposition 3.4. Let (X, ∗, 0) be a d/BCK-algebra. If (X, ∗) is a weak-left-zero

groupoid, then |X| = 1.

Proof. Given x, y ∈ X, we have (x ∗ x) ∗ y = 0 ∗ x = 0 = y ∗ y. Since (X, ∗) is a

weak-left-zero groupoid, we obtain y = x ∗ x = 0, proving the proposition. �

Note that the direct product of weak-left-zero groupoids is also a weak-left-

zero groupoid, and a subgroupoid of a weak-left-zero groupoid is also a weak-left-zero

groupoid.

A groupoid (X, ∗) is said to be left-similar to a groupoid (X, •) if x∗ y = a∗ b,
then x•y = a•b. In this case, (X, •) is said to be right-similar to (X, ∗). Accordingly

(X, ∗) and (X, •) are similar if they are both left-similar and right-similar.

Example 3.3. Given X := R, the set of all real numbers, we define x ∗ y := x+ y,

and x • y := λ(x + y), where λ ̸= 0 and + is the usual addition on R. Then

x + y = a + b implies x • y = a • b and conversely. Thus, (X, ∗) and (X, •) are

similar. If λ = 0, then x + y = z + b implies x ∗ y = 0(x = y) = 0(a + b) = a • b.
This shows that (X, ∗) and (X, •) are left-similar, but not similar.

Example 3.4. If (X, ∗) is commutative and left-similar to (X, •), then x ∗ y = y ∗x
for all x, y ∈ X and thus x • y = y • x for all x, y ∈ X as well, i.e., (X, •) is

commutative also.

Example 3.5. Clearly (R,+) is a semigroup where + is the usual addition on

R. If λ ̸= 0, 1, then x ∗ y := λ(x + y) is not a semigroup. Indeed, (x ∗ y) ∗ z =
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λ(λ(x+ y)+ z) = λ2x+λ2y+λz and x ∗ (y ∗ z) = λ(x+λ(y+ z)) = λx+λ2y+λ2z

so that λ ̸= λ2 implies that (R,+) is not a semigroup even though (R,+) is similar

to (R, ∗). This is clear since λ ̸= 0 implies λ−1(x ∗ y) = λ−1(λ(x+ y)) = x+ y.

Proposition 3.5. If (X, ∗) and (Y, •) are left-similar to (X,△) and (Y,∇) respec-
tively, then (X, ∗)× (Y, •) is left-similar to (X,△)× (Y,∇).

Proof. Straightforward. �

Proposition 3.6. Let (X, •) be a weak-left-zero groupoid and let (X,�) := (X, ∗)�(X, •).
Then (X,�) is left-similar to (X, •).

Proof. Assume x�y = a�b. Then (x ∗ y) • (y ∗ x) = (a ∗ b) • (b ∗ a). Since (X, •) is
a weak-left-zero groupoid, we have x ∗ y = a ∗ b, proving the proposition. �

Proposition 3.7. Let (X, •) be a weak-right-zero groupoid and let (X,�) = (X, ∗)
�(X, •). Then (X,�) is left-similar to (X, ∗)op = (X, ⋄), i.e., x ∗ y = y ⋄ x for all

x, y ∈ X.

Proof. Let x�y = a�b. Then (x ∗ y) • (y ∗ x) = (a ∗ b) • (b ∗ a). Since (X, •) is a

weak-right-zero groupoid, we obtain y ∗ x = b ∗ a, i.e., x ⋄ y = a ⋄ b, proving the

proposition. �

4. (X,N)-zero groupoids

Among mathematical objects, the simplest with regard to structure are the

sets X. Perhaps the next step up as to complexity are the nuclear sets (X,N)

consisting of a set X and a nucleus N contained in it. Thus N ⊂ X is the structure

of interest in the following.

Let X be a non-empty set and let N ⊂ X. Define a binary operation “∗” on

X by

x ∗ y :=

{
x if x, y ∈ N,

y otherwise

We denote it by (X(N), ∗) and we call it a (X,N)-zero groupoid. If N := X, then

(X(N), ∗) is a left-zero semigroup, and if N := ∅, then (X(N), ∗) is a right-zero

semigroup. Note that (X(N), ∗) need not be a semigroup except in the extreme

cases N = X and N = ∅. In fact, if x, z ∈ N and y ̸∈ N , then (x ∗ y) ∗ z = y ∗ z = z,

while x ∗ (y ∗ z) = x ∗ z = x.

Proposition 4.1. If (X(N), ∗) is an (X,N)-zero groupoid, then

(x ∗ x) ∗ y = x ∗ (x ∗ y)

for all x, y ∈ X.
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Proof. Given x, y ∈ X, if x, y ∈ N , then (x∗x)∗y = x∗y = x and x∗(x∗y) = x∗x = x.

Otherwise, we have (x ∗ x) ∗ y = x ∗ y = y and x ∗ (x ∗ y) = x ∗ y = x. �

Proposition 4.2. Let (X, ∗) ∈ Bin(X) and let N ⊆ X. If (X(N),�) := (X(N), ∗)
�(X(N), ∗), then it is a left-zero semigroup.

Proof. Given x, y ∈ X, if x, y ∈ N , then x�y = (x ∗ y) ∗ (y ∗ x) = x ∗ y = x.

Otherwise, we have x�y = (x ∗ y) ∗ (y ∗ x) = y ∗ x = x, proving the proposition. �

If |X| = n < ∞, then the number of groupoids (X(N), ∗) is 2n. Also, the

number of groupoids satisfying x ∗ x = x, x ∗ y ∈ {x, y} is 2n
2−n, so that there are

many such groupoids which are not of the type (X(N), ∗) discussed here.

Proposition 4.3. Let (X, ∗) ∈ ZBin(X). If (X,�) := (X, ∗)�(X, ∗), then (X,�)

is a left-zero semigroup.

Proof. Since (X, ∗) ∈ ZBin(X), by Proposition 2.3, ({x, y}, ∗) is either a left-zero

semigroup or a right-zero semigroup for all x, y ∈ X. It follows that either x�y =

(x ∗ y) ∗ (y ∗ x) = x ∗ y = x or x�y = (x ∗ y) ∗ (y ∗ x) = y ∗ x = x. Hence (X,�) is a

left-zero semigroup. �

Theorem 4.1. Let (X(M), ∗) be an (X,M)-zero groupoid and let (X(N), •) be an

(X,N)-zero groupoid where M,N ⊆ X. If (X,�) := (X(M), ∗) �(X(N), •), then
(X,�) ∈ ZBin(X).

Proof. Given x, y ∈ X, if x, y ∈ M \ N , then x�y = (x ∗ y) • (y ∗ x) = x • y = y

and y�x = (y ∗ x) • (x ∗ y) = y • x = x, i.e., ({x, y},�) is a right-zero semigroup. If

x, y ∈ N \M , then x�y = (x ∗ y) • (y ∗ x) = y • x = y and y�x = (y ∗ x) • (x ∗ y) =
x•y = x, i.e., ({x, y},�) is a right-zero semigroup. If either x ∈M \N, y ∈ N \M or

x ∈ N \M,y ∈M \N , then x�y = (x∗y)•(y∗x) = y•x = x and y�x = (y∗x)•(x∗
y) = x•y = y, i.e., ({x, y},�) is a left-zero semigroup. If x ̸∈M∪N , y ∈M∪N , then

x�y = (x∗y)•(y∗x) = y•x = x and y�x = (y∗x)•(x∗y) = x•y = y, i.e., ({x, y},�)

is a left-zero semigroup. If x, y ̸∈ M ∪N , then x�y = (x ∗ y) • (y ∗ x) = y • x = x

and y�x = (y ∗ x) • (x ∗ y) = x • y = y, i.e., ({x, y},�) is a left-zero semigroup. By

Proposition 2.4, (X,�) ∈ ZBin(X). �

Corollary 4.1. Let (X(N), ∗) be an (X,N)-zero groupoid and let (X(NC), •) be

an (X,NC)-zero groupoid. If (X,�) := (X(N), ∗) �(X(NC), •), then (X,�) ∈
ZBin(X).

Proposition 4.4. If (X, ∗) is an (X,N)-zero groupoid, then (X, ∗) ∈ ZBin(X).

Proof. Given x, y ∈ X, if x, y ∈ N , then x ∗ y = x and y ∗ x = y, i.e., ({x, y}, ∗) is
a left-zero semigroup. If x, y ∈ NC , then x ∗ y = y and y ∗ x = x, i.e., ({x, y}, ∗)
is a right-zero semigroup. If either x ∈ N, y ∈ NC or x ∈ NC , y ∈ N , then

x ∗ y = y, y ∗ x = x, i.e., ({x, y}, ∗) is a right-zero semigroup. By Proposition 2.6,

(X, ∗) ∈ ZBin(X). �
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Note that if (X, ∗) is an (X,N)-zero groupoid, then (X, ⋆) ∈ ZBin(X) where

x ⋆ y := y ∗ x for all x, y ∈ X, but it is not an (X,N)-zero groupoid. In fact, it is

an (X,NC)-zero groupoid. We give an example that the converse of Proposition 4.4

does not hold in general.

Example 4.1. Let X := {a, b, c, d} be a set with M := {a, b, c} and N := {b, c, d}.
Define two binary operations as follows:

∗ a b c d

a a a a d

b b b b d

c c c c d

d a b c d

• a b c d

a a b c d

b a b b b

c a c c c

d a d d d

Then (X, ∗) is an (X,M)-zero groupoid and (X, •) is an (X,N)-zero groupoid. If

we let (X,�) := (X, ∗)�(X, •), then we have the following table:

� a b c d

a a b c a

b a b b d

c a c c d

d d b c d

It is easy to see that (X,�) ∈ ZBin(X), but is not an (X,K)-zero groupoid for any

K ⊆ X with K ̸= ∅.

A groupoid (X, ∗) is said to be an N -groupoid if (N, ∗) is a subgroupoid of

(X, ∗) where ∅ ̸= N ⊆ X. We denote it by (X,N, ∗) and we call it anN -groupoid. We

denote the collection of all N -groupoids by Bin(X,N). Clearly, every (X,N)-zero

groupoid (X(N), ∗) belongs to Bin(X,N). Let (X, ∗) be a left-zero semigroup. Then

(X, ∗) is an N -groupoid for any non-empty subset N ⊆ X, i.e., (X, ∗) ∈ Bin(X,N).

This means that the left-zero semigroup acts as the identity element of Bin(X,N).

Proposition 4.5. (Bin(X,N),�) is a subsemigroup of (Bin(X),�).

Proof. Given (X,N, ∗), (X,N, •) ∈ Bin(X,N), we let (X,N,�) := (X,N, ∗)�(X,N, •).
Given x, y ∈ N , we have x�y = (x ∗ y) • (y ∗ x) ∈ N • N ⊆ N . This shows that

(X,N,�) ∈ Bin(X,N). �

Let (X, ∗) ∈ Bin(X) and let (N, ∗) be a subgroupoid of (X, ∗). Define a binary

operation “∗D” on X by

x ∗D y :=

{
x ∗ y if x, y ∈ N,

y ∗ x otherwise
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We call (X, ∗D) a dual-N -groupoid of (X, ∗).

Proposition 4.6. If (X, ∗) is an (X,N)-zero groupoid, then its dual-N -groupoid

(X, ∗D) is a left-zero semigroup.

Proof. Given x, y ∈ X, if x, y ∈ N , then x ∗D y = x ∗ y = x. Otherwise, we have

x ∗ y = y, y ∗ x = x. It follows that x ∗D y = y ∗ x = x, proving that (X, ∗D) is a

left-zero semigroup. �

Clearly (X, ∗D) is also an N -groupoid if (X, ∗) is an N -groupoid.

Proposition 4.7. Let (X, •) ∈ Bin(X,N) and let (X, ∗) be an (X,N)-zero groupoid.

If (X,�) := (X, ∗)�(X, •), then (X,�) is a dual-N -groupoid of (X, •).

Proof. Given x, y ∈ X, if x, y ∈ N , then x ∗ y = x, y ∗ x = y and hence x�y =

(x ∗ y) • (y ∗ x) = x • y. Otherwise, we have x ∗ y = y, y ∗ x = x and hence

x�y = (x ∗ y) • (y ∗ x) = y • x. This shows that (X,�) = (X, •D). �

Theorem 4.2. Let (X, •) ∈ ZBin(X) and let (X, ∗) be an (X,N)-zero groupoid. If

(X,�) := (X, •)�(X, ∗), then (X,�) is a dual-N -groupoid of (X, •).

Proof. Given x, y ∈ X, if x, y ∈ N , since (X, •) ∈ ZBin(X), by Theorem 2.3, we

have {x, y} = {x • y, y • x}, i.e., x • y, y • x ∈ N . Since (X, ∗) is an (X,N)-zero

groupoid, we have x�y = (x•y)∗(y•x) = x•y. Otherwise, since (X, •) ∈ ZBin(X),

by Theorem 2.2, we have {x, y} = {x•y, y•x}, i.e., it is not true that x•y, y•x ∈ N .

It follows that x�y = (x • y) ∗ (y • x) = y • x, proving that (X,�) = (X, •D). �

5. Some applications to fuzzy sets

Let (X, ∗) ∈ Bin(X). A map µ : X → [0, 1] is called a fuzzy weak-left-zero

groupoid if

µ(x ∗ y) ≥ µ(a ∗ b) implies µ(x) ≥ µ(a)

Example 5.1. Suppose that D : R → [0, 1] is a non-decreasing function, e.g., the

distribution function of a random variable. Also, suppose f : (X, ∗) → R is any

function such that f(x ∗ y) ≥ f(a ∗ b) implies f(x) ≥ f(a). Then µ(x) := D(f(x))

yields µ(x ∗ y) = D(f(x ∗ y)) ≥ D(f(a ∗ b)) = µ(a ∗ b) yields f(x ∗ y) ≥ f(a ∗ b)
and thus f(x) ≥ f(a), whence µ(x) ≥ µ(a) as well, i.e., µ is a fuzzy-weak-left-zero

groupoid with respect to (X, ∗).

Example 5.2. Let (X, ∗) be a left-zero semigroup. Then every map µ : X → [0, 1]

is a fuzzy-weak-left-zero groupoid. In fact, if µ(x ∗ y) ≥ µ(a ∗ b), since (X, ∗) is a

left-zero semigroup, we obtain µ(x) ≥ µ(a).
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Let (X, ∗) ∈ Bin(X). A map µ : X → [0, 1] is called a strict fuzzy weak-left-

zero groupoid if

µ(x ∗ y) = µ(a ∗ b) implies µ(x) = µ(a)

Clearly, if (X, ∗) is a left-zero semigroup, then every map µ : X → [0, 1] is a

strict fuzzy weak-left-zero groupoid. Note that every fuzzy weak-left-zero groupoid

is a strict fuzzy weak-left-zero groupoid.

Let (X, ∗) ∈ Bin(X) and let µ : X → [0, 1] be a fuzzy subset of X. We give

some conditions:

(D1) if µ(x) ≥ µ(a), then µ(x ∗ y) ≥ µ(a ∗ b) for all y, b ∈ X,

(D2) if µ(x) = µ(a), then µ(x ∗ y) = µ(a ∗ b) for all y, b ∈ X.

Notice that if (D1) holds, then µ(x) = µ(a) implies µ(x ∗ y) ≥ µ(a ∗ b) and

µ(a ∗ b) ≥ µ(x ∗ y), i.e., µ(x ∗ y) = µ(a ∗ b), so that (D1) implies the condition (D2).

Proposition 5.1. Let (X, ∗) ∈ Bin(X) and let µ : X → [0, 1] be a fuzzy subset of

X with (D1). If µ(a) := minx∈X µ(x), then µ(a ∗ b) = µ(a ∗ c) for all b, c ∈ X.

Proof. Since µ(a) ≤ µ(x) for all x ∈ X, by (D1), we have µ(a ∗ b) ≤ µ(x ∗ c) for all
b, c, x ∈ X. It follows that µ(a ∗ b) ≤ µ(a ∗ c) for all b, c ∈ X. If we exchange b with

c, then we have µ(a ∗ b) = µ(a ∗ c) for all b, c ∈ X. �

Let (X, ∗) ∈ Bin(X). A map µ : X → [0, 1] is called a fuzzy weak-right-zero

groupoid if

µ(x ∗ y) ≥ µ(a ∗ b) implies µ(y) ≥ µ(b)

A map µ : X → [0, 1] is said to be a fuzzy weak-zero if

µ(x ∗ y) ≥ µ(a ∗ b) implies µ(x) ≥ µ(a), µ(y) ≥ µ(b)

Theorem 5.1. Let (X, ∗), (X, •) ∈ Bin(X) and let (X,�) := (X, ∗)�(X, •). Then

the following conclusions hold:

(i) if µ is a fuzzy weak-left-zero groupoid of both (X, ∗) and (X, •), it is also a

fuzzy weak-left-zero groupoid of (X,�),

(ii) if µ is a fuzzy weak-left-zero groupoid of (X, ∗) and a fuzzy weak-right-zero

groupoid of (X, •), then it is a fuzzy weak-right-zero groupoid,

(iii) if µ is a fuzzy weak-right-zero groupoid of (X, ∗) and a fuzzy weak-left-zero

groupoid of (X, •), then it is a fuzzy weak-right-zero groupoid,

(iv) if µ is a fuzzy weak-right-zero groupoid of both (X, ∗) and (X, •), it is a fuzzy

weak-left-zero groupoid of (X,�).
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Proof. (i) If µ(x�y) ≥ µ(a�b) for some x, y, a, b ∈ X, then µ((x ∗ y) • (y ∗ x)) ≥
µ((a ∗ b) • (b ∗ a)). Since µ is a fuzzy weak-left-zero groupoid of (X, •), we obtain

µ(x ∗ y) ≥ µ(a ∗ b). Since µ is a fuzzy weak-left-zero groupoid of (X, ∗), we have

µ(x) ≥ µ(a). The proofs of the others are similar to (i), and we omit them. �

Let (X, ∗) ∈ Bin(X). A map µ : X → [0, 1] is called a fuzzy weak-crossed-zero

groupoid if

µ(x ∗ y) ≥ µ(a ∗ b) implies µ(x) ≥ µ(a) or µ(y) ≥ µ(b)

Example 5.3. In Example 5.1, if f : (X, ∗)→ R is any function such that f(x∗y) ≥
f(a ∗ b) implies f(x) ≥ f(a) or f(y) ≥ f(b). Then D ◦ f : (X, ∗)→ [0, 1] is a fuzzy

weak-crossed-zero groupoid.

Example 5.4. Let X := N, the set of all natural numbers, and let x ∗ y := x(x+ y)

for all x, y ∈ X. Define f : X → R by f(x) := x. Assume f(x ∗ y) ≥ f(a ∗ b) and

f(x) ≤ f(a). Then x(x + y) ≥ a(a + b) and x ≤ a. It follows that x + y ≥ a + b

and hence y ≥ a + b − x = (a − x) + b ≥ b, which shows that f(y) ≥ f(b). Define

µ := D ◦ f , where D is a distribution function of a random variable. Then µ is a

fuzzy weak-crossed-zero groupoid of (X, ∗).

Proposition 5.2. Let µ be a fuzzy weak-crossed-zero groupoid of both (X, ∗) and

(X, •). If (X,�) := (X, ∗)�(X, •), then µ is a fuzzy weak-crossed-zero groupoid of

(X,�).

Proof. Assume µ(x�y) ≥ µ(a�b) and µ(x) < µ(a). Then µ((x ∗ y) • (y ∗ x))) ≥
µ((a∗ b)• (b∗a)). Since µ is a fuzzy weak-crossed-zero groupoid of (X, •), we obtain
either µ(x ∗ y) ≥ µ(a ∗ b) or µ(y ∗ x) ≥ µ(b ∗ a). Since µ is a fuzzy weak-crossed-

zero groupoid of (X, ∗), we have either µ(x) ≥ µ(a) or µ(y) ≥ µ(b). It follows that

µ(y) ≥ µ(b), proving that µ is a fuzzy weak-crossed-zero groupoid of (X,�). �

6. Conclusion.

In this paper, we consider elements of (Bin(X),�) with similar properties,

which acts as generalizations of the left-zero semigroup as well as the right-zero

semigroup, viz, the weak-left-zero groupoids and the weak-right-zero semigroups,

while still maintaining several of their properties to a considerable degree, especially

with respect to those derived for the product � in (Bin(X),�). As another gen-

eralization of the left-zero semigroup, we introduce the notion of an (X,N)-zero

groupoid and obtain several “parity” properties related to ZBin(X). After having

obtained information about these groupoids, we are in the future planning to pro-

ceed with the study of fuzzy subsets of X which have correspond properties to fuzzy

subsets of X which have corresponding properties in the future.
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