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ESTIMATION OF DENSITIES IN A CELL TRANSMISSION BASED 

MODEL 
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The purpose of Information in Transportation Systems (ITS) is to provide the 

drivers with proper and immediate information about eventually events or incidents 

on the road. If a driver will be notified through ITS system for a considerable 

increasing of the density in any part, he will be warned that the congestion has 

occurred due to any incident on the highway. The parameter of density is not possible 

to be easily measured in short intervals on short length cells. In this paper is used a 

cell transmission model known as CTM, to predict the density on short intervals (10 

seconds) on any particular part of a road only by having the flow measures from two 

loop detectors on the entry and the end sections of the highway segment. This model 

incorporates the traffic flow variability on the two measuring points, in e cell 

transmission model in order to obtain the diagram of the relationship of flow and 

density, from which then, can principally be estimated the densities of each cell. 

Beside the flow, we also must do a judgment if the state of the road segment is 

subjected to free flow or congested flow condition. On a free flow state all the cells 

are supposed to be in free flow mode and the densities of each of them are below the 

critical density of the entire highway segment. On a congested flow state all the cells 

are in congested mode and their densities are above the critical density of the entire 

highway segment. Evaluation of the model is done for two CTM model variant and it 

was concluded that the obtained density results of the free flow mode offer more 

accurate match with the real conditions of the subjected highway segment. Evaluation 

of the model is done through a Mat Lab code editor and the obtained results are drawn 

graphically. A mean absolute percentage error is calculated between the modeled 

densities and the measured densities, that shows an acceptable range of the error 

between free flow state densities and measured densities, as presented in the results 

and conclusion section. 
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1. Introduction 

Macroscopic models describes traffic flow as continuum fluid flow by main 

characteristic parameters such as, speed, traffic density and traffic flow or traffic 

volume. The LWR Lighthill–Whitham–Richards (LWR) [1] model is a 

macroscopic traffic flow model which has evolved from flow conservation law. It 

is a combination of a conservation law defined via a partial differential equation 
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and the relations of parameters described by fundamental diagram [2]. The 

calculation of every mentioned parameter of the LWR model requires complex and 

hard handling of some differential equations solving. A discrete model that 

describes on a simply way the evolution of the all traffic flow in every time and 

distance increment, can be used to calculate traffic parameters avoiding the tedious 

calculation of derivative equations. The Cell Transmission Model (CTM) is one of 

these discrete models, which was originally obtained from the second order model 

of a traffic flow, was firstly developed by Daganzo in 1994 [3], [4]. For more, on 

this paper, the prediction of the traffic density on any particular cell is done without 

having information of traffic flow volumes of each cell. It is needed only to take 

into consideration of the entering flow to the first cell (first cell) and the exit flow 

from downstream (last cell), known as inflow and out flow, respectively, and based 

on the relationship of these two parameters we can predict the density of any 

intermediate cell [5], [6]. 

 

1.1. Fundamentals of the CTM model 

In this paper, as we stated on the abstract section, we aim to predict the density 

parameters on any particular part of a road segment. CTM relies on simplification 

of the fundamental diagram (Fig.1.1) of the flow-density relationship that on this 

paper will be referred as FDR diagram. In order to be quickly linked with the FDR 

of the LWR model from which has evaluated cell transmission model, let we have 

a brief mention of its parameters. In the Fig.1.1 we can distinguish three parameters: 

maximal flow-capacity, Qcap [veh/s], density, ρ [veh/m], critical density, ρcr 

[veh/m], jam density, ρj [veh/m], free flow speed, vf [km/hr] and backward speed or 

congestion wave speed, w [km/hr]. The idea was to divide this road in cells with 

same length and the time in units or time steps and update the number of vehicles 

on each cell every clock tick. The length of cells must be chosen to fulfill the below 

condition, that with speed on free conditions, during one clock tick, vehicle will 

prescribe a whole cell. In the beginning, every cell is filled with a number of 

vehicles that is equal to the storage capacity of cell, or with other words this value 

is the production of the length of cell, l[m] and the jam density ρj [veh/m]. 

 
Fig.1.1 Fundamental diagram (FDR) 

As it was briefly described on the unit of discretized model, the CTM model 

discretizes the LWR model in every time unit choosing a time step ∆t and road 
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segment choosing length unit-cells of length l[m]where these two parameters are 

chosen in order to fulfill the condition: 

𝑙 = 𝑣𝑓∙𝑇𝑠   𝑎𝑛𝑑   𝑇𝑠 < 𝑙/𝑣𝑓  

Where: 

 vf  is the free-flow speed or the average speed that vehicles develop during 

traveling under free flow conditions, and 

 Ts is the time step usually in seconds (T≈0.2-15 sec.) 

Based on the CTM model, the number of vehicles in one cell is described according 

to a vehicle-conservation equation (1). 

                      𝑛𝑖(𝑘 + 1) = 𝑛𝑖(𝑘) + 𝑦𝑖(𝑘) − 𝑦𝑖+1(𝑘)                                 (1) 

Where:   

𝑛𝑖(𝑘 + 1) is the number of vehicles in cell i at time step k+1 

𝑛𝑖(𝑘) is the number of vehicles in cell i at time step k, 

𝑦𝑖(𝑘)  is the number of vehicles entering from cell i-1 to i during the time k and 

k+1 and is the flow that is determined by comparing the sending and receiving flow 

of cell i-1 and i, respectively. According to CTM-first part of the model [3], 𝑦𝑖(𝑘) 

is assumed to be the smallest of three values listed below: 

 𝑛𝑖−1(𝑘), the number of vehicles in cell i-1 at time k, 

Qi, the capacity flow into i for time interval k, 

Ni(k)-ni(k) is the amount of empty space in cell i at time k (this quantity ensures that 

the vehicular density on every section of the road remains below density).  

As it seems from the above stated conditions, a cell can maximally receive a number 

of vehicles, which their adding should not exceed the maximal number of vehicles 

that can be present on it during time k, or a number of vehicles equal to the capacity 

flow or the a number of vehicles that the empty space of cell can accept during time 

k. Now equation for yi (k) takes the form as in (2): 

 

                            𝑦𝑖(𝑘) = min (𝑛𝑖−1(𝑘), 𝑄𝑖(𝑘), 𝑁𝑖(𝑘) − 𝑛𝑖(𝑘)       (2) 

 

2. CTM model of a Highway with three cells 

2.1.State Space Presentation 

If we denote with ρi,(k) the density of a cell (uniform or non-uniform length), 

instead of the number of vehicles ni on the a unit length cell, then we can bring 

equation (1) to (3) for density 𝜌𝑖(𝑘 + 1) of the cell i updated time step in (k+1), 

where Ts is the discrete time unit in seconds, (Fig.1.1).  

                    𝜌𝑖(𝑘 + 1) = 𝜌𝑖(𝑘) +
𝑇𝑠

𝐿
(𝑞𝑖(𝑘) − 𝑞𝑖+1(𝑘))  (3) 

 From above equation we see that beside from the value of the density from 

the previous time step, density of a cell i also depends from the inter cell flows on 

the previous time step [4]. Analyzing a highway partitioned in three cells (for the 

sake of simply illustration)  with an on ramp and an off ramp, by assuming that the 
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belonging cells can be in the free flow either in congested mode the densities on 

each cell can be written as in equations (4), (5) and (6).  

 
Fig.1.2. Presentation of highway partitioned in cells and inter cell flows 

The densities on each cell are: 

𝜌𝑖−1(𝑘 + 1) = 𝜌𝑖−1(𝑘) +
𝑇𝑠

𝐿
(𝑞𝑖−1(𝑘) − 𝑞𝑖(𝑘) + 𝑟(𝑘)) or 

    𝜌1(𝑘 + 1) = 𝜌1(𝑘) +
𝑇𝑠

𝐿
(𝑞1(𝑘) − 𝑞2(𝑘) + 𝑟(𝑘))              (4) 

               𝜌𝑖(𝑘 + 1) = 𝜌𝑖(𝑘) +
𝑇𝑠

𝐿
(𝑞𝑖(𝑘) − 𝑞𝑖+1(𝑘)) or 

                     𝜌2(𝑘 + 1) = 𝜌2(𝑘) +
𝑇𝑠

𝐿
(𝑞2(𝑘) − 𝑞3(𝑘))             (5) 

𝜌𝑖+1(𝑘 + 1) = 𝜌𝑖+1(𝑘) +
𝑇𝑠

𝐿
(𝑞𝑖+1(𝑘) − 𝑞4(𝑘) − 𝑓(𝑘)) or 

                    𝜌3(𝑘 + 1) = 𝜌3(𝑘) +
𝑇𝑠

𝐿
(𝑞3(𝑘) − 𝑞4(𝑘) − 𝑓(𝑘))             (6) 

With the elaboration of the inter-cell flow law [5] can be defined the 

expressions for the inter cell flows q1, q2 and q3 in the above equations. 

Before the inter cell flows elaboration is given, a reasonable description of 

the congestion must be given further, since as we assumed above, the cells can be 

in either free or congested mode. Congestion is defined as the state of the traffic 

with high density rates, or with other words the density of that part of the highway 

expressed in cell is equal or higher than the critical density based on the 

fundamental diagram of relationship of flow and density. Referred to the mentioned 

diagram, can be noticed that the congested flow belongs to higher values of the 

density, above the critical density values where the flow drops down. That can be 

described with enormous number of vehicles travelling at low speeds and with short 

distance spaces between each other.  

The common modes of cells, used in analysis of researchers are the fully 

congested mode when the three cells are congested, denoted with CCC, and free 
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flow mode when the three cells are in free flow mode, denoted with FFF mode. The 

other middle modes that are out of the scope of this paper are those with last one 

and two cells in congested mode, written by FCC and FFC, respectively.  

Now, for the FFF mode, the densities of the cells are lower than the critical density 

and the inter cell flows are as follows: 

                                    𝑞𝑖(𝑘) = min (𝑣𝑓𝑖−1∙𝜌𝑖−1,   𝑄𝑖−1  𝑤𝑖(𝜌𝐽 − 𝜌𝑖)) 𝑜𝑟 (7) 

𝑞2(𝑘) = min(𝑣𝑓1∙𝜌1,   𝑄1  𝑤2(𝜌𝐽 − 𝜌2) )=𝑣𝑓1∙𝜌1 

                                𝑞𝑖+1(𝑘) = min(𝑣𝑓𝑖∙𝜌𝑖,   𝑄𝑖  𝑤𝑖+1(𝜌𝐽 − 𝜌𝑖+1), )     (8) 

𝑞3(𝑘) = min(𝒗𝒇𝟐∙𝝆𝟐,   𝑄2  𝑤3(𝜌𝐽 − 𝜌3) )=𝑣𝑓2∙𝜌2 

In CCC mode, the densities of the cells are higher that the critical density, 

and the inter cell flows are: 

                                𝑞𝑖(𝑘) = min (𝑣𝑓𝑖−1∙𝜌𝑖−1,   𝑄𝑖−1  𝑤𝑖(𝜌𝐽 − 𝜌𝑖)) 𝑜𝑟             (9) 

            𝑞2(𝑘) = min(𝑣𝑓1∙𝜌1,   𝑄1  𝑤2(𝜌𝐽 − 𝜌2) )=𝑤2(𝜌𝐽 − 𝜌2) 

                                  𝑞𝑖+1(𝑘) = min(𝑣𝑓𝑖∙𝜌𝑖,   𝑄𝑖  𝑤𝑖+1(𝜌𝐽 − 𝜌𝑖+1), )     (10) 

               𝑞3(𝑘) = min(𝑣𝑓2∙𝜌2,   𝑄2  𝑤3(𝜌𝐽 − 𝜌3) )=𝑤3(𝜌𝐽 − 𝜌3) 

After subtracting the expressions for inter cell flows in the equations of 

densities for the FFF mode, we have: 

                         𝜌1(𝑘 + 1) = 𝜌1(𝑘) +
𝑇𝑠

𝐿
(𝑞1(𝑘) − 𝑣𝑓1∙𝜌1(𝑘) + 𝑟(𝑘))            (11) 

                           𝜌2(𝑘 + 1) = 𝜌2(𝑘) +
𝑇𝑠

𝐿
(𝑣𝑓1∙𝜌1(𝑘) − 𝑣𝑓2∙𝜌2(𝑘))            (12) 

                             𝜌3(𝑘 + 1) = 𝜌3(𝑘) +
𝑇𝑠

𝐿
(𝑣𝑓2∙𝜌2(𝑘) − 𝑞4(𝑘) − 𝑓(𝑘)       (13) 

And after subtracting the expressions for inter cell flows in the equations 

of densities for the CCC mode, we have: 

                  𝜌1(𝑘 + 1) = 𝜌1(𝑘) +
𝑇𝑠

𝐿
(𝑞1(𝑘) − 𝑤2 (𝜌𝐽 − 𝜌2(𝑘)) + 𝑟(𝑘))         (14) 

                  𝜌2(𝑘 + 1) = 𝜌2(𝑘) +
𝑇𝑠

𝐿
(𝑤2(𝜌𝐽 − 𝜌2(𝑘)) − 𝑤3(𝜌𝐽 − 𝜌3(𝑘))      (15) 

                  𝜌3(𝑘 + 1) = 𝜌3(𝑘) +
𝑇𝑠

𝐿
(𝑤3(𝜌𝐽 − 𝜌3(𝑘)) − 𝑞4(𝑘) − 𝑓(𝑘))      (16) 

 
 

3. A numerical example of the CTM model- 

3.1.Calibration of Fundamental Diagram 

For the purpose of the demonstration of the CTM model, in this paper is 

performed a numerical example which is described below. For the sake of 

simplicity, are chosen the same freeway segment characteristics as that in earlier 

sections in order to do an interconnection with the laid state space model of traffic 

density. The system of performance measurements of the traffic road networks of 

the Californian state (PEMS) [7] is used for traffic data and is considered a freeway 
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link for on the street “Broadway Avenue”, Stockton/San Francisco. The freeway is 

consisted from three cells with different lengths with one on-ramp on the first cell 

(Fig. 1.3). 

 

Fig.1.3.Freeway segment with three cells 

System of PEMS offers traffic measurements as flow, occupancy, speed, etc. 

that are collected by detectors every five minute intervals. The choice of the 

measurements for the applied link is done based on the demands that derive from 

the CTM model. Since we need to involve in the CTM model the free flow speed vf, 

[km/h], maximal flow or capacity QM [veh/h], critical density ρcr [veh/km] and jam 

density ρJ [veh/km], beside gathering the primary measurements, we are also pushed 

to do an calibration of the fundamental diagram to obtain the above mentioned 

measurements for every cell. In the frame of the calibration procedure of this 

seminar paper, the first step is to obtain the maximal amount of flow QM[veh/h], 

which provides the highest pint on the fundamental diagram with flow-density 

relationship. By applying the law of fundamental diagram for the relationship of the 

flow and density, we can obtain the value of the critical density by projecting the 

maximal point of the flow QM, to the horizontal axe ‘x’, which from the following 

fig. we can see that is equal to 59.9 (veh/km). Speed as important parameter of in 

the frame of calibration, presents the slope of the line drowned to the scattered plots,  

By the relationship for the flow and speed, Q=ρ·v, we can calculate the free flow 

speed vf corresponds to the critical density, as vf= QM/ρcr, which is equal to 86,2 

(km/hr) (17). 

vf =  
QM

ρcr
=

5172,6

59,9
= 86,2 (

km

hr
)  (17) 

As an important part of the calibration is considered the estimation of the 

characteristic parameters that belong to the right side of the diagram or the 

congestion part, which are the jam density or the maximal density ρJ [veh/km] and 

the backward speed w [km/hr](18).  

The jam density is determined by finding the outer point from the right side 

among the scattered plot 

From which can be seen the value of the critical density ρJ=248 (veh/km). 
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The backward speed provides the rate at which the flow decreases while the density 

exceeds its critical value ρcr, which analogy as the free flow speed presents the slope 

of the line to the set of points of the right side diagram-congestion flow part.  It has 

been calculated by the formula: 

                               w =
QM 

ρJ−ρcr
  [

km

hr
] =

517,2

248−59,9
= 27,5(

km

hr
)             (18) 

The values of the calibrated parameters are presented in the Table 1 and are 

graphically presented in Fig. 1.4.  

Table 1 

Summary of calibrated parameters 

FF Conditions 
Maximal Flow 

QM [veh/hr] 

Free  

Flow Speed 

Vf [km/hr] 

Critical 

Density 

ρcr [veh/km] 

Jam Density 

 ρJ [veh/km] 

 

Backward 

Speed 

w [km/hr] 

Cell 1 5580 84.8 65.8 248 30.6 

Cell 2 4176 96.8 43.1 248 20.3 

Cell 3 4268 106.7 40.0 248 20.5 

 

 

Fig.1.4. Diagram for flow-density calibrated parameters   

3.2. Algorithm for FFF model       Table 2 

 Pseudo Code of CTM model in Matlab editor 

L1=0.322; %Length of Cell 1 [km]           

L2=0.435; %Length of Cell 2 [km]     

L3=0.451; %Length of Cell 3 [km] 

rJ1=230; %Jam Density 1 [veh/km]            

rJ2=230; %Jam Density 2 [veh/km]           

rJ3=230; %Jam Density 3 [veh/km]  

rcr1=65.8; %Critical Density 1  

rcr2=43.1; %Critical Density 2  

rrcr3=200.0; %Critical Density 3  

 

T=10/3600; % Time interval, 10 sec 

q1=q1; % Inflow in Cell 1- 

q4; % Outflow from Cell 3- 

QR; %Flow from On-ramp 

TT=1:1007; % Number of intervals 

% Reallocate the densities 

r1pred=zeros (length (q1), 1); %  

r2pred=zeros (length (q1), 1); %  
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vf1=84.8; %Free flow speed 1 

[km/h]             

vf2=96.8; %Free flow speed 2 

[km/h] 

vf3=106.7; %Free flow speed 3  

w1=30.6; %Backward (congestion)  

w2=20.3; %Backward speed 2 

[km/h] 

w3=20.5; %Backward speed 3 [km/h] 

r3pred=zeros (length (q1), 1); % Density of 

Cell 3 

Vector 

Xhat = [25;23;21]; 

% Initialization- Initial value of Matrix Density 

A= [1-vf1*T/L1 0 0; vf1*T/L2 1-vf2*T/L2 0; 0 

vf2*T/L3 1]; 

Bu= [T/L1 0 0; 0 T/L2 0; 0 0 -T/L3]; 

Br= [T/L1 0 0; 0 T/L2 0; 0 0 T/L3]; 

Qu= [q1 (ii, :); 0; q4 (ii, :)]; 

Qr= [qr (ii); 0; 0]; 

% Begin CTM Algorithm 

for ii=1:1007 

    Xhat=A*xhat+Bu*qu+Br*QR; 

    % store the predictions 

    r1pred (ii) =xhat (1); 

    r2pred (ii) =xhat (2); 

    r3pred (ii) =xhat (3);  end 

 

 

4. Results and Conclusions 

Evaluation of the density values of cell is performed with discrete time intervals 

of Ts=10 seconds, adapting to the basic condition of the relation: T<L/v f, for proper 

work with system matrices, otherwise there will be obtained negative values of 

density parameters. The initial values of the densities ρ0 = [ρ10, ρ20, ρ30]
T and 

estimated covariance matrix Po are assumed (as described in the above pseudo-

algorithm in Mat Lab). 

For the purpose of the results evaluation, measured traffic densities for five 

minute intervals are used for comparison with the estimated densities with CTM 

model. The performance of the model was quantified by calculating the Mean 

Absolute Percentage Error (MAPE) [8] given in (19).  

 

            MAPE = [
1

n
∙ ∑ |

ρmod(k)−ρmeas(k)

ρmeas(k)
] ∙ 100|n

k=1     (19) 

 

where, 𝜌𝑚𝑜𝑑(𝑘) and 𝜌𝑚𝑒𝑎𝑠(𝑘) are the estimated by CTM model and measured 

values of density, of each cell during the kth discrete time interval and n is the 

number of observations.  

Evaluation of results is done for both traffic state conditions: free flow (FFF) mode 

and congestion (CCC) which are the two most extreme cases that resemble the real 

traffic flow on highway.  
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Table 3 

Performance Measure of Model (MAPE) 

MAPE [%] Cell 1 Cell 2 
 

Cell 3 

CTM (CCC) 40 39.9 40 

CTM (FFF) 20.33 12.59 20 

 

As we can see from Table 3, for free flow conditions (FFF) model, the MAPE 

results for Cell 1, Cell 2 and Cell3 are 20, 3 %, 12.6 % and 20 % respectively, and 

for congested conditions an average value 44% for the three cells are obtained.  

Estimation of densities within CTM –FFF model conditions has proved to be the 

model that offers more accurate results with measured field density densities, so it 

is considered promising in the application of many traffic control strategies 

algorithms. The results of measured field densities are given on figure 1.5 while 

those from the estimation are graphically presented on the below figure 1.6. The 

model of the CTM density estimation can be further enriched for accuracy by using 

different filters and be applied on different traffic control algorithms that use 

density as output, such as on ramps and off ramps metering logics. It is worth 

mentioning that the possibility of applying such a model should not be excluded 

even in segments of complex complexity and with significant interruptions of traffic 

flows such as segments between the signaled crossings. New aspects should be 

considered in such mentioned cases in order to obtain a suitable model for 

forecasting traffic parameters in general. 

 

 
Fig.1.5. Graphical presentation of field measures densities  
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 Fig.1.6. Graphical presentation of estimated densities for CTM-CCC model and for 

CTM-FFF model 
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