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THE OPTIMIZATION OF A RAIL INDUCTION HEATING
INSTALLATION USING THE SIMPLEX METHOD

Petrici TARAS'

Lucrarea prezinta o metoda de optimizare aplicatd unui model in element
finit tridimensional al unei instalatii de incalzire prin inductie electromagnetica.
Procesul de optimizare al modelului in element finit este controlat utilizind figiere
script Python. Rezultatele procesului de optimizare sunt comparate cu cele initiale.

The paper presents a method of optimization applied to the 3D finite element
model of an induction heating installation. The finite element model is controlled
during the optimization process by using Python scripts. The optimized installation
is compared with the original one.
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1. Introduction

The heating is a stage of the hardening process [1] in which the rail
mechanical properties are improved. The hardening process can be applied [1]
during or after the manufacturing process of the rail — but it is usually applied
during the process due to economical reasons. Fig. 1 contains the schematic
representation of a high speed (1m/s) production line in which the hardening of
the rails occur also.
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Fig. 1. Hardened rail production line
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The installation represented in Fig. 1 is used to produce the so called
premium rails which are hardened with respect to the common ones. The
produced rails length can be 72, 90 or 120 m, making them suitable for high speed
trains. Regarding the production line, a preheated metal piece is introduced in the
rolling mill. After several passes through the rolling mill the shaped rail exits the
rolling mill with a temperature value of 700 °C. Due to high lengths of the
produced rails, high speeds through the installation and high cooling speeds of the
rail surface (1 °C/s) when the entire rail is out of the rolling mill, an important
temperature difference appears between its ends. This difference is reduced by the
“Heating Inductor” component of the installation [2]. The rail is placed on a
conveyer and transported to the next part of the installation. The “Hardening
Inductor” heats the rail head up to a temperature called the austenitisation
temperature. This type of installation is studied in this paper. In the “Quenching”
installation the rail is cooled with a critical cooling speed in order to achieve the
martensite microstructure. The final product is delivered after the “Quenching”
installation.

2. The 3D finite element model

The finite element model of the “Hardening Inductor” is implemented
using the commercial finite element package Flux 3D made by the French
company Cedrat [3]. The model computation domain is given in Fig. 2.
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Fig. 2. The installation subjected to optimization.

The installation represented in Fig. 2 is composed by two inductors [4].
The two inductors design gives the possibility of tunning the heating pattern
nonuniformity on the rail during the prototype testing stage. Regarding the rail,
only the rail head was kept into the computation domain. The model application
can be reduced to a magnetoharmonic type if a criterion for heating pattern
nonuniformity can be found. The material of the magnetic cores was considered
with a constant relative magnetic permeability and of nonconducting type — no
eddy currents can occur in the magnetic core. The material of the rail was
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considered to have a nonlinear magnetic permeability. Also the rail region is
considered to be a solid conductor region with a constant value of the resistivity.
The rail region is thus the most complex region from the computation domain and
it has a big influence on the amount of computational resources allocated in the
solving process of the finite element model.

3. The simplex method

An optimization method aims to determine the extremum of the so called
objective function. The objective function is an mathematical expression used to
describe an installation or a physical process. The extremum of objective function
represents the best case scenario for the physical process or installation. The
objective function depends on one or several parameters which are defined as
quantities of interest for the installation or physical process parameters. One of the
available optimization methods is the simplex method. The simplex method is
based on the concept of simplex which is an n dimensional polytope with n + 1
vertices. The simplex method will be presented in this section for the particular
case of n = 2 in which the simplex represents an equilateral triangle. The vertices
of the triangle represent combination of the parameters of interest for the
optimization problem. The values of the objective function defined in the vertices
represent variations of installation or physical process. The objective function is
defined on an interval which is created by imposing restrictions on the function
parameters. These restrictions are necessary because the parameters are usually
restricted by the geometrical configuration of the installation or by the physical
constants and laws of physics in the physical process.

The optimization process starts with a randomly generated initial simplex
on the definition interval of the objective function and ends usually with a more
area reduced simplex on the same interval. The optimization process stops when
some criteria regarding the simplex area or the number of iterations are reached. A
series of operation can be performed between the initial and final simplex. These
are the reflexion, expansion, partial contraction and total contraction operations
and are represented in Figs. 3 a) — d).
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Fig. 3. The operations of the simplex method
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In a very simplified presentation of the simplex method specific
operations it can be said that these operations will move or shrink the initial
simplex based on the best and worst case scenarios determined from the objective
function values in the vertices of the simplex. The purpose is to obtain a smaller
simplex which would mean that all the three values of the objective function
defined in the vertices are very close to a local extremum.

The simplex operations are presented next. Let’s assume that the
minimum of the objective function is searched. An initial simplex is chosen by
random selection in the objective function definition interval. The initial simplex
vertices are labeled as P;, P, and P; while the objective function values on those
points are Vi, V, and V3. Let’s assume that these values are ordered as V; < V; <
V3 (if not the indexes of P, P, and P3 can be permuted accordingly). So V3 would
be the most undesirable value of three while the V, solution would be the best
case scenario at this step. A possible candidate for a better value than V; would be
the one from the point Ps, Fig. 3 a), which is computed by determining the
reflection of P3 with respect to the P,-P, axis. The value Vs is tested with respect
to the initial values Vi, V, and V.

The next step depends on the relationship of the newly found value Vs
with respect to the old ones V;, V, and V3. If the new value Vs is better (smaller)
than V| than the expansion operation is tried. This operation consists in checking
along the P4-Ps defined direction for a point P6 with a better value than Vs. If a
better value (V) is found then P is set as a vertex of the simplex. The points P,
and P, are translated accordingly on parallel axis in order to preserve the
equilateral triangle structure of the simplex. It may be that the value Vs is higher
than V; but lower than V3. In this case the expansion operation cannot be applied.
However the Vs value is kept and a new simplex (P;-P,-Ps) is created since Vs is a
better choice than V3 thus the operation of reflexion is completed. The case in
which Vs is higher than V; is possible also and as a consequence the reflexion
operation fails. This means that an local optimum should be searched inside the
triangle.

The partial contraction operation is tried in which the value V7 in the
new point P;, inside the triangle, is determined. If V7 is smaller than V3 than the
partial contraction operation has succeeded and the P7 point is considered a vertex
of the newly created simplex. In order to create an equilateral triangle the P; and
P, vertices are translated inwards along the P;-P, direction. If the partial
contraction operation fails, i.e. V; < V3, than the total contraction operation is
applied. This means that the simplex is restrained to a smaller one P-P4-Pg. The
last iterations of an optimization process using the simplex method are done using
total or partial contraction operations.

The criteria for stopping the optimization process can be based upon the
area of the simplex, the edge length of the simplex or the number of iterations.
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The area and edge length of the simplex usually decreases with the
number of iterations due to total and partial contraction operations. The value of
the optimum is considered to be the best value from ones computed in the final
simplex vertices. The optimum value is thus an approximation while the real
value is usually contained within the area of the triangle representing the simplex.

The optimum found is to be considered local. The simplex method is a
deterministic method which whose output may not be the global optimum In order
to find the global optimum multiple optimization processes can be launched
starting from different initial simplexes.

4. The optimization process

The practical implementation of the simplex method applied on the
inductor installation from Fig. 2 is described here. The purpose is to obtain a
reduced nonuniformity of the heating profile on the rail. The installation is
optimized by changing two of its geometrical dimensions. These dimensions are
marked P1 and P2 and are shown in Fig. 4, being essentially the length of the
longer inductor and the coil opening of the shorter inductor. The variation of these
parameters acts directly on the heating pattern on the rail by weakening or
strengthening the magnetic field in the appropriate areas.
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P

Fig. 4. The objective function parameters

The P1 and P2 parameters combination can take values in [20...40] x
[400,...,900] mm® bidmensional interval which is in fact the objective function
interval definition. This interval is further translated into a grid by discretisation.

The objective function cannot be defined directly as an mathematical
expression since the objective function value is determined by solving a finite
element model of the type described in section 2 for each (P1, P2) combination of
parameters. The optimum of the objective function is achieved when
nonuniformity of the railhead heating is minimum. The nonuniformity of the
heating pattern of the rail head for the non-optimized configuration of the
installation is given in Fig. 5:
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Fig. 5. The non uniform heating pattern of the non-optimized installation

The temperature color shade result from Fig. 5 is obtained with a
magnetoharmonic — transient thermal finite element model which considers also
the rail passage through inductors. This type of model requires more computation
and time resources than the actual model (magnetoharmonic type) described in
this paper which is used for optimization.

It is hard to appreciate the nonuniformity of the heating based on the
colour shade results from Fig. 5 and with that respect to appreciate solely based
on the colour shade if a type of inductor would give better results than another. A
different approach was proposed to check the heating nonuniformity by
considering the source of heating (the rail induced active power volumic density)
at the surface of the rail. The integral of the volumic power density along
longitudinal lines on the rail surface is used instead. These longitudinal lines are
distributed along the surface of the rail. Each integral result corresponds to a point
on the rail surface transversal contour. Plotting such a dependence will give the
graphic from Fig. 6 which contains on Ox axis the distance on the transversal
contour of the rail surface (with respect to the point of origin placed on top of the
rail surface on the symmetry line) and on Oy axis an estimation of the heating
source value at the rail surface (W/m?):

A norm was defined in order to characterize and directly compare two
profiles like the one from Fig. 6.
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Fig. 6. The non uniform distribution of the heating source on the rail surface

where yy represent the values from the Oy axis (Fig. 6) and y,, represent the mean
value of the y set.

The goal of the optimization is to obtain a finite element model for which
the norm N, defined for a pair of parameters P1 and P2, is minimum. The
optimization process was started from an initial simplex (P;(28, 550),
P»(28, 550+10/+/3), Ps(33, 550+5/+/3)) with the values vertices being
N; =0.02959, N, = 0.030746 , N3 = 0.04271. The local optimum was found in the
point Popimum = (23, 547.11), with Noptimum = 0.022396 after seven iterations.
Another optimization process was launched from a different initial simplex
(P1(30, 780), P»(37, 780), P5(33.5, 780+3.5-\/§)) but found a higher value than
0.022396 and thus was not recorded. Also the Noyimum value is obtained with a
shorter and narrower installation (P1 and P2 parameters are smaller than any of
the values of the initial simplex). For comparison, the initial and optimized
nonuniformity profiles are presented in a superimposed manner in Fig. 7:
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Fig. 7. Superimposed induced active power profiles
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The optimized profile is slightly smaller meaning that the induced active
power in the rail has decreased due to the smaller sizes of the optimized inductor.

The optimization process was successful, leading to an improvement of
the overall heating pattern nonuniformity in the rail head with 25 % (according to
computed norms initial Ny and final Nypgimum) but also to smaller values for the
parameters P1 and P2 which can be directly translated into the economical cost.

The issue of using more than two parameters for the objective function
was never approached due to the important computation and time resources
required by optimization process.

6. Conclusions

An implementation of a classical optimization method using finite element
models to extract the value of the objective function was proposed. In order to
implement the optimization method, several things had to be accomplished — like
setting a satisfactory model from the point of view of computational resources,
identifying the geometrical parameters relevant for optimization and establishing
the expression of the objective function whose extremum gives the optimal
installation.

The optimization output led to the improvement of the nonuniformity of
the heating pattern and to a cheaper cost of the heating installation. It can be
assumed the further reduction of the heating nonuniformity due to thermal
conduction from the hot areas to the colder one from the rail head.
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