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UNCERTAIN MULTI-OBJECTIVE RESTRICTED SOLID 
TRANSPORTATION PROBLEM WITH BUDGET AND 

VEHICLE COST 

ABHIJIT BAIDYA1, UTTAM KUMAR BERA2, MANORANJAN MAITI3 

In this paper, we investigate six new transportation models with breakability 
and vehicle cost under some restriction on transported amount. An extra constraint 
on the total budget at each destination is imposed. Here six models are formulated 
under different environments such as crisp, stochastic and fuzzy. Using expected 
value of fuzzy number and chance constraint programming technique, we convert 
the respective fuzzy and random Models into its crisp equivalent. To get the 
preference of the objective function,  we apply weighted sum method and a gradient 
based optimisation technique-generalised reduced gradient (GRG) method are 
applied and using LINGO-13 software to get the optimal solutions.    

Keywords: Solid Transportation Problem (STP), Budget Constraint, Interval 
Type-2 Fuzzy Number, Stochastic Variable, Weighted Sum Method 

1. Introduction 

Hitchcock [14] originally developed the transportation problem in 1941 
with his research paper. This extra constraint is mainly due to modes of 
transportation (conveyance). The STP was stated by Shell [27]. Haley [12, 13] 
showed a comparison of the STP to the classical TP. Bit et al. [3] applied fuzzy 
programming technique to solve the MOSTP which is introduced by 
Zimmermann [35]. Zadeh [32] introduces the notion of fuzziness. Li et al. [20] 
improved genetic algorithm to solve the fuzzy multi-objective STP. The random 
STP was first described by Elmaghra [10] in 1960. The classic approach to the 
stochastic transportation problem is the application of the feasible direction 
method described by Cooper and Leblanc [8] and Cooper [9] in 1977 and 1978 
respectively. Holmberg et al. [17] and Holmberg [16] applied several linearization 
and decomposition methods to solve the stochastic transportation problem. A 
                                                            
1 Teaching Assistant, Department of Mathematics, National Institute of Technology, Agartala, 

West Tripura, E-mail: abhijitnita@yahoo.in 
2 Associate Professor, Department of Mathematics, National Institute of Technology, Agartala, 

West Tripura, E-mail: bera_uttam@yahoo.co.in 
3 Retired Professor, Department of Applied Mathematics with Oceanology and Computer 

Programming, Vidyasagar University, WB, India, E-mail: mmaiti2005@yahoo.co.in  
 
 



162                                 Abhijit Baidya, Uttam Kumar Bera, Manoranjan Maiti 

transportation problem is said to be a chance constrained problem [4, 5] if its 
linear constraints are associated with a set of probability. Kataoka [19] proposed a 
stochastic programming model which considered the distribution of both objective 
function, probabilistic constraints and applied to a single objective transportation 
problem. Recently Baidya et al. [1, 2] solve two problems based on safety factors 
and uncertainty in transportation problem. Also, the distances between the origins 
and destinations are not taken into account in the network problems. Most of the 
transportation problems are unbalanced for breakable items. Few of these items 
are glass-goods, toys, ceramic goods, etc.  
            A type-2 fuzzy set was proposed by Zadeh [33]. Type-2 fuzzy sets are 
described by both primary and secondary membership to provide more degrees of 
freedom and flexibility. Type-2 fuzzy sets have the advantage of modeling 
uncertainty more accurately compared with type-1 fuzzy sets. However, when 
type-2 fuzzy sets are employed to solve problems, computational burden is heavy 
[17]. Hence, interval type-2 fuzzy sets are extensively utilized with some relative 
representations such as vertical slice representation, wavy-slice representation to 
reduce dimensions, which are extremely useful for computation and theoretical 
studies [23]. Interval type-2 fuzzy sets can be viewed as a special case of general 
type-2 fuzzy sets that all the values of secondary membership are equal to 1. 
Hence, it not only represents uncertainty better than type-1 fuzzy sets, also 
simplifies the computation compared with type-2 fuzzy sets. Research studies in 
this field can be categorized into two aspects. One aspect is the theoretic research. 
Mendel et al. [17] proposed some basic definitions of interval type-2 fuzzy sets. 
Mitchell [24] and Zeng and Li [34] designed methods to calculate the similarity 
among interval type-2 fuzzy sets. To reduce the limitations in these methods, Wu 
and Mendel [29] developed a new method named vector similarity method (VSM) 
to transform interval type-2 fuzzy sets. The other aspect is the application of 
interval type-2 fuzzy sets in real world. Ondrej and Milos [26] employed interval 
type-2 fuzzy sets to develop fuzzy voter design for fault tolerant systems. Shu and 
Liang [28] proposed a new approach based on interval type-2 fuzzy logic systems 
to analyze and estimate the network lifetime for wireless sensor networks. 
However, few studies have focused on the application of interval type-2 fuzzy sets 
in solving multi-criteria decision making problems. Wu and Mendel [30] defined 
linguistic weighted average and employed it to deal with hierarchical multi-
criteria decision-making problems. Han and Mendel [15] employed interval type-
2 fuzzy numbers in choosing logistics location and the results are more 
satisfactory. Chen and Lee [6] proposed the definition of possibility degree of 
trapezoidal interval type-2 fuzzy number and some arithmetic operations of it. 
Also Hu et al.[18] proposed a work as Multi-criteria decision making method 
based on possibility degree of interval type-2 fuzzy number.  
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Two types of uncertainities (stochastic and fuzzy) are used to build this 
manuscript. An extra constraint on the total budget at each destination is imposed. 
To derive the crisp equivalences of the stochastic and fuzzy model we apply 
chance-constrained programming and expected value model are applied 
respectively. To formulate the fuzzy models we consider unit transportation costs, 
supplies, demand, capacity of the conveyances and budget at each destination as 
interval type-2 fuzzy number. To convert the multi-objective into a single-
objective we apply weighted sum method. We have presented two types of 
constraints one deterministic, another uncertain both fuzzy and stochastic senses. 
So our technique is highly fruitful in the sense of real life problems of practical 
importance. Practical numerical examples are provided to demonstrate the 
feasibility of all decision variables of the proposed methods.   
 

2. Trapezoidal Interval Type-2 Fuzzy Number 
 
Definition 1 (Defuzzification of Trapezoidal Interval Type-2 Fuzzy Number) 
[6, 17, 22]:  
A trapezoidal interval type-2 fuzzy number, denoted by A, is expressed as 
follows: 
ܣ ൌ ሺܣ௎, ௅ሻܣ ൌ ቀ൫ܽଵ

௎, ܽଶ
௎, ܽଷ

௎, ܽସ
௎; ,௎ሻܣଵሺܪ ,௎ሻ൯ܣଶሺܪ ൫ܽଵ

௅, ܽଶ
௅, ܽଷ

௅, ܽସ
௅; ,௅ሻܣଵሺܪ   ,௅ሻ൯ቁܣଶሺܪ

then the expected value of A defined as follows: 

ሻܣሺܧ                  ൌ ଵ
ଶ

ቀଵ
ସ

∑ ሺܽ௜
௅ ൅ ܽ௜

௎ሻସ
௜ୀଵ ቁ ൈ ଵ

ସ
ሺ∑ ሺܪ௜ሺܣ௅ሻଶ

௜ୀଵ ൅  ௎ሻሻሻ                              (1)ܣ௜ሺܪ
 
3. Method used to convert constraints involving stochastic variables 

into its deterministic form (Chance Constraint Programming) 
 
This technique was originally developed by Charnes and Cooper [4, 5, 8, 

9] and as follows:  
(i) If ߝ are the probabilities of non-violation of the constraint ߜ ൑ ߬̂ then the 
constraint can be written as  
    Probሾߜ ൑ ߬̂ሿ ൒            (2)                                                                                                   ߝ
  ֜ ߜ ൑ ݉ሺ߬̂ሻ ൅ ߶ כ    ሺ߬̂ሻ                                                                                        (3)ݎܸܽ
 
(ii) If ߝ are the probabilities of non-violation of the constraint ොܽ ൒ ෨ܾଵ then the 
constraint can be written as  

ൣܾ݋ݎܲ ොܽ ൒ ෨ܾଵ൧ ൒      (4)                                                                                             ߝ
 ֜ ݉௤ො ൒ ௤ොߪߣ

ଶ                                                                                                            (5) 
where ݍො ൌ ොܽ െ ෨ܾଵ and ߣ be the real number such that ܲൣܾ݋ݎ ෠ܶ ൒   .൧ߣ

The objective function Z will also be the random variable, since ܥመ௜௝௞ are random 
variables. The mean and variance of Z are given by ҧܼ ൌ ∑ ∑ ∑ ҧ௜௝௞ܥ

௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ  ௜௝௞. Ifݔ
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the random variable ܥመ௜௝௞ are independent, the object function reduce to ܼሺܺሻ ൌ

∑ ଵ௜ߠ
ெ
௜ୀଵ ∑ ∑ ௜௝௞ݔҧ௜௝௞ܥ

௄
௞ୀଵ

ே
௝ୀଵ ൅ ∑ ଶ௜ߠ

ெ
௜ୀଵ ∑ ∑ ටܸܽݎሺܥመ௜௝௞ሻ௄

௞ୀଵ
ே
௝ୀଵ                                          (6)  

and subject to given constraints.   
 
4. Method used to reduce the respective multi-objective transportation 
models into single objective transportation models (Weighted Sum 
Method) 

 
The weights of an objective are usually chosen in proportion to the 

objective’s relative importance in the problem. A composite objective function F 
can be formed by summing the weighted normalized objectives and the MOSTP is 
then converted to a single-objective optimization problem as follows: 

 

Minimize ܨ ൌ ∑ ߱௟ ௟݂
௅
௟ୀଵ , ߱௟ א ሾ0,1ሿ. 

 

Here, ߱௟ is the weight of the l-th objective function. Since the minimum of the 
above problem does not change if all the weights are multiplied by a constant, it is 
the usual practice to choose weights such that their sum is one, i.e., ∑ ߱௟

௅
௟ୀଵ ൌ 1. 

The objective functions of the MOSTP conflict with each other, a complete 
optimal solution (11, 25) does not always exist and so non-dominated optimality 
concept is introduced.  
 

5. Notations and Assumptions 
 

The following notation and assumption are used throughout the model. 

ሺiሻ C୧୨୩, C෨୧୨୩, C෠୧୨୩: Crisp, fuzzy, random unit transportation cost to transport the 
commodity from i-th plant to j-th destination by k-th conveyances respectively.  
ሺiiሻ t୧୨୩, t̃୧୨୩, t̂୧୨୩:  Crisp, fuzzy, random transportation time to transport the 
commodity from i-th plant to j-th destination by k-th conveyances respectively.     
(iii) a୧, ෤ܽ௜ , ොܽ௜: Crisp, fuzzy, random amount of homogeneous product available at 
i-th plant respectively.   
(v) b୨, ෨ܾ௝, ෠ܾ௝: Crisp, fuzzy, random demand at the j-th destination respectively.  
(vi) e୩, ݁̃௞, ݁̂௞: Crisp, fuzzy, random amount of product which can be carried by 
the k-th conveyance respectively.       
(vi) ܤ௝, ,෨௝ܤ  ෠௝: Crisp, fuzzy, random available budget at j-th destinationܤ
respectively.   
(vii) ݔ୧୨୩: Unknown quantity which is to transport the commodity from i-th plant 
to j-th destination by k-th conveyances (decision variable).  
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(viii) If the unknown quantity which is to be transported from i-th source to j-th 
destination by k-th conveyances is ݔ௜௝௞ ൐ 0 then for the convenience of modeling 
we define ݕ௜௝௞ as follows:  

௜௝௞ݕ ൌ ൜1            ݂ݔ    ݎ݋௜௝௞ ൐ 0
      ݁ݏ݅ݓݎ݄݁ݐ݋            0

 

(ix) If in a particular destination the negligible amount of quantity (p, say) is 
transported then the decision maker (DM) can’t deliver commodities in the 
particular destination. This means, if ݔ௜௝௞ ൒  a desired real number, then we ,݌
consider the restriction for this route as a part of the transportation. Thus for the 
expediency of modeling, the following notation is introduced: 

௜௝௞ݖ                                          ൌ ൜1            ݂ݔ    ݎ݋௜௝௞ ൒ ݌
      ݁ݏ݅ݓݎ݄݁ݐ݋            0

  

 
6. Model Formulation 

 
Model-1: Multi-Objective Solid Transportation Problem (MOSTP) with 
budget constraint and vehicle cost in Crisp Environment: 
 

To transport the commodity from plant to customer by k-th conveyances, 
the budget at customer plays a vital role in transportation problem. Here we 
formulate a MOSTP with M plants, N customers and K conveyances as follows:  

 

ଵ݂ ݊݅ܯ ൌ ෍ ෍ ෍ ௜௝௞ݔ௜௝௞ܥ

௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

൅ ෍ ෍ ෍ ௜௝௞൯ݔ൫ܨ
௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

,   

ଶ݂ ݊݅ܯ ൌ ෍ ෍ ෍ ௜௝௞ݕ௜௝௞ݐ

௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

 

subject to the constraints, 
∑ ∑ ௜௝௞ݔ

௄
௞ୀଵ

ே
௝ୀଵ ൑ ܽ௜                                                                                                   (7) 

∑ ∑ ௜௝௞ݔ
௄
௞ୀଵ

ெ
௜ୀଵ ൒ ௝ܾ                                                                                                   (8)  

∑ ∑ ௜௝௞ݔ
ே
௝ୀଵ

ெ
௜ୀଵ ൑ ݁௞                                                                                                   (9) 

∑ ∑ ௜௝௞ݔ௜௝௞ܥ
௄
௞ୀଵ

ெ
௜ୀଵ ൑  ௝                                                                                             (10)ܤ

௜௝௞ݔ  ൒ 0, ,݅ ׊ ݆, ݇, where ܨ൫ݔ௜௝௞൯ is the vehicle carrying cost for the quality ݔ௜௝௞ from i-
th source ௜ܱ to j-th destination ܦ௝ via k-th conveyance is defined as: ܨ൫ݔ௜௝௞൯ ൌ

൜
݉. .݉ ݂݅ ݒ ௖ݒ ൌ ௜௝௞ݔ

ሺ݉ ൅ 1ሻ. ݁ݏ݅ݓݎ݄݁ݐ݋  ݒ
 ,݉ ൌ ሾݔ௜௝௞/ݒ௖ሿ, ݒ௖ ൌvehicle capacity and ݒ ൌvehicle cost.   

 
Model-2: Restricted MOSTP with budget constraint and vehicle cost in Crisp 
Environment: 
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Here DM put a restriction on the transported amount p such that the DM 
consider those rout where the transported amount is greater than or equal to the 
restricted amount p, otherwise DM cannot transport the amount through the rout. 
Taking the above concept we formulate the following MOSTP: 
 

ଵ݂ ݊݅ܯ ൌ ෍ ෍ ෍ ௜௝௞ݖ௜௝௞ݔ௜௝௞ܥ

௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

൅ ෍ ෍ ෍ ௜௝௞൯ݔ൫ܨ
௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

, 

ଶ݂ ݊݅ܯ ൌ ෍ ෍ ෍ ௜௝௞ݖ௜௝௞ݐ

௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

 
 

Subject to the constraints (7), (8), (9) and 
 

 ∑ ∑ ௜௝௞ݖ௜௝௞ݔ௜௝௞ܥ
௄
௞ୀଵ

ெ
௜ୀଵ ൑  ௝,                          (11)ܤ

௜௝௞ݔ ൒ ,݅ ׊ ,݌ ݆, ݇, where p is any desired real value.   
 
Model-3: MOSTP with trapezoidal interval type-2 fuzzy number, budget 
constraint and vehicle cost:  

 
We formulate a MOSTP with M plants, N customers and K conveyances 

and all supplies, demands, conveyances capacities, unit transportation cost, time 
and budget at each customer as trapezoidal interval type-2 fuzzy number as 
follows:  

ଵ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ௜௝௞ݔሚ௜௝௞ܥ
௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ ൅ ∑ ∑ ∑ ௜௝௞൯௄ݔ൫ܨ

௞ୀଵ
ே
௝ୀଵ

ெ
௜ୀଵ  and  

ଶ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ௜௝௞ݕ௜௝௞ݐ̃
௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ  

subject to the constraints, 
∑ ∑ ௜௝௞ݔ

௄
௞ୀଵ

ே
௝ୀଵ ൑ ෤ܽ௜                                                                                                  (12)  

∑ ∑ ௜௝௞ݔ
௄
௞ୀଵ

ெ
௜ୀଵ ൒ ෨ܾ௝                                                                                                  (13) 

 ∑ ∑ ௜௝௞ݔ
ே
௝ୀଵ

ெ
௜ୀଵ ൑ ݁̃௞,                                                                                                 (14) 

∑ ∑ ௜௝௞ݔሚ௜௝௞ܥ
௄
௞ୀଵ

ெ
௜ୀଵ ൑  ෨௝                                                                                             (15)ܤ

௜௝௞ݔ  ൒ 0, ,݅ ׊ ݆, ݇. 
 
Crisp Transformation of the above fuzzy model: 

The deterministic objective functions of the above model are as follows:   
ଵ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ሺଵ

଼
ሺܥଵሻ௄

௞ୀଵ
ே
௝ୀଵ

ெ
௜ୀଵ ൈ ଵ

ସ
ሺܥଶሻሻݔ௜௝௞+∑ ∑ ∑ ௜௝௞൯௄ݔ൫ܨ

௞ୀଵ
ே
௝ୀଵ

ெ
௜ୀଵ  

 

and ݊݅ܯ ଶ݂ ൌ ∑ ∑ ∑ ሺଵ
଼

ሺ ଵܶሻ௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ ൈ ଵ

ସ
ሺ ଶܶሻሻݕ௜௝௞ respectively, 

where, ܥଵ ൌ ௜௝௞ଵܥ
௎ ൅ ௜௝௞ଶܥ

௎ ൅ ௜௝௞ଷܥ
௎ ൅ ௜௝௞ସܥ

௎ ൅ ௜௝௞ଵܥ
௅ ൅ ௜௝௞ଶܥ

௅ ൅ ௜௝௞ଷܥ
௅ ൅ ௜௝௞ସܥ

௅ , 
ଶܥ ൌ ௜௝௞ܥଵ൫ܪ

௎ ൯ ൅ ௜௝௞ܥଶ൫ܪ
௎ ൯ ൅ ௜௝௞ܥଵ൫ܪ

௅ ൯ ൅ ௜௝௞ܥଶ൫ܪ
௅ ൯, ଵܶ ൌ ௜௝௞ଵݐ

௎ ൅ ௜௝௞ଶݐ
௎ ൅ ௜௝௞ଷݐ

௎ ൅
௜௝௞ସݐ

௎ ൅ ௜௝௞ଵݐ
௅ ൅ ௜௝௞ଶݐ

௅ ൅ ௜௝௞ଷݐ
௅ ൅ ௜௝௞ସݐ

௅ , ଶܶ ൌ ܪଵ൫ݐ௜௝௞
௎ ൯ ൅ ௜௝௞ݐଶ൫ܪ

௎ ൯ ൅ ௜௝௞ݐଵ൫ܪ
௅ ൯ ൅

௜௝௞ݐଶ൫ܪ
௅ ൯. 
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The reduced Constraints of the above model are as follows: 
∑ ∑ ௜௝௞ݔ

௄
௞ୀଵ

ே
௝ୀଵ ൑ ଵ

଼
ሺܣଵሻ ൈ ଵ

ସ
ሺܣଶሻ, ∑ ∑ ௜௝௞ݔ

௄
௞ୀଵ

ெ
௜ୀଵ ൒ ଵ

଼
ሺܤଵሻ ൈ ଵ

ସ
ሺܤଶሻ, 

∑ ∑ ௜௝௞ݔ
ே
௝ୀଵ

ெ
௜ୀଵ ൑ ଵ

଼
ሺܧଵሻ ൈ 

ଵ
ସ

ሺܧଶሻ and ∑ ∑ ଵ
଼

ሺܥଵሻ. ଵ
ସ

ሺܥଶሻݔ௜௝௞
௄
௞ୀଵ

ெ
௜ୀଵ  ൑ ଵ

଼
ሺܥܤଵሻ. ଵ

ସ
ሺܥܤଶሻ respectively.  

where, 
ଵܣ ൌ ܽ௜ଵ

௎ ൅ ܽ௜ଵ
௎ ൅ ܽ௜ଵ

௎ ൅ ܽ௜ଵ
௎ ൅ ܽ௜ଵ

௅ ൅ ܽ௜ଵ
௅ ൅ ܽ௜ଵ

௅ ൅ ܽ௜ଵ
௅ , 

ଶܣ ൌ ଵ൫ܽ௜ܪ
௎൯ ൅ ଶ൫ܽ௜ܪ

௎൯ ൅ ଵሺܽ௜ܪ
௅ሻ ൅ ଶሺܽ௜ܪ

௅ሻ, 
ଵܤ ൌ ௝ܾଵ

௎ ൅ ௝ܾଵ
௎ ൅ ௝ܾଵ

௎ ൅ ௝ܾଵ
௎ ൅ ௝ܾଵ

௅ ൅ ௝ܾଵ
௅ ൅ ௝ܾଵ

௅ ൅ ௝ܾଵ
௅ , 

ଶܤ ൌ ଵ൫ܪ ௝ܾ
௎൯ ൅ ଶ൫ܪ ௝ܾ

௎൯ ൅ ଵ൫ܪ ௝ܾ
௅൯ ൅ ଶ൫ܪ ௝ܾ

௅൯, 
ଵܧ ൌ ݁௞ଵ

௎ ൅ ݁௞ଵ
௎ ൅ ݁௞ଵ

௎ ൅ ݁௞ଵ
௎ ൅ ݁௞ଵ

௅ ൅ ݁௞ଵ
௅ ൅ ݁௞ଵ

௅ ൅ ݁௞ଵ
௅ , 

ଶܧ  ൌ ଵሺ݁௞ܪ
௎ሻ ൅ ଶሺ݁௞ܪ

௎ሻ ൅ ଵሺ݁௞ܪ
௅ሻ ൅ ଶሺ݁௞ܪ

௅ሻ, 
ଵܥܤ ൌ ௝ଵܤ

௎ ൅ ௝ଶܤ
௎ ൅ ௝ଷܤ

௎ ൅ ௝ସܤ
௎ ൅ ௝ଵܤ

௅ ൅ ௝ଶܤ
௅ ൅ ௝ଷܤ

௅ ൅ ௝ସܤ
௅ ,  

ଶܥܤ ൌ ௝ܤଵ൫ܪ
௎൯ ൅ ௝ܤଶ൫ܪ

௎൯ ൅ ௝ܤଵ൫ܪ
௅൯ ൅ ௝ܤଶ൫ܪ

௅൯. 
 
Model-4: Restricted MOSTP trapezoidal interval type-2 fuzzy number, 
budget constraint and vehicle cost:  

 
Here we formulate a Restricted MOSTP with M plants, N customers and 

K conveyances and all supplies, demands, conveyances capacities, unit 
transportation cost, time and budget at each customer as trapezoidal interval type-
2 fuzzy number as follows:  

ଵ݂ ݊݅ܯ ൌ ෍ ෍ ෍ ௜௝௞ݖ௜௝௞ݔሚ௜௝௞ܥ

௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

൅ ෍ ෍ ෍ ௜௝௞൯ݔ൫ܨ
௄

௞ୀଵ

ே

௝ୀଵ

ெ

௜ୀଵ

 

and ݊݅ܯ ଶ݂ ൌ ∑ ∑ ∑ ௜௝௞ݖ௜௝௞ݐ̃
௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ  

subject to the constraints (12), (13), (14) and 
 ∑ ∑ ௜௝௞ݖ௜௝௞ݔሚ௜௝௞ܥ

௄
௞ୀଵ

ெ
௜ୀଵ ൑  ෨௝,                                                                                      (16)ܤ

௜௝௞ݔ ൐  .where p is any desired real value ,݌
 
Crisp Transformation of the above fuzzy model: 
Using expected value model we have the reduced crisp objective functions are as 
follows:  

ଵ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ሺଵ
଼

ሺܥଵሻ௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ ൈ ଵ

ସ
ሺܥଶሻሻݔ௜௝௞ݖ௜௝௞ ൅ ∑ ∑ ∑ ௜௝௞൯௄ݔ൫ܨ

௞ୀଵ
ே
௝ୀଵ

ெ
௜ୀଵ . 

ଶ݂ ൌ ݊݅ܯ ∑ ∑ ∑ ሺଵ
଼

ሺ ଵܶሻ௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ ൈ ଵ

ସ
ሺ ଶܶሻሻݖ௜௝௞ respectively. 

The crisp transformations of the constraints (12), (13), (14) are same as model-3 
and crisp transformation of the constraint (16) is as follows:  

∑ ∑ ଵ
଼

ሺܥଵሻ. ଵ
ସ

ሺܥଶሻݔ௜௝௞ݖ௜௝௞
௄
௞ୀଵ

ெ
௜ୀଵ  ൑ ଵ

଼
ሺܥܤଵሻ. ଵ

ସ
ሺܥܤଶሻ 
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Model-5: MOSTP with budget constraint and vehicle cost in Stochastic 
Environment:  

 
Sometimes it may happen that the demand or any factor of a commodity in 

the society is uncertain, not precisely known, but some past data about it is 
available. For this purpose we consider the supplies, demands, conveyances 
capacities, unit transportation cost, time and budget at each customer as stochastic 
variable and we formulate a model as follows:  

ଵ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ௜௝௞ݔመ௜௝௞ܥ
௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ ൅ ∑ ∑ ∑ ௜௝௞൯௄ݔ൫ܨ

௞ୀଵ
ே
௝ୀଵ

ெ
௜ୀଵ and  

ଶ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ௜௝௞ݕ௜௝௞ݐ̂
௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ  

Subject to the constraints, 
∑ ∑ ௜௝௞ݔ

௄
௞ୀଵ

ே
௝ୀଵ ൑ ොܽ௜                                        (17) 

∑ ∑ ௜௝௞ݔ
௄
௞ୀଵ

ெ
௜ୀଵ ൒ ෠ܾ௝                                                                                                   (18)  

∑ ∑ ௜௝௞ݔ
ே
௝ୀଵ

ெ
௜ୀଵ ൑ ݁̂௞,                                                                                                  (19) 

∑ ∑ ௜௝௞ݔመ௜௝௞ܥ
௄
௞ୀଵ

ெ
௜ୀଵ ൑  ෠௝                                                                                                               (20)ܤ

௜௝௞ݔ  ൒ 0, ,݅ ׊ ݆, ݇. 
 
Crisp Transformation of the above stochastic model: 

We convert the stochastic model-5 into its equivalence crisp model using 
the chance constraint programming technique. 
Using Chance Constraint programming technique the objective functions are 
respectively reduced to,  

ଵ݂ ݊݅ܯ ൌ ଵଵߠ ቌ෍ ෍ ଵ௝௞ݔҧଵ௝௞ܥ

௄

௞ୀଵ

ே

௝ୀଵ

ቍ ൅ ଵଶߠ ቌ෍ ෍ ଶ௝௞ݔҧଶ௝௞ܥ

௄

௞ୀଵ

ே

௝ୀଵ

ቍ ൅ ଶଵߠ ቌ෍ ෍ ටܸܽݎ൫ܥመଵ௝௞൯ݔ௜௝௞
ଶ

௄

௞ୀଵ

ே

௝ୀଵ

ቍ 

ଶଶߠ  ቆ∑ ∑ ටܸܽݎ൫ܥመଵ௝௞൯ݔ௜௝௞
ଶ௄

௞ୀଵ
ே
௝ୀଵ ቇ+ ∑ ∑ ∑ ௜௝௞൯௄ݔ൫ܨ

௞ୀଵ
ே
௝ୀଵ

ெ
௜ୀଵ  and 

ଶ݂ ݊݅ܯ ൌ ∑ଷଵ൫ߠ ∑ ଵ௝௞ݕҧଵ௝௞ݐ
௄
௞ୀଵ

ே
௝ୀଵ ൯ ൅ ∑ଷଶ൫ߠ ∑ ଶ௝௞ݕଶ௝௞ݐ

௄
௞ୀଵ

ே
௝ୀଵ ൯ 

൅ߠସଵ ቆ∑ ∑ ටܸܽݎ൫̂ݐଵ௝௞൯ݕ௜௝௞
ଶ௄

௞ୀଵ
ே
௝ୀଵ ቇ ൅ߠସଶሺ∑ ∑ ටܸܽݎሺݐଵ௝௞ሻݕ௜௝௞

ଶ௄
௞ୀଵ

ே
௝ୀଵ ሻ. 

 
Also the constraints (17), (18), (19) and (20) reduced to, ∑ ∑ ௜௝௞ݔ

௄
௞ୀଵ

ே
௝ୀଵ ൑ തܽ௜ ൅

߶1. ሺݎܽݒ ොܽ௜ሻ, ∑ ∑ ௜௝௞ݔ
௄
௞ୀଵ

ெ
௜ୀଵ ൒ തܾ௝ ൅ ߶2. ∑ ,൫෠ܾ௝൯ݎܽݒ ∑ ௜௝௞ݔ

ே
௝ୀଵ

ெ
௜ୀଵ ൑ ҧ݁௞ ൅    ሺ݁̂௞ሻ andݎܽݒ

∑ ∑ ௜௝௞ݔҧ௜௝௞ܥ
௄
௞ୀଵ

ெ
௜ୀଵ െ ത௝ܤ ൑ .݆ߣ ቀ∑ ∑ ௜௝௞ݔመ௜௝௞൯ܥ൫ݎܽݒ

௄
௞ୀଵ

ெ
௜ୀଵ െ    .෠௝൯ቁ respectivelyܤ൫ݎܽݒ

 
Model-6: Restricted MOSTP with budget constraint and vehicle cost in 
Stochastic Environment:  
 

Here we formulate a Restricted MOSTP with M plants, N customers and 
K conveyances and all supplies, demands, conveyances capacities, unit 
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transportation cost, time and budget at each customer as stochastic variable as 
follows:  
ଵ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ௜௝௞ݖ௜௝௞ݔመ௜௝௞ܥ

௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ ൅ ∑ ∑ ∑ ௜௝௞൯ ௄ݔ൫ܨ

௞ୀଵ
ே
௝ୀଵ

ெ
௜ୀଵ and 

ଶ݂ ݊݅ܯ ൌ ∑ ∑ ∑ ௜௝௞ݖ௜௝௞ݐ̂
௄
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ   

Subject to the constraints (17), (18), (19) and ∑ ∑ ௜௝௞ݖ௜௝௞ݔመ௜௝௞ܥ
௄
௞ୀଵ

ெ
௜ୀଵ ൑  ෠௝,              (21)ܤ

௜௝௞ݔ ൒    .where p is any desired real value ,݌
 
Crisp Transformation of the above stochastic model: 

Applying Chance Constraint programming we have the reduced crisp 
objective function are as follows:  

ଵ݂ ݊݅ܯ ൌ ∑ଵଵ൫ߠ ∑ ଵ௝௞ݖଵ௝௞ݔҧଵ௝௞ܥ
௄
௞ୀଵ

ே
௝ୀଵ ൯ ൅ ∑ଵଶ൫ߠ ∑ ଶ௝௞ݖଶ௝௞ݔҧଶ௝௞ܥ

௄
௞ୀଵ

ே
௝ୀଵ ൯  ߠଶଵ 

ቆ∑ ∑ ටܸܽݎ൫ܥመଵ௝௞൯ݔଵ௝௞
ଶ ଵ௝௞ݖ

ଶ௄
௞ୀଵ

ே
௝ୀଵ ቇ  ߠଶଶሺ∑ ∑ ටܸܽݎሺܥመଵ௝௞ሻݔଶ௝௞

ଶ ଶ௝௞ݖ
ଶ௄

௞ୀଵ
ே
௝ୀଵ ሻ 

+ ∑ ∑ ∑ ௜௝௞൯௄ݔ൫ܨ
௞ୀଵ

ே
௝ୀଵ

ெ
௜ୀଵ . 

ଶ݂ ݊݅ܯ ൌ ଷଵߠ ቌ෍ ෍ ଵ௝௞ݖҧଵ௝௞ݐ

௄

௞ୀଵ

ே

௝ୀଵ

ቍ ൅ ଷଶߠ ቌ෍ ෍ ଶ௝௞ݖҧଶ௝௞ݐ

௄

௞ୀଵ

ே

௝ୀଵ

ቍ 

൅ߠସଵ ቆ∑ ∑ ටܸܽݎ൫̂ݐଵ௝௞൯ݖ௜௝௞
ଶ௄

௞ୀଵ
ே
௝ୀଵ ቇ ൅ߠସଶሺ∑ ∑ ටܸܽݎሺݐଵ௝௞ሻݖ௜௝௞

ଶ௄
௞ୀଵ

ே
௝ୀଵ ሻ respectively. 

and the constraint (21) is reduced to 
 

෍ ෍ ௜௝௞ݖ௜௝௞ݔҧ௜௝௞ܥ

௄

௞ୀଵ

ெ

௜ୀଵ

െ ത௝ܤ ൑ .݆ߣ ቌ෍ ෍ ௜௝௞ݖ௜௝௞ݔመ௜௝௞൯ܥ൫ݎܽݒ

௄

௞ୀଵ

ெ

௜ୀଵ

െ  ෠௝൯ቍܤ൫ݎܽݒ

 
7. Solution Methodology 
 
Sometime in transportation problem the transportation parameters are 

vague in nature. For this reason Model-3, 4 and 5, 6 are respectively formulated 
with fuzzy and random environment. Expected value method and chance 
constraint programming technique are used to reduce the uncertain STPs into its 
crisp equivalent and reduced crisp models are solved using GRG-technique 
(LINGO-13.0 optimization software).  
 

8. Numerical Illustration 
 
A company produces a product at the two warehouses and this item is then 

shipped to two customers by three different modes of transport with different 
vehicle cost. The transportation parameters for our respective models are as 
follows and also for model-2, 4, 6, we restricted the transported amount as 30 
units. 
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Table-1 
Crisp Unit Transportation Cost and Time 

Unit Transportation Cost 
             j 
i 

K=1 K=2 K=3 
1 2 1 2 1 2 

1 25 36 32 35 24 38 
2 34 36 36 35 25 31 

Unit Transportation Time 
1 2 3 2 3 3 2 
2 2 3 2 3 2 2 

 
ܽଵ ൌ 60, ܽଶ ൌ 90, ܾଵ ൌ 80, ܾଶ ൌ 70, ݁ଵ ൌ 50, ݁ଶ ൌ 40, ݁ଷ ൌ ଵܤ ,60 ൌ 3030, ଶܤ ൌ 3040,  
෤ܽଵ ൌ ൫ሺ50,50,60,60; 0.98,0.99ሻ, ሺ50,60,70,80; 0.97,0.98ሻ൯,  
෤ܽଶ ൌ ൫ሺ70,70,90,100; 0.96,0.99ሻ, ሺ80,90,110,120; 0.97,0.99ሻ൯.   
෨ܾଵ ൌ ൫ሺ50,70,70,90; 0.95,0.98ሻ, ሺ80,80,90,90; 0.97,0.99ሻ൯, 
෨ܾଶ ൌ ൫ሺ60,70,70,100; 0.94,0.99ሻ, ሺ50,60,70,80; 0.96,0.97ሻ൯.  
݁̃ଵ ൌ ൫ሺ40,40,50,60; 0.92,0.93ሻ, ሺ40,40,50,70; 0.91,0.99ሻ൯,  
݁̃ଶ ൌ ൫ሺ30,40,40,50; 0.90,0.98ሻ, ሺ30,40,40,50; 0.98,0.99ሻ൯, 
݁̃ଶ ൌ ൫ሺ50,60,60,70; 0.95,0.99ሻ, ሺ50,60,60,70; 0.94,0.99ሻ൯.  
෨ଵܤ ൌ ൫ሺ3010,3020,3040,3050; 0.98,0.99ሻ, ሺ3000,3030,3030,3060; 0.97,0.99ሻ൯,  
෨ଶܤ ൌ ൫ሺ3020,3030,3050,3060; 0.96,0.98ሻ, ሺ3030,3030,3040,3060; 0.98,0.99ሻ൯.  
ሚଵଵଵܥ ൌ ൫ሺ1,3,3,4; .90, .91ሻ, ሺ1,2,4,5; .92, .93ሻ൯, ܥሚଵଶଵ ൌ ൫ሺ2,3,5,5; .91, .94ሻ, ሺ2,3,6,8; .93, .95ሻ൯, 
ሚଵଵଶܥ ൌ ൫ሺ3,4,5,6; .96, .97ሻ, ሺ2,4,4,5; .92, .97ሻ൯,ܥሚଵଶଶ ൌ ൫ሺ4,5,6,6; .90, .91ሻ, ሺ2,3,4,5; .90, .93ሻ൯, 
ሚଵଵଷܥ ൌ ൫ሺ2,3,4,5; .95, .99ሻ, ሺ1,2,3,3; .92, .97ሻ൯,ܥሚଵଶଷ ൌ ൫ሺ3,4,5,6; .96, .98ሻ, ሺ1,2,3,3; .95, .96ሻ൯, 
ሚଶଵଵܥ ൌ ൫ሺ1,2,5,7; .98, .99ሻ, ሺ3,3,6,7; .92, .97ሻ൯,ܥሚଶଶଵ ൌ ൫ሺ3,4,6,7; .90, .91ሻ, ሺ3,4,4,5; .92, .93ሻ൯, 
ሚଶଵଶܥ ൌ ൫ሺ3,3,4,5; .90, .91ሻ, ሺ4,4,5,6; .92, .93ሻ൯, ܥሚଶଶଶ ൌ ൫ሺ3,5,5,7; .90, .98ሻ, ሺ2,4,4,5; .92, .97ሻ൯, 
ሚଶଵଷܥ ൌ ൫ሺ2,3,3,5; .95, .97ሻ, ሺ2,2,3,4; .93, .99ሻ൯, ܥሚଶଶଷ ൌ ൫ሺ2,4,4,5; .90, .91ሻ, ሺ3,4,5,5; .92, .93ሻ൯. 
ଵଵଵݐ̃ ൌ ൫ሺ. 1, .1, .1, .5; .94, .99ሻ, ሺ. 2, .2, .2, .4; .92, .94ሻ൯, 
ଵଶଵݐ̃ ൌ ൫ሺ. 1, .2, .2, .3; .91, .94ሻ, ሺ. 1, .2, .3, .4; .94, .95ሻ൯,  
ଵଵଶݐ̃ ൌ ൫ሺ. 1, .2, .3, .5; .97, .98ሻ, ሺ. 1, .2, .2, .3; .92, .97ሻ൯,   
ଵଶଶݐ̃ ൌ ൫ሺ. 1, .2, .2. ,3; .95, .96ሻ, ሺ. 1, .1, .2, .2; .91, .93ሻ൯, 
ଵଵଷݐ̃ ൌ ൫ሺ. 2, .2, .3, .4; .98, .99ሻ, ሺ. 1, .2, .2, .3; .95, .97ሻ൯,  
ଵଶଷݐ̃ ൌ ൫ሺ. 1, .1, .2, .3; .96, .98ሻ, ሺ. 1, .1, .1, .2; .94, .96ሻ൯, 
ଶଵଵݐ̃ ൌ ൫ሺ. 1, .2, .3, .3; .97, .99ሻ, ሺ. 1, .1, .2, .2; .93, .97ሻ൯,  
ଶଶଵݐ̃ ൌ ൫ሺ. 1, .1, .2, .3; .94, .96ሻ, ሺ. 2, .3, .4, .5; .92, .93ሻ൯, 
ଶଵଶݐ̃ ൌ ൫ሺ. 1, .1, .3, .4; .90, .91ሻ, ሺ. 1, .3, .4, .5; .92, .93ሻ൯,  
ଶଶଶݐ̃ ൌ ൫ሺ. 1, .1, .2, .2; .95, .98ሻ, ሺ. 1, .1, .2, .3; .92, .97ሻ൯, 
ଶଵଷݐ̃ ൌ ൫ሺ. 2, . .3, .3, .3; .95, .97ሻ, ሺ. 1, .2, .2, .3; .95, .99ሻ൯,  
ଶଶଷݐ̃ ൌ ൫ሺ. 2. ,3, .3, .3; .93, .98ሻ, ሺ. 2, .2, .3, .3; .92, .93ሻ൯. 
ଵଵߠ ൌ ଵଶߠ ,9. ൌ ଶଵߠ ,1 ൌ ଶଶߠ ,1 ൌ ଷଵߠ ,96. ൌ ଷଶߠ ,1 ൌ ସଵߠ ,95. ൌ ସଶߠ ,97. ൌ 1, ߶ଵ ൌ .2, ߶ଶ ൌ
.96, ߶ଷ ൌ .2, ߶ସ ൌ .95, ߶ହ ൌ .2, ߶଺ ൌ .5, ߶଻ ൌ .97,  ଶ=.98, ߱ଵ=0.5, ߱ଶ=0.5, v=12ߣ ,ଵ=.99ߣ
and ݒ௖=6.  
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Table-2 
Mean and Variance of ܉ොܑ, ܊መ  ܒ۰෡ ,ܓො܍ ,ܒ

 ෡૛࡮ ෡૚࡮ ො૜ࢋ ො૛ࢋ ො૚ࢋ ෡૛࢈ ෡૚࢈ ෝ૛ࢇ ෝ૚ࢇ 
Mean 60 70 69 58 50 37 59 3010 3020 
Variance 4 2 5 1 5 5 2 26 20 
 

Table-3 
Mean and variance of Transportation Cost (۱෠ܑܓܒ) and Timeሺ̂ܓܒܑܜሻ 

ሺ࡯ഥ࢐࢑࢏,  ࢐࢑ሻሻ࢏෡࡯ሺ࢘ࢇࢂ
               j 
i 

K=1 K=2 K=3 
1 2 1 2 1 2 

1 (25,12) (36,13) (32,12) (35,13) (34,13) (38,12) 
2 (34,12) (36,13) (36,12) (35,13) (25,12) (31,12) 

ሺ ҧ࢚࢐࢑࢏,  ࢐࢑ሻሻ࢏ሺො࢚࢘ࢇࢂ
1 (2,.2) (3,.1) (2,.3) (3,.3) (4,.3) (2,.2) 
2 (2,.1) (3,.3) (1,.2) (3,.3) (2,.1) (2,.3) 
 

9. Optimal Result of Different Models 
 
The optimal results for the different models with transporting amount are 

restricted to 30 units are as follows:    
Table-4 

Optimal Result of Models 
 Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 

 ૚ 4620 5260 4462.5 5110 3982.95 4609.66ࡲ
 ૛ 13.1 10.5 8.1 7.8 12.43 9.93ࡲ

࢞૚૚૚ 50 0 48.75 0 51 0 
࢞૛૚૚ 0 50 0 47 0 38.06 
࢞૚૛૚ 0 0 0 0 0 0 
࢞૛૛૚ 0 0 0 0 0 0 
࢞૚૚૛ 0 0 0 0 8.29 0 
࢞૛૚૛ 0 0 0 0 0 0 
࢞૚૛૛ 0 0 11.25 0 0 30 
࢞૛૛૛ 40 40 27.5 40  3.86 0 
࢞૚૚૜ 10 30 0 30 0 0 
࢞૛૚૜ 20 0 28.75 0 0 30.94 
࢞૚૛૜ 0 30 0 30 0 30 
࢞૛૛૜ 30 0 31.25 0 51.24 0 

 
10. Analysis of the results 
 
In this paper, we solved six solid transportation models where three 

models (models-1,-3 and -5) are with restriction and another three 
models(models-2, -4 and -6) are without restriction. To solve the restricted 
MOSTP, we neglate the small amount of quantity which is transported from plant 
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to customer by different modes of transport. If we impose the restriction in the 
respective multi-objective transportation models, then total transportation cost 
increase and total transportation time is decreased. If the decision maker (DM) 
imposed the restriction on transported amount, then the DM cannot transport the 
amount which is less than the restricted amount. For this reason, the transporting 
time of that particular type of rout cannot be added into the total time. Due to this 
reason the total time is less than the total time of unrestricted models. Also that 
restricted amount can be adjusted through the routes where the amounts are 
transported and for this reason, the total cost is increases compare to the total cost 
of unrestricted model i.e. the model-1,-2 and -3. This type of incident we observed 
in the real life problem.  

 
11. Sensitivity Analysis 

 

If we give more importance to cost function i.e. we increase the weight ߱ଵ , 
then we notice that the composite objective function value ܼ will increase. Also if 
we give more importance to transporting time i.e. ߱ଶwill increases then the 
composite objective function  ܼ will decreases. It is as per expectation in real life 
problem. Similarly, in the next table we presented the sensitivity analysis for the 
restricted crisp model-2.  

Table-5 
Sensitivity Analysis of model-1 

࣓૚ ࣓૛ ࢆ ൌ ࣓૚. ૚ࢌ ൅ ࣓૛. ࢆ ૛  ࣓૚ ࣓૛ࢌ ൌ ࣓૚. ૚ࢌ ൅ ࣓૛.  ૛ࢌ
0.1 0.9 477.07 0.6 0.4 2777.24 
0.2 0.8 936.48 0.7 0.3 3237.93 
0.3 0.7 1398.17 0.8 0.2 3698.62 
0.4 0.6 1855.86 0.9 0.1 4159.31 
0.5 0.5 2316.55    

 
Table-6 

Sensitivity Analysis of model-2 
࣓૚ ࣓૛ ࢆ ൌ ࣓૚. ૚ࢌ ൅ ࣓૛. ࢆ ૛  ࣓૚ ࣓૛ࢌ ൌ ࣓૚. ૚ࢌ ൅ ࣓૛.  ૛ࢌ
0.1 0.9 535.45 0.6 0.4 3167.36 
0.2 0.8 1072.72 0.7 0.3 3689.77 
0.3 0.7 1595.00 0.8 0.2 4130.00 
0.4 0.6 2117.74 0.9 0.1 4675.00 
0.5 0.5 2635.25    

 
12. Conclusion 
 
The main aim of this paper is to present the solution procedure of the with 

and without restriction multi-objective soild transportation problem. In model-3 
&-4 for the first time, we consider the unit transportation penalties, demand 
source, capacity, budget at each destination as interval type-2 fuzzy number. The 
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respective model-3 & -4 can be converted into its equivalence crisp model using 
expected value operator, however to reduce the crisp equivalent of the models-5 
&-6, we use chance constraint programming technique. In numerical example,  all 
the models are solve using LINGO. 13.0 optimization software. Also if we follow 
the results of the different models,  we observed that, it is as per our expectation 
because the transportation time and cost is decreases and increases respectively, if 
we introduce the restriction in to our models.  

The models can be extended to include breakable/deteriorating items, 
space constraints, price discount, etc. The methods used for solution here are quite 
general in nature and these can be applied to other similar uncertain / impricise 
models in other areas such as inventory control, ecology, sustainable farm 
management, etc. 
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