

ON (FUZZY) WEAK-ZERO GROUPOIDS AND (X, N) -ZERO GROUPOIDS

Jianming Zhan¹, Hee Sik Kim², J. Neggers³

In this paper, we generalize the left-zero semigroup by introducing two different algebras, called a weak-zero groupoid and an (X, N) -zero groupoid, respectively and describe some properties related to $Bin(X)$. Moreover, we fuzzify the notion of a weak-zero groupoid.

Keywords: (fuzzy) weak-zero groupoid, (X, N) -zero groupoid, $Bin(X)$, $ZBin(X)$, (left-, right-) similar, (dual-) N -groupoid.

MSC2010: 20N02, 08A72, 06F35.

1. Introduction

In the study of groupoids $(X, *)$ defined on a set X , it has also proven useful to investigate the semigroups $(Bin(X), \square)$ where $Bin(X)$ is the set of all binary systems (groupoids) $(X, *)$ along with an associative product operation $(X, *)\square(X, \bullet) = (X, \square)$ such that $x\square y = (x * y) \bullet (y * x)$ for all $x, y \in X$. Thus, e.g., it becomes possible to recognize that the left-zero-semigroup $(X, *)$ with $x*y = x$ for all $x, y \in X$ acts as the identity of this semigroup [5]. H. F. Fayoumi [1] introduced the notion of the center $ZBin(X)$ in the semigroup $Bin(X)$ of all binary systems on a set X , and showed that a groupoid $(X, \bullet) \in ZBin(X)$ if and only if it is a locally-zero groupoid. J. S. Han et al. [2] introduced the notion of hypergroupoids $(HBin(X), \square)$, and showed that $(HBin(X), \square)$ is a supersemigroup of the semigroup $(Bin(X), \square)$ via the identification $x \longleftrightarrow \{x\}$. They proved that $(HBin^*(X), \ominus, [\emptyset])$ is a *BCK*-algebra. For the references on *BCK*-algebras and *BCI*-algebras, we refer to [3], [4] and [6].

The notion of a fuzzy subset of a set was introduced by L. A. Zadeh [9]. His seminal paper in 1965 has opened up new insights and applications in a wide range of scientific fields. A. Rosenfeld [8] used the notion of a fuzzy subset to set

¹Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei Province, 445000, P. R. China, E-mail: zhanjianming@hotmail.com

²Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea, e-mail: heekim@hanyang.ac.kr, Correspondence: Phone: +82 2 2220 0897, Fax: +82 2 2281 0019

³Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350 U. S. A., e-mail: jneggers@as.ua.edu

down corner stone papers in several areas of mathematics. J. N. Mordeson and D. S. Malik [7] published a remarkable book, *Fuzzy commutative algebra*, presented a fuzzy ideal theory of commutative rings and applied the results to the solution of fuzzy intersection equations. The book included all the important work that has been done on L -subspaces of a vector space and on L -subfields of a field.

Given that the left-zero semigroup on the set X is the identity element of $(Bin(X), \square)$ it is a question of interest in the study of the semigroups to identify related types of groupoids within the class $Bin(X)$ and identify these as themselves also having algebraic properties, including the property of being a subsemigroup of $(Bin(X), \square)$ which identifies the type being described as representing a certain type of property. In the situation discussed below, we shall deal with weak-zero-groupoids and (X, N) -zero-groupoids as groupoid types of interest. As a by-product we will also consider a fuzzification of the notion of a weak-zero-groupoid.

2. Preliminaries

Given a non-empty set X , we let $Bin(X)$ denote the collection of all groupoids $(X, *)$, where $* : X \times X \rightarrow X$ is a map and where $*(x, y)$ is written in the usual product form. A groupoid $(X, *)$ is said to be a *left-zero-semigroup* (resp., *right-zero-semigroup*) if $x * y = x$ (resp., $x * y = y$) for all $x, y \in X$. Given elements $(X, *)$ and (X, \bullet) of $Bin(X)$, define a product “ \square ” on these groupoids as follows:

$$(X, *) \square (X, \bullet) = (X, \square)$$

where

$$x \square y = (x * y) \bullet (y * x)$$

for any $x, y \in X$. Using that notion, H. S. Kim and J. Neggers proved the following theorem.

Theorem 2.1. [5] $(Bin(X), \square)$ is a semigroup, i.e., the operation “ \square ” as defined in general is associative. Furthermore, the left-zero-semigroup is the identity for this operation.

H. Fayoumi [1] introduced the notion of the center of the semigroup $Bin(X)$ as follows:

$$ZBin(X) := \{(X, \bullet) \in Bin(X) | (X, *) \square (X, \bullet) = (X, \bullet) \square (X, *), \forall (X, *)\}$$

She obtained several interesting properties.

Proposition 2.1. [1] The left-zero semigroup and right-zero semigroup on X are both in $ZBin(X)$.

Proposition 2.2. [1] If $(X, \bullet) \in ZBin(X)$, then $x \bullet x = x$ for all $x \in X$.

Theorem 2.2. [1] If $(X, \bullet) \in ZBin(X)$, then $x \neq y$ implies that $\{x, y\} = \{x \bullet y, y \bullet x\}$

Proposition 2.3. [1] Let $(X, *) \in ZBin(X)$. If $x \neq y$ in X , then $(\{x, y\}, \bullet)$ is either a left-zero semigroup or a right-zero semigroup.

Proposition 2.4. [1] $(\{x, y\}, \bullet)$ is either a left-zero semigroup or a right-zero semigroup for any $x \neq y$ in X , then $(X, \bullet) \in ZBin(X)$.

3. Weak-zero groupoids.

We shall consider a groupoid $(X, *)$ to be a *weak-left-zero groupoid* if $x * y = a * b$ implies $x = a$. Thus, if $(X, *)$ is a left-zero-semigroup then it is also a weak-left-zero groupoid. Similarly, a groupoid $(X, *)$ is said to be a *weak-right-zero groupoid* if $x * y = a * b$ implies $y = b$.

Example 3.1. Let $(X, *)$ be a left-zero-semigroup, i.e., $x * y = x$ for all $x, y \in X$. If $x * y = a * b$, then $x = a$, i.e., it is a weak-left-zero groupoid. Similarly, every right-zero-semigroup $(X, *)$, i.e., $x * y = y$ for all $x, y \in X$, is a weak-right-zero groupoid.

Example 3.2. Let $N = \{1, 2, 3, \dots\}$ be the set of all natural numbers and let p, q be distinct prime numbers. If we define $x * y := p^x q^y$, then $1 * 1 = p^1 q^1 = pq$. If we assume $x * y = a * b$, then $p^x q^y = p^a q^b$ and hence $x = a$ and $y = b$, proving that $(N, *)$ is both a weak-left-zero groupoid and a weak-right-zero groupoid.

A groupoid $(X, *)$ is said to be a *leftoid* for f if $x * y := f(x)$ for a map $f : X \rightarrow X$. The groupoid $(N, *)$ in Example 3.2 is not a leftoid, since $x * y = p^x q^y$ is not a function of x alone.

Proposition 3.1. Let $(X, *)$ be a leftoid for f . If f is one-one, then $(X, *)$ is a weak-left-zero groupoid.

Proof. If $x * y = a * b$, then $f(x) = f(y)$. Since f is one-one, we obtain $x = a$, proving the proposition. \square

Let $N = \{1, 2, 3, \dots\}$ be the set of all natural numbers. If we define $x * y := 2^x$ for all $x, y \in N$, then $(N, *)$ is not a left-zero-semigroup, but it is a weak-left-zero-semigroup, since the map $f(x) := 2^x$ is one-one.

Corollary 3.1. Let $(X, *)$ be a leftoid for f . If f is the identity map, then $(X, *)$ is a weak-left-zero groupoid.

A groupoid $(X, *)$ is said to be a *rightoid* for f for some map $f : X \rightarrow X$. We obtain the similar proposition.

Proposition 3.1'. *Let $(X, *)$ be a rightoid for f . If f is one-one, then $(X, *)$ is a weak-right-zero groupoid.*

Theorem 3.1. *Let $(X, *)$ be a finite weak-left-zero groupoid and let $y_0 \in X$ be a fixed element. If we define a map $f : X \rightarrow X$ by $f(x) := x * y_0$ for all $x \in X$, then $(X, *)$ is a leftoid for f .*

Proof. We claim that f is one-one. If $f(\alpha) = f(\beta)$ then $\alpha * y_0 = \beta * y_0$. Since $(X, *)$ is a weak-left-zero groupoid, we obtain $\alpha = \beta$. Since $|X| < \infty$, f is onto. Given $a, b \in X$, we let $a * b = u$ for some $u \in X$. Since f is a bijection, there exists $x \in X$ such that $u = f(x) = x * y_0$. It follows that $a * b = u = x * y_0$, which shows that $a = x$. Hence $a * b = u = f(x) = f(a)$, proving the theorem. \square

We may obtain the similar result for weak-right-zero groupoids.

Theorem 3.1'. *Let $(X, *)$ be a finite weak-right-zero groupoid and let $x_0 \in X$ be a fixed element. If we define a map $f : X \rightarrow X$ by $f(y) := x_0 * y$ for all $y \in X$, then $(X, *)$ is a rightoid for f .*

Proposition 3.2. *Let $(X, *)$ be both a weak-left-zero groupoid and a weak-right-zero groupoid. If X is finite, then $|X| = 1$.*

Proof. Let $(X, *)$ be both a weak-left-zero groupoid and a weak-right-zero groupoid. Since $(X, *)$ is a weak-left-zero groupoid, by Theorem 3.1, $(X, *)$ is a leftoid for a bijective map $f : X \rightarrow X$. Similarly, since $(X, *)$ is a weak-right-zero groupoid, by Theorem 3.1', $(X, *)$ is a rightoid for a bijective map $g : X \rightarrow X$. It follows that $x * y = f(x) = g(y)$ for all $x, y \in X$. Assume that $x_1 \neq x_2$ in X . Then $x_1 * y = f(x_1) = g(y)$ and $x_2 * y = f(x_2) = g(y)$ for all $y \in X$. This shows that $f(x_1) = f(x_2)$. Since f is a bijection, we obtain $x_1 = x_2$, a contradiction, proving the proposition. \square

Theorem 3.2. *Let $(X, *), (X, \bullet) \in \text{Bin}(X)$ and let $(X, \square) := (X, *) \square (X, \bullet)$. Then the following hold:*

- (i) *if $(X, *)$ and (X, \bullet) are weak-left-zero groupoids, then (X, \square) is also a weak-left-zero groupoid,*
- (ii) *if $(X, *)$ is a weak-left-zero groupoid and (X, \bullet) is a weak-right-zero groupoid, then (X, \square) is a weak-right-zero groupoid,*
- (iii) *if $(X, *)$ is a weak-right-zero groupoid and (X, \bullet) is a weak-left-zero groupoid, then (X, \square) is a weak-right-zero groupoid,*
- (iv) *if $(X, *)$ and (X, \bullet) are weak-right-zero groupoids, then (X, \square) is a weak-left-zero groupoid.*

Proof. (i) Assume that $x \square y = a \square b$ for some $x, y, a, b \in X$. Then $(x * y) \bullet (y * x) = (a * b) \bullet (b * a)$. Since (X, \bullet) is a weak-left-zero groupoid, we obtain $x * y = a * b$. Since $(X, *)$ is a weak-left-zero groupoid, we have $x = a$. The proofs of the others are similar to (i), and we omit them. \square

Remark 3.1. *Theorem 3.2 suggests that weak-left-zero groupoids may be assigned a parity even (or 0) while right-left-zero groupoids may be assigned a parity odd (or 1). Theorem 3.2 then has the form (i) $0 \square 0 = 0$; (ii) $0 \square 1 = 1$; (iii) $1 \square 0 = 1$ and (iv) $1 \square 1 = 1$. Thus we obtain a version of addition mod 2 in this setting.*

A groupoid $(X, *)$ is said to be *right cancellative* if $x * y = z * y$, then $x = z$. Clearly, every weak-left-zero groupoid is right cancellative.

Proposition 3.3. *Let $(X, *)$ be a weak-left-zero groupoid. If $(X, *)$ is a semigroup, then it is a left-zero semigroup.*

Proof. If $(X, *)$ is a semigroup, then $(x * y) * z = x * (y * z)$ for all $x, y, z \in X$. Since $(X, *)$ is a weak-left-zero groupoid, we have $x * y = x$ for all $x, y \in X$, proving the proposition. \square

Proposition 3.4. *Let $(X, *, 0)$ be a d/BCK-algebra. If $(X, *)$ is a weak-left-zero groupoid, then $|X| = 1$.*

Proof. Given $x, y \in X$, we have $(x * x) * y = 0 * x = 0 = y * y$. Since $(X, *)$ is a weak-left-zero groupoid, we obtain $y = x * x = 0$, proving the proposition. \square

Note that the direct product of weak-left-zero groupoids is also a weak-left-zero groupoid, and a subgroupoid of a weak-left-zero groupoid is also a weak-left-zero groupoid.

A groupoid $(X, *)$ is said to be *left-similar* to a groupoid (X, \bullet) if $x * y = a * b$, then $x \bullet y = a \bullet b$. In this case, (X, \bullet) is said to be *right-similar* to $(X, *)$. Accordingly $(X, *)$ and (X, \bullet) are *similar* if they are both left-similar and right-similar.

Example 3.3. *Given $X := \mathbf{R}$, the set of all real numbers, we define $x * y := x + y$, and $x \bullet y := \lambda(x + y)$, where $\lambda \neq 0$ and $+$ is the usual addition on \mathbf{R} . Then $x + y = a + b$ implies $x \bullet y = a \bullet b$ and conversely. Thus, $(X, *)$ and (X, \bullet) are similar. If $\lambda = 0$, then $x + y = z + b$ implies $x * y = 0(x = y) = 0(a + b) = a \bullet b$. This shows that $(X, *)$ and (X, \bullet) are left-similar, but not similar.*

Example 3.4. *If $(X, *)$ is commutative and left-similar to (X, \bullet) , then $x * y = y * x$ for all $x, y \in X$ and thus $x \bullet y = y \bullet x$ for all $x, y \in X$ as well, i.e., (X, \bullet) is commutative also.*

Example 3.5. *Clearly $(\mathbf{R}, +)$ is a semigroup where $+$ is the usual addition on \mathbf{R} . If $\lambda \neq 0, 1$, then $x * y := \lambda(x + y)$ is not a semigroup. Indeed, $(x * y) * z =$*

$\lambda(\lambda(x+y)+z) = \lambda^2x + \lambda^2y + \lambda z$ and $x*(y*z) = \lambda(x+\lambda(y+z)) = \lambda x + \lambda^2y + \lambda^2z$ so that $\lambda \neq \lambda^2$ implies that $(\mathbf{R}, +)$ is not a semigroup even though $(\mathbf{R}, +)$ is similar to $(\mathbf{R}, *)$. This is clear since $\lambda \neq 0$ implies $\lambda^{-1}(x*y) = \lambda^{-1}(\lambda(x+y)) = x+y$.

Proposition 3.5. *If $(X, *)$ and (Y, \bullet) are left-similar to (X, Δ) and (Y, ∇) respectively, then $(X, *) \times (Y, \bullet)$ is left-similar to $(X, \Delta) \times (Y, \nabla)$.*

Proof. Straightforward. \square

Proposition 3.6. *Let (X, \bullet) be a weak-left-zero groupoid and let $(X, \square) := (X, *) \square (X, \bullet)$. Then (X, \square) is left-similar to (X, \bullet) .*

Proof. Assume $x \square y = a \square b$. Then $(x*y) \bullet (y*x) = (a*b) \bullet (b*a)$. Since (X, \bullet) is a weak-left-zero groupoid, we have $x*y = a*b$, proving the proposition. \square

Proposition 3.7. *Let (X, \bullet) be a weak-right-zero groupoid and let $(X, \square) = (X, *) \square (X, \bullet)$. Then (X, \square) is left-similar to $(X, *)^{\text{op}} = (X, \diamond)$, i.e., $x*y = y \diamond x$ for all $x, y \in X$.*

Proof. Let $x \square y = a \square b$. Then $(x*y) \bullet (y*x) = (a*b) \bullet (b*a)$. Since (X, \bullet) is a weak-right-zero groupoid, we obtain $y*x = b*a$, i.e., $x \diamond y = a \diamond b$, proving the proposition. \square

4. (X, N) -zero groupoids

Among mathematical objects, the simplest with regard to structure are the sets X . Perhaps the next step up as to complexity are the *nuclear sets* (X, N) consisting of a set X and a nucleus N contained in it. Thus $N \subset X$ is the structure of interest in the following.

Let X be a non-empty set and let $N \subset X$. Define a binary operation “ $*$ ” on X by

$$x*y := \begin{cases} x & \text{if } x, y \in N, \\ y & \text{otherwise} \end{cases}$$

We denote it by $(X(N), *)$ and we call it a (X, N) -zero groupoid. If $N := X$, then $(X(N), *)$ is a left-zero semigroup, and if $N := \emptyset$, then $(X(N), *)$ is a right-zero semigroup. Note that $(X(N), *)$ need not be a semigroup except in the extreme cases $N = X$ and $N = \emptyset$. In fact, if $x, z \in N$ and $y \notin N$, then $(x*y)*z = y*z = z$, while $x*(y*z) = x*z = x$.

Proposition 4.1. *If $(X(N), *)$ is an (X, N) -zero groupoid, then*

$$(x*x)*y = x*(x*y)$$

for all $x, y \in X$.

Proof. Given $x, y \in X$, if $x, y \in N$, then $(x*x)*y = x*y = x$ and $x*(x*y) = x*x = x$. Otherwise, we have $(x*x)*y = x*y = y$ and $x*(x*y) = x*y = x$. \square

Proposition 4.2. *Let $(X, *) \in \text{Bin}(X)$ and let $N \subseteq X$. If $(X(N), \square) := (X(N), *) \square (X(N), *)$, then it is a left-zero semigroup.*

Proof. Given $x, y \in X$, if $x, y \in N$, then $x\square y = (x*y)*(y*x) = x*y = x$. Otherwise, we have $x\square y = (x*y)*(y*x) = y*x = x$, proving the proposition. \square

If $|X| = n < \infty$, then the number of groupoids $(X(N), *)$ is 2^n . Also, the number of groupoids satisfying $x*x = x, x*y \in \{x, y\}$ is 2^{n^2-n} , so that there are many such groupoids which are not of the type $(X(N), *)$ discussed here.

Proposition 4.3. *Let $(X, *) \in \text{ZBin}(X)$. If $(X, \square) := (X, *) \square (X, *)$, then (X, \square) is a left-zero semigroup.*

Proof. Since $(X, *) \in \text{ZBin}(X)$, by Proposition 2.3, $(\{x, y\}, *)$ is either a left-zero semigroup or a right-zero semigroup for all $x, y \in X$. It follows that either $x\square y = (x*y)*(y*x) = x*y = x$ or $x\square y = (x*y)*(y*x) = y*x = x$. Hence (X, \square) is a left-zero semigroup. \square

Theorem 4.1. *Let $(X(M), *)$ be an (X, M) -zero groupoid and let $(X(N), \bullet)$ be an (X, N) -zero groupoid where $M, N \subseteq X$. If $(X, \square) := (X(M), *) \square (X(N), \bullet)$, then $(X, \square) \in \text{ZBin}(X)$.*

Proof. Given $x, y \in X$, if $x, y \in M \setminus N$, then $x\square y = (x*y) \bullet (y*x) = x \bullet y = y$ and $y\square x = (y*x) \bullet (x*y) = y \bullet x = x$, i.e., $(\{x, y\}, \square)$ is a right-zero semigroup. If $x, y \in N \setminus M$, then $x\square y = (x*y) \bullet (y*x) = y \bullet x = y$ and $y\square x = (y*x) \bullet (x*y) = x \bullet y = x$, i.e., $(\{x, y\}, \square)$ is a right-zero semigroup. If either $x \in M \setminus N, y \in N \setminus M$ or $x \in N \setminus M, y \in M \setminus N$, then $x\square y = (x*y) \bullet (y*x) = y \bullet x = x$ and $y\square x = (y*x) \bullet (x*y) = x \bullet y = y$, i.e., $(\{x, y\}, \square)$ is a left-zero semigroup. If $x \notin M \cup N, y \in M \cup N$, then $x\square y = (x*y) \bullet (y*x) = y \bullet x = x$ and $y\square x = (y*x) \bullet (x*y) = x \bullet y = y$, i.e., $(\{x, y\}, \square)$ is a left-zero semigroup. If $x, y \notin M \cup N$, then $x\square y = (x*y) \bullet (y*x) = y \bullet x = x$ and $y\square x = (y*x) \bullet (x*y) = x \bullet y = y$, i.e., $(\{x, y\}, \square)$ is a left-zero semigroup. By Proposition 2.4, $(X, \square) \in \text{ZBin}(X)$. \square

Corollary 4.1. *Let $(X(N), *)$ be an (X, N) -zero groupoid and let $(X(N^C), \bullet)$ be an (X, N^C) -zero groupoid. If $(X, \square) := (X(N), *) \square (X(N^C), \bullet)$, then $(X, \square) \in \text{ZBin}(X)$.*

Proposition 4.4. *If $(X, *)$ is an (X, N) -zero groupoid, then $(X, *) \in \text{ZBin}(X)$.*

Proof. Given $x, y \in X$, if $x, y \in N$, then $x*y = x$ and $y*x = y$, i.e., $(\{x, y\}, *)$ is a left-zero semigroup. If $x, y \in N^C$, then $x*y = y$ and $y*x = x$, i.e., $(\{x, y\}, *)$ is a right-zero semigroup. If either $x \in N, y \in N^C$ or $x \in N^C, y \in N$, then $x*y = y, y*x = x$, i.e., $(\{x, y\}, *)$ is a right-zero semigroup. By Proposition 2.6, $(X, *) \in \text{ZBin}(X)$. \square

Note that if $(X, *)$ is an (X, N) -zero groupoid, then $(X, \star) \in ZBin(X)$ where $x \star y := y * x$ for all $x, y \in X$, but it is not an (X, N) -zero groupoid. In fact, it is an (X, N^C) -zero groupoid. We give an example that the converse of Proposition 4.4 does not hold in general.

Example 4.1. Let $X := \{a, b, c, d\}$ be a set with $M := \{a, b, c\}$ and $N := \{b, c, d\}$. Define two binary operations as follows:

*	a	b	c	d	•	a	b	c	d
a	a	a	a	d	a	a	b	c	d
b	b	b	b	d	b	a	b	b	b
c	c	c	c	d	c	a	c	c	c
d	a	b	c	d	d	a	d	d	d

Then $(X, *)$ is an (X, M) -zero groupoid and (X, \bullet) is an (X, N) -zero groupoid. If we let $(X, \square) := (X, *) \square (X, \bullet)$, then we have the following table:

□	a	b	c	d
a	a	b	c	a
b	a	b	b	d
c	a	c	c	d
d	d	b	c	d

It is easy to see that $(X, \square) \in ZBin(X)$, but is not an (X, K) -zero groupoid for any $K \subseteq X$ with $K \neq \emptyset$.

A groupoid $(X, *)$ is said to be an N -groupoid if $(N, *)$ is a subgroupoid of $(X, *)$ where $\emptyset \neq N \subseteq X$. We denote it by $(X, N, *)$ and we call it an N -groupoid. We denote the collection of all N -groupoids by $Bin(X, N)$. Clearly, every (X, N) -zero groupoid $(X(N), *)$ belongs to $Bin(X, N)$. Let $(X, *)$ be a left-zero semigroup. Then $(X, *)$ is an N -groupoid for any non-empty subset $N \subseteq X$, i.e., $(X, *) \in Bin(X, N)$. This means that the left-zero semigroup acts as the identity element of $Bin(X, N)$.

Proposition 4.5. $(Bin(X, N), \square)$ is a subsemigroup of $(Bin(X), \square)$.

Proof. Given $(X, N, *), (X, N, \bullet) \in Bin(X, N)$, we let $(X, N, \square) := (X, N, *) \square (X, N, \bullet)$. Given $x, y \in N$, we have $x \square y = (x * y) \bullet (y * x) \in N \bullet N \subseteq N$. This shows that $(X, N, \square) \in Bin(X, N)$. \square

Let $(X, *) \in Bin(X)$ and let $(N, *)$ be a subgroupoid of $(X, *)$. Define a binary operation “ $*_D$ ” on X by

$$x *_D y := \begin{cases} x * y & \text{if } x, y \in N, \\ y * x & \text{otherwise} \end{cases}$$

We call $(X, *_D)$ a *dual- N -groupoid* of $(X, *)$.

Proposition 4.6. *If $(X, *)$ is an (X, N) -zero groupoid, then its dual- N -groupoid $(X, *_D)$ is a left-zero semigroup.*

Proof. Given $x, y \in X$, if $x, y \in N$, then $x *_D y = x * y = x$. Otherwise, we have $x * y = y, y * x = x$. It follows that $x *_D y = y * x = x$, proving that $(X, *_D)$ is a left-zero semigroup. \square

Clearly $(X, *_D)$ is also an N -groupoid if $(X, *)$ is an N -groupoid.

Proposition 4.7. *Let $(X, \bullet) \in \text{Bin}(X, N)$ and let $(X, *)$ be an (X, N) -zero groupoid. If $(X, \square) := (X, *) \square (X, \bullet)$, then (X, \square) is a dual- N -groupoid of (X, \bullet) .*

Proof. Given $x, y \in X$, if $x, y \in N$, then $x * y = x, y * x = y$ and hence $x \square y = (x * y) \bullet (y * x) = x \bullet y$. Otherwise, we have $x * y = y, y * x = x$ and hence $x \square y = (x * y) \bullet (y * x) = y \bullet x$. This shows that $(X, \square) = (X, \bullet_D)$. \square

Theorem 4.2. *Let $(X, \bullet) \in \text{ZBin}(X)$ and let $(X, *)$ be an (X, N) -zero groupoid. If $(X, \square) := (X, \bullet) \square (X, *)$, then (X, \square) is a dual- N -groupoid of (X, \bullet) .*

Proof. Given $x, y \in X$, if $x, y \in N$, since $(X, \bullet) \in \text{ZBin}(X)$, by Theorem 2.3, we have $\{x, y\} = \{x \bullet y, y \bullet x\}$, i.e., $x \bullet y, y \bullet x \in N$. Since $(X, *)$ is an (X, N) -zero groupoid, we have $x \square y = (x \bullet y) * (y \bullet x) = x \bullet y$. Otherwise, since $(X, \bullet) \in \text{ZBin}(X)$, by Theorem 2.2, we have $\{x, y\} = \{x \bullet y, y \bullet x\}$, i.e., it is not true that $x \bullet y, y \bullet x \in N$. It follows that $x \square y = (x \bullet y) * (y \bullet x) = y \bullet x$, proving that $(X, \square) = (X, \bullet_D)$. \square

5. Some applications to fuzzy sets

Let $(X, *) \in \text{Bin}(X)$. A map $\mu : X \rightarrow [0, 1]$ is called a *fuzzy weak-left-zero groupoid* if

$$\mu(x * y) \geq \mu(a * b) \quad \text{implies} \quad \mu(x) \geq \mu(a)$$

Example 5.1. Suppose that $D : \mathbf{R} \rightarrow [0, 1]$ is a non-decreasing function, e.g., the distribution function of a random variable. Also, suppose $f : (X, *) \rightarrow \mathbf{R}$ is any function such that $f(x * y) \geq f(a * b)$ implies $f(x) \geq f(a)$. Then $\mu(x) := D(f(x))$ yields $\mu(x * y) = D(f(x * y)) \geq D(f(a * b)) = \mu(a * b)$ yields $f(x * y) \geq f(a * b)$ and thus $f(x) \geq f(a)$, whence $\mu(x) \geq \mu(a)$ as well, i.e., μ is a fuzzy-weak-left-zero groupoid with respect to $(X, *)$.

Example 5.2. Let $(X, *)$ be a left-zero semigroup. Then every map $\mu : X \rightarrow [0, 1]$ is a fuzzy-weak-left-zero groupoid. In fact, if $\mu(x * y) \geq \mu(a * b)$, since $(X, *)$ is a left-zero semigroup, we obtain $\mu(x) \geq \mu(a)$.

Let $(X, *) \in \text{Bin}(X)$. A map $\mu : X \rightarrow [0, 1]$ is called a *strict fuzzy weak-left-zero groupoid* if

$$\mu(x * y) = \mu(a * b) \text{ implies } \mu(x) = \mu(a)$$

Clearly, if $(X, *)$ is a left-zero semigroup, then every map $\mu : X \rightarrow [0, 1]$ is a strict fuzzy weak-left-zero groupoid. Note that every fuzzy weak-left-zero groupoid is a strict fuzzy weak-left-zero groupoid.

Let $(X, *) \in \text{Bin}(X)$ and let $\mu : X \rightarrow [0, 1]$ be a fuzzy subset of X . We give some conditions:

- (D_1) if $\mu(x) \geq \mu(a)$, then $\mu(x * y) \geq \mu(a * b)$ for all $y, b \in X$,
- (D_2) if $\mu(x) = \mu(a)$, then $\mu(x * y) = \mu(a * b)$ for all $y, b \in X$.

Notice that if (D_1) holds, then $\mu(x) = \mu(a)$ implies $\mu(x * y) \geq \mu(a * b)$ and $\mu(a * b) \geq \mu(x * y)$, i.e., $\mu(x * y) = \mu(a * b)$, so that (D_1) implies the condition (D_2) .

Proposition 5.1. *Let $(X, *) \in \text{Bin}(X)$ and let $\mu : X \rightarrow [0, 1]$ be a fuzzy subset of X with (D_1) . If $\mu(a) := \min_{x \in X} \mu(x)$, then $\mu(a * b) = \mu(a * c)$ for all $b, c \in X$.*

Proof. Since $\mu(a) \leq \mu(x)$ for all $x \in X$, by (D_1) , we have $\mu(a * b) \leq \mu(x * c)$ for all $b, c, x \in X$. It follows that $\mu(a * b) \leq \mu(a * c)$ for all $b, c \in X$. If we exchange b with c , then we have $\mu(a * b) = \mu(a * c)$ for all $b, c \in X$. \square

Let $(X, *) \in \text{Bin}(X)$. A map $\mu : X \rightarrow [0, 1]$ is called a *fuzzy weak-right-zero groupoid* if

$$\mu(x * y) \geq \mu(a * b) \text{ implies } \mu(y) \geq \mu(b)$$

A map $\mu : X \rightarrow [0, 1]$ is said to be a *fuzzy weak-zero* if

$$\mu(x * y) \geq \mu(a * b) \text{ implies } \mu(x) \geq \mu(a), \mu(y) \geq \mu(b)$$

Theorem 5.1. *Let $(X, *), (X, \bullet) \in \text{Bin}(X)$ and let $(X, \square) := (X, *) \square (X, \bullet)$. Then the following conclusions hold:*

- (i) *if μ is a fuzzy weak-left-zero groupoid of both $(X, *)$ and (X, \bullet) , it is also a fuzzy weak-left-zero groupoid of (X, \square) ,*
- (ii) *if μ is a fuzzy weak-left-zero groupoid of $(X, *)$ and a fuzzy weak-right-zero groupoid of (X, \bullet) , then it is a fuzzy weak-right-zero groupoid,*
- (iii) *if μ is a fuzzy weak-right-zero groupoid of $(X, *)$ and a fuzzy weak-left-zero groupoid of (X, \bullet) , then it is a fuzzy weak-right-zero groupoid,*
- (iv) *if μ is a fuzzy weak-right-zero groupoid of both $(X, *)$ and (X, \bullet) , it is a fuzzy weak-left-zero groupoid of (X, \square) .*

Proof. (i) If $\mu(x \square y) \geq \mu(a \square b)$ for some $x, y, a, b \in X$, then $\mu((x * y) \bullet (y * x)) \geq \mu((a * b) \bullet (b * a))$. Since μ is a fuzzy weak-left-zero groupoid of (X, \bullet) , we obtain $\mu(x * y) \geq \mu(a * b)$. Since μ is a fuzzy weak-left-zero groupoid of $(X, *)$, we have $\mu(x) \geq \mu(a)$. The proofs of the others are similar to (i), and we omit them. \square

Let $(X, *) \in \text{Bin}(X)$. A map $\mu : X \rightarrow [0, 1]$ is called a *fuzzy weak-crossed-zero groupoid* if

$$\mu(x * y) \geq \mu(a * b) \text{ implies } \mu(x) \geq \mu(a) \text{ or } \mu(y) \geq \mu(b)$$

Example 5.3. In Example 5.1, if $f : (X, *) \rightarrow \mathbf{R}$ is any function such that $f(x * y) \geq f(a * b)$ implies $f(x) \geq f(a)$ or $f(y) \geq f(b)$. Then $D \circ f : (X, *) \rightarrow [0, 1]$ is a fuzzy weak-crossed-zero groupoid.

Example 5.4. Let $X := \mathbb{N}$, the set of all natural numbers, and let $x * y := x(x + y)$ for all $x, y \in X$. Define $f : X \rightarrow \mathbf{R}$ by $f(x) := x$. Assume $f(x * y) \geq f(a * b)$ and $f(x) \leq f(a)$. Then $x(x + y) \geq a(a + b)$ and $x \leq a$. It follows that $x + y \geq a + b$ and hence $y \geq a + b - x = (a - x) + b \geq b$, which shows that $f(y) \geq f(b)$. Define $\mu := D \circ f$, where D is a distribution function of a random variable. Then μ is a fuzzy weak-crossed-zero groupoid of $(X, *)$.

Proposition 5.2. Let μ be a fuzzy weak-crossed-zero groupoid of both $(X, *)$ and (X, \bullet) . If $(X, \square) := (X, *) \square (X, \bullet)$, then μ is a fuzzy weak-crossed-zero groupoid of (X, \square) .

Proof. Assume $\mu(x \square y) \geq \mu(a \square b)$ and $\mu(x) < \mu(a)$. Then $\mu((x * y) \bullet (y * x)) \geq \mu((a * b) \bullet (b * a))$. Since μ is a fuzzy weak-crossed-zero groupoid of (X, \bullet) , we obtain either $\mu(x * y) \geq \mu(a * b)$ or $\mu(y * x) \geq \mu(b * a)$. Since μ is a fuzzy weak-crossed-zero groupoid of $(X, *)$, we have either $\mu(x) \geq \mu(a)$ or $\mu(y) \geq \mu(b)$. It follows that $\mu(y) \geq \mu(b)$, proving that μ is a fuzzy weak-crossed-zero groupoid of (X, \square) . \square

6. Conclusion.

In this paper, we consider elements of $(\text{Bin}(X), \square)$ with similar properties, which acts as generalizations of the left-zero semigroup as well as the right-zero semigroup, viz, the weak-left-zero groupoids and the weak-right-zero semigroups, while still maintaining several of their properties to a considerable degree, especially with respect to those derived for the product \square in $(\text{Bin}(X), \square)$. As another generalization of the left-zero semigroup, we introduce the notion of an (X, N) -zero groupoid and obtain several “parity” properties related to $Z\text{Bin}(X)$. After having obtained information about these groupoids, we are in the future planning to proceed with the study of fuzzy subsets of X which have correspond properties to fuzzy subsets of X which have corresponding properties in the future.

REFERENCES

- [1] *H. F. Fayoumi*, Locally-zero groupoids and the center of $Bin(X)$, Comm. Korean Math. Soc., **26** (2011), 163-168.
- [2] *J. S. Han, H. S. Kim and J. Neggers*, The hypergroupoid semigroups as generalizations of the groupoid semigroups, Journal of Applied Math. **2012** (2012), Article ID 717698, 8 pages.
- [3] *K. Iséki and S. Tanaka*, An introduction to theory of BCK -algebras, Math. Japonica **23** (1978), 1-26.
- [4] *K. Iséki*, On BCI -algebras, Math. Seminar Notes **8** (1980), 125-130.
- [5] *H. S. Kim and J. Neggers*, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc. **45** (2008), 651-661.
- [6] *J. Meng and Y. B. Jun*, BCK -algebras, Kyung Moon Sa, Seoul, 1994.
- [7] *J. N. Mordeson and D. S. Malik*, Fuzzy commutative algebra, World Scientific, Singapore, 1998.
- [8] *A. Rosenfeld*, Fuzzy groups, J. Math. Anal. Appl. **35** (1971), 512-517.
- [9] *L. A. Zadeh*, Fuzzy sets, Inf. Contr. **8** (1965), 338-353.