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THE OPTIMIZATION OF A RAIL INDUCTION HEATING 
INSTALLATION USING THE SIMPLEX METHOD 

Petrică TARAŞ1 

Lucrarea prezintă o metodă de optimizare aplicată unui model în element 
finit tridimensional al unei instalaţii de încălzire prin inducţie electromagnetică. 
Procesul de optimizare al modelului în element finit este controlat utilizând fişiere 
script Python. Rezultatele procesului de optimizare sunt comparate cu cele iniţiale. 

The paper presents a method of optimization applied to the 3D finite element 
model of an induction heating installation. The finite element model is controlled 
during the optimization process by using Python scripts. The optimized installation 
is compared with the original one. 
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1. Introduction 

The heating is a stage of the hardening process [1] in which the rail 
mechanical properties are improved. The hardening process can be applied [1] 
during or after the manufacturing process of the rail – but it is usually applied 
during the process due to economical reasons. Fig. 1 contains the schematic 
representation of a high speed (1m/s) production line in which the hardening of 
the rails occur also.  

 

 
Fig. 1. Hardened rail production line 
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The installation represented in Fig. 1 is used to produce the so called 
premium rails which are hardened with respect to the common ones. The 
produced rails length can be 72, 90 or 120 m, making them suitable for high speed 
trains. Regarding the production line, a preheated metal piece is introduced in the 
rolling mill. After several passes through the rolling mill the shaped rail exits the 
rolling mill with a temperature value of 700 ºC. Due to high lengths of the 
produced rails, high speeds through the installation and high cooling speeds of the 
rail surface (1 ºC/s) when the entire rail is out of the rolling mill, an important 
temperature difference appears between its ends. This difference is reduced by the 
“Heating Inductor” component of the installation [2]. The rail is placed on a 
conveyer and transported to the next part of the installation. The “Hardening 
Inductor” heats the rail head up to a temperature called the austenitisation 
temperature. This type of installation is studied in this paper. In the “Quenching” 
installation the rail is cooled with a critical cooling speed in order to achieve the 
martensite microstructure. The final product is delivered after the “Quenching” 
installation. 

2. The 3D finite element model 

The finite element model of the “Hardening Inductor” is implemented 
using the commercial finite element package Flux 3D made by the French 
company Cedrat [3]. The model computation domain is given in Fig. 2.  
 

 
Fig. 2. The installation subjected to optimization. 

 
The installation represented in Fig. 2 is composed by two inductors [4]. 

The two inductors design gives the possibility of tunning the heating pattern 
nonuniformity on the rail during the prototype testing stage. Regarding the rail, 
only the rail head was kept into the computation domain. The model application 
can be reduced to a magnetoharmonic type if a criterion for heating pattern 
nonuniformity can be found. The material of the magnetic cores was considered 
with a constant relative magnetic permeability and of nonconducting type – no 
eddy currents can occur in the magnetic core. The material of the rail was 
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considered to have a nonlinear magnetic permeability. Also the rail region is 
considered to be a solid conductor region with a constant value of the resistivity. 
The rail region is thus the most complex region from the computation domain and 
it has a big influence on the amount of computational resources allocated in the 
solving process of the finite element model. 

3. The simplex method 

An optimization method aims to determine the extremum of the so called 
objective function. The objective function is an mathematical expression used to 
describe an installation or a physical process. The extremum of objective function 
represents the best case scenario for the physical process or installation. The 
objective function depends on one or several parameters which are defined as 
quantities of interest for the installation or physical process parameters. One of the 
available optimization methods is the simplex method. The simplex method is 
based on the concept of simplex which is an n dimensional polytope with n + 1 
vertices. The simplex method will be presented in this section for the particular 
case of n = 2 in which the simplex represents an equilateral triangle. The vertices 
of the triangle represent combination of the parameters of interest for the 
optimization problem. The values of the objective function defined in the vertices 
represent variations of installation or physical process. The objective function is 
defined on an interval which is created by imposing restrictions on the function 
parameters. These restrictions are necessary because the parameters are usually 
restricted by the geometrical configuration of the installation or by the physical 
constants and laws of physics in the physical process.  

The optimization process starts with a randomly generated initial simplex 
on the definition interval of the objective function and ends usually with a more 
area reduced simplex on the same interval. The optimization process stops when 
some criteria regarding the simplex area or the number of iterations are reached. A 
series of operation can be performed between the initial and final simplex. These 
are the reflexion, expansion, partial contraction and total contraction operations 
and are represented in Figs. 3 a) – d).  
 

          
                 a)                                        b)                                     c)                             d) 

Fig. 3. The operations of the simplex method 
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 In a very simplified presentation of the simplex method specific 
operations it can be said that these operations will move or shrink the initial 
simplex based on the best and worst case scenarios determined from the objective 
function values in the vertices of the simplex. The purpose is to obtain a smaller 
simplex which would mean that all the three values of the objective function 
defined in the vertices are very close to a local extremum. 
 The simplex operations are presented next. Let’s assume that the 
minimum of the objective function is searched. An initial simplex is chosen by 
random selection in the objective function definition interval. The initial simplex 
vertices are labeled as P1, P2 and P3 while the objective function values on those 
points are V1, V2 and V3. Let’s assume that these values are ordered as V1 < V2 < 
V3 (if not the indexes of P1, P2 and P3 can be permuted accordingly). So V3 would 
be the most undesirable value of three while the V1 solution would be the best 
case scenario at this step. A possible candidate for a better value than V3 would be 
the one from the point P5, Fig. 3 a), which is computed by determining the 
reflection of P3 with respect to the P1-P2 axis. The value V5 is tested with respect 
to the initial values V1, V2 and V3.  
 The next step depends on the relationship of the newly found value V5 
with respect to the old ones V1, V2 and V3. If the new value V5 is better (smaller) 
than V1 than the expansion operation is tried. This operation consists in checking 
along the P4-P5 defined direction for a point P6 with a better value than V5. If a 
better value (V6) is found then P6 is set as a vertex of the simplex. The points P1 
and P2 are translated accordingly on parallel axis in order to preserve the 
equilateral triangle structure of the simplex. It may be that the value V5 is higher 
than V1 but lower than V3. In this case the expansion operation cannot be applied. 
However the V5 value is kept and a new simplex (P1-P2-P5) is created since V5 is a 
better choice than V3 thus the operation of reflexion is completed. The case in 
which V5 is higher than V3 is possible also and as a consequence the reflexion 
operation fails. This means that an local optimum should be searched inside the 
triangle.  
 The partial contraction operation is tried in which the value V7 in the 
new point P7, inside the triangle, is determined. If V7 is smaller than V3 than the 
partial contraction operation has succeeded and the P7 point is considered a vertex 
of the newly created simplex. In order to create an equilateral triangle the P1 and 
P2 vertices are translated inwards along the P1-P2 direction. If the partial 
contraction operation fails, i.e. V7 < V3, than the total contraction operation is 
applied. This means that the simplex is restrained to a smaller one P1-P4-P8. The 
last iterations of an optimization process using the simplex method are done using 
total or partial contraction operations.  
 The criteria for stopping the optimization process can be based upon the 
area of the simplex, the edge length of the simplex or the number of iterations.  
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 The area and edge length of the simplex usually decreases with the 
number of iterations due to total and partial contraction operations. The value of 
the optimum is considered to be the best value from ones computed in the final 
simplex vertices. The optimum value is thus an approximation while the real 
value is usually contained within the area of the triangle representing the simplex.  
 The optimum found is to be considered local. The simplex method is a 
deterministic method which whose output may not be the global optimum In order 
to find the global optimum multiple optimization processes can be launched 
starting from different initial simplexes. 

4. The optimization process 

The practical implementation of the simplex method applied on the 
inductor installation from Fig. 2 is described here. The purpose is to obtain a 
reduced nonuniformity of the heating profile on the rail. The installation is 
optimized by changing two of its geometrical dimensions. These dimensions are 
marked P1 and P2 and are shown in Fig. 4, being essentially the length of the 
longer inductor and the coil opening of the shorter inductor. The variation of these 
parameters acts directly on the heating pattern on the rail by weakening or 
strengthening the magnetic field in the appropriate areas. 
 

 
Fig. 4. The objective function parameters 

 
The P1 and P2 parameters combination can take values in [20...40] x 

[400,...,900] mm2 bidmensional interval which is in fact the objective function 
interval definition. This interval is further translated into a grid by discretisation. 

The objective function cannot be defined directly as an mathematical 
expression since the objective function value is determined by solving a finite 
element model of the type described in section 2 for each (P1, P2) combination of 
parameters. The optimum of the objective function is achieved when 
nonuniformity of the railhead heating is minimum. The nonuniformity of the 
heating pattern of the rail head for the non-optimized configuration of the 
installation is given in Fig. 5: 
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Fig. 5. The non uniform heating pattern of the non-optimized installation 

  
The temperature color shade result from Fig. 5 is obtained with a 

magnetoharmonic – transient thermal finite element model which considers also 
the rail passage through inductors. This type of model requires more computation 
and time resources than the actual model (magnetoharmonic type) described in 
this paper which is used for optimization.  

It is hard to appreciate the nonuniformity of the heating based on the 
colour shade results from Fig. 5 and with that respect to appreciate solely based 
on the colour shade if a type of inductor would give better results than another. A 
different approach was proposed to check the heating nonuniformity by 
considering the source of heating (the rail induced active power volumic density) 
at the surface of the rail. The integral of the volumic power density along 
longitudinal lines on the rail surface is used instead. These longitudinal lines are 
distributed along the surface of the rail. Each integral result corresponds to a point 
on the rail surface transversal contour. Plotting such a dependence will give the 
graphic from Fig. 6 which contains on Ox axis the distance on the transversal 
contour of the rail surface (with respect to the point of origin placed on top of the 
rail surface on the symmetry line) and on Oy axis an estimation of the heating 
source value at the rail surface (W/m2): 

A norm was defined in order to characterize and directly compare two 
profiles like the one from Fig. 6.  
 

2
y - ymkN =P1,P2 k ym
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Fig. 6. The non uniform distribution of the heating source on the rail surface 

 
where yk represent the values from the Oy axis (Fig. 6) and ym represent the mean 
value of the yk set.  

The goal of the optimization is to obtain a finite element model for which 
the norm N, defined for a pair of parameters P1 and P2, is minimum. The 
optimization process was started from an initial simplex (P1(28, 550),             
P2(28, 550 10 / 3+ ), P3(33, 550 5 / 3+ )) with the values vertices being           
N1 = 0.02959, N2 = 0.030746 , N3 = 0.04271. The local optimum was found in the 
point Poptimum = (23, 547.11), with Noptimum = 0.022396 after seven iterations. 
Another optimization process was launched from a different initial simplex 
(P1(30, 780), P2(37, 780), P3(33.5, 780 3.5 3+ ⋅ )) but found a higher value than 
0.022396 and thus was not recorded. Also the Noptimum value is obtained with a 
shorter and narrower installation (P1 and P2 parameters are smaller than any of 
the values of the initial simplex). For comparison, the initial and optimized 
nonuniformity profiles are presented in a superimposed manner in Fig. 7: 

 

 
 

Fig. 7. Superimposed induced active power profiles 
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The optimized profile is slightly smaller meaning that the induced active 
power in the rail has decreased due to the smaller sizes of the optimized inductor.  

The optimization process was successful, leading to an improvement of 
the overall heating pattern nonuniformity in the rail head with 25 % (according to 
computed norms initial N1 and final Noptimum) but also to smaller values for the 
parameters P1 and P2 which can be directly translated into the economical cost. 

The issue of using more than two parameters for the objective function 
was never approached due to the important computation and time resources 
required by optimization process. 

6. Conclusions 

An implementation of a classical optimization method using finite element 
models to extract the value of the objective function was proposed. In order to 
implement the optimization method, several things had to be accomplished – like 
setting a satisfactory model from the point of view of computational resources, 
identifying the geometrical parameters relevant for optimization and establishing 
the expression of the objective function whose extremum gives the optimal 
installation.  

The optimization output led to the improvement of the nonuniformity of 
the heating pattern and to a cheaper cost of the heating installation. It can be 
assumed the further reduction of the heating nonuniformity due to thermal 
conduction from the hot areas to the colder one from the rail head.  
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