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CONVERGENCE OF LINEARIZED ℓq PENALTY METHODS FOR 
OPTIMIZATION WITH NONLINEAR EQUALITIES

Lahcen El BOURKHISSI1, Ion NECOARA2

In this paper, we consider nonconvex optimization problems with nonlinear 
equality constraints. We assume that the objective function and the func-tional constraints 
are locally smooth. To solve this problem, we introduce a linearized ℓq penalty based 
method, where q ∈ (1, 2] is the parameter defining the norm used in the construction of the 
penalty function. Our method involves linearizing the objective function and functional 
constraints in a Gauss-Newton fashion at the current iteration in the penalty formulation 
and introduces a quadratic regularization. This approach yields an easily solvable 
subproblem, whose solution becomes the next iterate. By us-ing a novel dynamic rule for 
the choice of the regularization parameter, we establish that the iterates of our method 
converge to an ϵ-first-order solution in O(1/ϵ2+(q−1)/q ) outer iterations. Finally, we put 
theory into practice and evaluate the performance of the proposed algorithm by making 
numerical comparisons with existing methods from literature.
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1. Introduction

Penalty methods have played a central role in theoretical and numerical optimization, with
their historical origins dating back to at least [4]. Extensive research has explored the
applications of penalty methods to a wide range of problems, as shown by works such
as [1, 2, 8–11, 13, 14], among others. For example, [9] studies a polyvalent class of penalty
functions, taking the form of ∥ · ∥qq, where q > 0, for general constrained problems. This
study establishes bounds that measure the closeness of the penalty solution to the solu-
tion of original problem as a function of the penalty parameter ρ. In particular, under
strict Mangasarian–Fromovitz constraint qualification and second-order sufficiency, a bound
of the form O( 1

ρq−1 ) is derived and it becomes zero for q ∈ (0, 1] provided that ρ is suffi-

ciently large. Paper [2] introduces an algorithm based on a Lipschitz penalty function, with
dynamic quadratic regularization. This method reduces the size of a first-order criticality
measure to a specified accuracy threshold ϵ, in a maximum of O(1/ϵ2) functions evaluations,
provided we are close to feasibility. In an alternative context, [10] focuses on the use of a
quadratic penalty method to handle nonconvex composite problems with linear constraints
proving convergence to an ϵ-critical point in O(1/ϵ3) accelerated composite gradient steps.
Furthermore, the work in [11] introduces an inexact proximal-point penalty method for solv-
ing general problems with nonconvex objective and constraints, proving convergence to an
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ϵ-critical point within O(1/ϵ3) of functions evaluations. The result can be refined, reaching
a complexity of O(1/ϵ2.5) for nonconvex objective and convex constraints. Finally, in our
previous work [6], we developed a quadratic penalty method for solving smooth nonconvex
optimization problems with nonlinear constraints, where we linearize both the objective and
functional constraints within the quadratic penalty function in a Gauss-Newton fashion. We
established a complexity bound of O(1/ϵ2.5) of functions evaluations. In this context, our
current method is inspired by [9] and generalizes our previous work [6], as it considers an ℓq
penalty approach with q ∈ (1, 2], bridging the gap between two extremes: the exact penalty
method based on ℓ1 norm, where the penalty parameter ρ is finite but the subproblem lacks
differentiability, and the quadratic penalty method, where the subproblem is smooth but
the penalty parameter ρ must be of the order inverse of the desired accuracy.

Contributions: Our approach, referred to as the linearized ℓq penalty method (qLP), effec-
tively addresses some of the limitations of the previous studies. Notably, in [2], the sub-
problem is non-differentiable, due to the use of a Lipschitz penalty function, while in [10],
the framework is limited to handling only linear constraints. Hence, our main contributions
are as follows:

(i) At each iteration, we linearize, in a Gauss-Newton fashion, both the cost function
and the nonlinear functional constraints within the ℓq penalty function, where q ∈ (1, 2]
is the parameter defining the norm used in the construction of the penalty function, and
add a dynamic regularization term. This results in a new algorithm, called the linearized ℓq
penalty method (qLP). Notably, our method considerably simplifies the computational cost
of the new iterate, since each iteration reduces to minimizing a strongly convex differentiable
function with Holder continuous gradient, thus making the subproblem easily solvable with
e.g., an accelerated first-order scheme.

(ii) We provide rigorous proofs of global asymptotic convergence, guaranteeing that
the iterates eventually converge to a critical point of the ℓq penalty function, which implies,
for an appropriate choice of ρ, a (0, ϵ)-first-order solution of the original problem. Further-
more, our method guarantees convergence to an ϵ-first-order solution of the original problem
in O(1/ϵ2+(q−1)/q) outer iterations, thus improving the existing bounds.

2. Problem formulation and preliminaries

In this paper, we consider the following nonconvex optimization problem:

min
x∈Rn

f(x) s.t. F (x) = 0, (1)

where f : Rn → R and F (x) ≜ (f1(x), ..., fm(x))
T
, with fi : Rn → R for all i = 1 : m.

We assume that the functions f, fi ∈ C1 for all i = 1 : m, where f can be nonconvex
and F nonlinear. Moreover, we assume that the problem is well-posed i.e., the feasible
set is nonempty and the optimal value is finite. Before introducing the main assumptions
for our analysis, we would like to clarify some notations. We use ∥ · ∥qq, where q ∈ (1, 2],
to denote the q-norm of a vector in Rn. For simplicity, ∥ · ∥ denotes the Euclidean norm
of a vector or the spectral norm of a matrix. For a differentiable function f : Rn →
R, we denote by ∇f(x) ∈ Rn its gradient at a point x. Moreover, we say that x∗ is a
critical point of f if ∇f(x∗) = 0. For a differentiable vector function F : Rn → Rm, we
denote its Jacobian at a given point x by JF (x) ∈ Rm×n. Furthermore, for a vector y =
(y1, . . . , ym)T ∈ Rm and a positive value a, we denote |y|a = (|y1|a, . . . , |ym|a)T and sign(y)◦
|y|a = (sign(y1)|y1|a, · · · , sign(ym)|ym|a)T ∈ Rm. We further introduce the notations:

lf (x; x̄) ≜ f(x̄) + ⟨∇f(x̄), x− x̄⟩, lF (x; x̄) ≜ F (x̄) + JF (x̄)(x− x̄) ∀x, x̄.

Let us now present the main assumptions considered for problem (1):
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Assumption 1. Assume that f(x) has compact level sets, i.e., for any α ∈ R, the following
set is either empty or compact:

S0α ≜ {x : f(x) ≤ α}.

Assumption 2. Given a compact set S ⊆ Rn, there exist positive constants Mf ,MF , σ, Lf , LF

such that f and F satisfy the following conditions:

(i) ∥∇f(x)∥ ≤Mf , ∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥ ∀x, y ∈ S.
(ii) ∥JF (x)∥ ≤MF , ∥JF (x)− JF (y)∥ ≤ LF ∥x− y∥ ∀x, y ∈ S.
(iii) Problem (1) satisfies Linear Independance Constraint Qualification (LICQ) condition

for all x ∈ S.

Note that these assumptions are standard in the nonconvex optimization literature, in par-
ticular in penalty type methods, see e.g., [2, 3, 6, 15]. In fact, these assumptions are not
restrictive because they need to hold only locally. Indeed, large classes of problems satisfy
these assumptions as discussed below.

Remark 2.1. Assumption 1 holds e.g., when f(x) is coercive (in particular, f(x) is strongly
convex), or f(x) is bounded from bellow. Assumption 2 allows general classes of problems.
In particular, conditions (i) hold if f(x) is differentiable and ∇f(x) is locally Lipschitz
continuous on a neighborhood of S. Conditions (ii) hold when F (x) is differentiable on
a neighborhood of S and JF (x) is locally Lipschitz continuous on S. Finally, the LICQ
assumption guarantees the existence of dual multipliers and is commonly used in nonconvex
optimization, see e.g., [13, 15]. For equality constraints, LICQ holds on a compact set S

if the smallest singular value of the Jacobian matrix of the functional constraints remains
strictly positive on S.

The following lemma is an immediate consequence of Assumption 1.

Lemma 2.1. If Assumption 1 holds, then for any ρ ≥ 0, we have:

¯
P ≜ inf

x∈Rn
{f(x) + ρ

q
∥F (x)∥qq} > −∞ and f̄ ≜ inf

x∈Rn
{f(x)} > −∞. (2)

We are interested in (approximate) first-order (also called KKT) solutions of optimization
problem (1). Hence, let us introduce the following definitions:

Definition 2.1. [First-order solution and ϵ-first-order solution of (1)] The vector x∗ is said
to be a first-order solution of (1) if ∃λ∗ ∈ Rm such that:

∇f(x∗) + JF (x
∗)Tλ∗ = 0 and F (x∗) = 0.

Moreover, x̂ is an (ϵ1, ϵ2)-first-order solution of (1) if ∃λ̂ ∈ Rm and κ1, κ2 > 0:

∥∇f(x̂) + JF (x̂)
T λ̂∥ ≤ κ1ϵ1 and ∥F (x̂)∥ ≤ κ2ϵ2.

If ϵ1 = ϵ2, we refer to x̂ as an ϵ-first-order solution in the previous definition.

3. A linearized ℓq penalty method

In this section, we propose a new algorithm for solving nonconvex problem (1) using the ℓq
penalty framework. Let us first introduce few notations. The penalty function associated
with the problem (1) is

Pq
ρ(x) = f(x) +

ρ

q
∥F (x)∥qq, (3)

where q∈(1, 2]. This penalty function, Pq
ρ, is differentiable and its gradient is:

∇Pq
ρ(x) = ∇f(x) + JF (x)

T (
ρ sign(F (x)) ◦ |F (x)|q−1

)
.

The next lemma states that function sign(·)| · |ν , where ν ∈ (0, 1], is Holder continuous:
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Lemma 3.1. [Holder] Let ν ∈ (0, 1]. Then, we have:

| sign(x)|x|ν − sign(y)|y|ν | ≤ 3|x− y|ν ∀x, y ∈ R.

From the previous lemma, using properties of norms, one can conclude that the function
v 7→ 1

q∥v∥
q
q, with q ∈ (1, 2] and v ∈ Rm, has the gradient Holder continuous w.r.t. Euclidean

norm ∥ · ∥, i.e.,:

∥ sign(v) ◦ |v|q−1 − sign(w) ◦ |w|q−1∥ ≤ 3×m
2−q
2 ∥v − w∥q−1 ∀v, w ∈ Rm. (4)

This implies the following inequality [5]:

1
q∥v∥

q
q ≤ 1

q∥w∥
q
q + ⟨sign(w) ◦ |w|q−1, v − w⟩+ 3×m

2−q
2

q ∥v − w∥q, ∀v, w ∈ Rm. (5)

Further, let us denote the following function derived from linearization in a Gauss-Newton
fashion of the objective function and the functional constraints, at a given point x̄, in the
penalty function:

P̄q
ρ(x; x̄) = f(x̄) + ⟨∇f(x̄), x− x̄⟩+ ρ

q
∥F (x̄) + JF (x̄)(x− x̄)∥qq.

Note that the function P̄q
ρ(·; x̄) is always convex since q > 1. Let us also introduce the

following criticality measure for the penalty function Pq
ρ, for conducting our analysis, inspired

by [2]. For 0 < r ≤ 1, we define:

Ψr(x) ≜ P̄q
ρ(x;x)− min

∥y−x∥≤r
P̄q
ρ(y;x) = Pq

ρ(x)− min
∥y−x∥≤r

P̄q
ρ(y;x). (6)

In particular, following [16], Ψr(x) is continuous for all x, and x∗ is a critical point of
penalty function Pq

ρ if Ψr(x
∗) = 0. The next lemma states the above claim, see also Lemma

2.1 in [16].

Lemma 3.2. Let q ∈ (1, 2], 0 < r ≤ 1 and Ψr(·) be as in (6). Then, Ψr(x) ≥ 0 and
Ψr(x) = 0 if and only if x is a critical point of the penalty function Pq

ρ. Moreover, Ψr(·) is
continuous.

Let us also introduce the following pseudo-criticality measure:

Ψ̄(x, β) ≜ P̄q
ρ(x;x)− min

y∈Rn

{
P̄q
ρ(y;x) +

β

2
∥y − x∥2

}
. (7)

We establish later a relation between these two criticality measures.

To solve the optimization problem (1) we propose the following Linearized ℓq penalty (qLP)
algorithm, where we linearize the objective function and the functional constraints, in a
Gauss-Newton fashion, within the penalty function at the current iterate and add an adap-
tive quadratic regularization. To the best of our knowledge qLP algorithm is new and its

Algorithm 3.1 Linearized ℓq penalty (qLP) method

1: Initialization: x0, ρ > 0, and
¯
β ≥ 1.

2: k ← 0
3: while stopping criterion is not satisfied do
4: generate a proximal parameter βk+1 ≥

¯
β such that

5: xk+1 ← argminx∈Rn P̄q
ρ(x;xk) +

βk+1

2 ∥x− xk∥2 satisfies the descent:

Pq
ρ(xk+1) ≤ P̄q

ρ(xk+1;xk) +
βk+1

2
∥xk+1 − xk∥2. (8)

6: k ← k + 1
7: end while
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convergence behavior has not been analyzed before in the literature. Note that the objective
function in the subproblem of Step 5 of Algorithm 3.1 is always strongly convex since the
convex function P̄q

ρ(·;xk) is regularized with a quadratic term. Moreover, it has a locally
Holder continuous gradient with Holder constant proportial to ρ and exponent q − 1 (see
Lemma 3.1). Therefore, finding a solution of the subproblem in Step 5 is easy as there are
efficient methods that can deal with this type of problems (see e.g., [5]). In the sequel, we
denote:

∆xk = xk − xk−1 ∀k ≥ 1.

Let us show that we can always choose an adaptive regularization parameter βk+1 guaran-
teeing the descent property (8). Indeed, since f and F are smooth functions, if one chooses
adaptively (i.e., depending on the current iterate xk):

βk+1 ≥ Lf +
(
3×m

(2−q)(q−1)
2q × 22−q

) 1
q

q
q−1
q ρ

1
q LF

(
Pq
ρ(xk)− f̄

) q−1
q , (9)

then the descent property (8) follows, as established in the following lemma.

Lemma 3.3. [Existence of βk+1] If the sequence {xk}k≥0 generated by Algorithm 3.1 is
in some compact set S on which Assumptions 1 and 2 hold and we choose βk+1 as in (9),
then the descent property (8) holds. Consequently, the following decrease condition is also
satisfied:

Pq
ρ(xk+1) ≤ Pq

ρ(xk)−
βk+1

2
∥xk+1 − xk∥2. (10)

Proof. See Appendix. □

From Lemma 3.3 it follows that when using a backtracking scheme, with a geometrically
increasing parameter µ > 1, βk+1 can be always upper bounded as:

β̄ ≜ sup
k≥1

βk ≤ µ

(
Lf +

(
3×m

(
(2−q)(q−1)

2q

)
× 22−q

) 1
q

q
q−1
q ρ

1
q LF (P̄ − f̄)

q−1
q

)
. (11)

Next lemma, whose proof is straightforward, guarantees the following for xk+1.

Lemma 3.4. Let Assumption 2 hold on a compact set S and assume that the sequence
{xk}k≥0 generated by Algorithm 3.1 is in S. Then, we have:

rk ≜
Pq
ρ(xk)− Pq

ρ(xk+1)

Ψ̄(xk, βk+1)
≥ 1. (12)

Due to space limitation, the proofs of some lemmas are omitted, but the details can be found
in [7].

4. Convergence analysis

In this section, we derive the efficiency of qLP algorithm (ALgorithm 3.1) for finding an
ϵ-first-order solution of the problem (1). In the sequel, we are using the ℓq penalty function,
Pq
ρ, as a Lyapunov function and denote by:

Pk = Pq
ρ(xk) ∀k ≥ 0. (13)

It is clear, from Lemma 3.3, that {Pk}k≥0 is decreasing and later we prove that it is bounded
from bellow. The following lemma shows that if the sequence {xk}k≥0 generated by Algo-
rithm 3.1 is bounded, then the Lyapunov sequence {Pk}k≥0 is also bounded. Its proof is
based on the decrease (10).
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Lemma 4.1. Consider Algorithm 3.1 and let {Pk}k≥0 as defined in (13). If the sequence
{xk}k≥0 generated by Algorithm 3.1 is in some compact set S on which Assumptions 1 and
2 hold. Then, there exists P̄ <∞ such that:

¯
P ≤ Pk ≤ P̄ ∀k ≥ 0, (14)

where
¯
P is defined in (2).

Let us now investigate the computational complexity of Algorithm 3.1 for generating an
ϵ-first-order solution. First, we relate the model decrease Ψ̄(xk, βk+1) to the optimality
measure Ψr(xk) in (6).

Lemma 4.2. Let 0 < r ≤ 1 and let Ψr(·) be defined by (6). If the sequence, {xk}k≥0

generated by Algorithm 3.1 is in some compact set S on which Assumption 2 holds, then:

Ψ̄(xk, βk+1) ≥
1

2
min

(
1,

Ψr(xk)

βk+1r2

)
Ψr(xk). (15)

Proof. See appendix. □

Lemma 4.2 indicates that rk in (12) is well-defined whenever the current iteration is not
a first-order critical point, i.e., Ψr(xk) ̸= 0. Let 0 < ϵ ≤ 1. The following theorem

demonstrates that after K ≥ O(ρ
1
q

ϵ2 ) iterations of Algorithm 3.1, the criticality measure

Ψϵ(xk) ≤ ϵ2.

Lemma 4.3. Consider Algorithm 3.1 and let {Pk}k≥0 be defined as in (13). If the sequence
{xk}k≥0, generated by Algorithm 3.1 is in some compact set S on which Assumptions 1 and
2 hold. Then, for any ϵ ∈ (0, 1], after

K =
⌈
2β̄
(
P̄ −

¯
P
)
ϵ−2
⌉
= O

(
ρ

1
q

ϵ2

)
iterations of Algorithm 3.1, we obtain Ψϵ(xk) ≤ ϵ2.

Proof. See Appendix. □

In the next theorem, we prove that when the optimality measure Ψϵ(xk) is sufficiently
small, then we have an approximate critical point of the penalty function Pq

ρ(·) and and an
ϵ-first-order solution for the problem (1).

Theorem 4.1. If the sequence {xk}k≥0 generated by Algorithm 3.1 is in some compact set
S on which Assumptions 1 and 2 hold and let xk be an iterate satisfying Ψϵ(xk) ≤ ϵ2 for a
given 0 < ϵ ≤ 1. Then, there exists λk such that

∥∇f(xk) + JF (xk)
Tλk∥ ≤ ϵ. (16)

Moreover, if ρ = O
(

1
ϵq−1

)
, then xk is an ϵ-first-order solution for (1), within k = O

(
1

ϵ
2+

q−1
q

)
iterations.

Proof. Let us denote:

s∗k=arg min
∥s∥≤ϵ

P̄q
ρ(xk + s;xk)=arg min

∥s∥≤ϵ
f(xk) + ⟨∇f(xk), s⟩+

ρ

q
∥F (xk) + JF (xk)s∥qq.

Assume that we are in the case ∥s∗k∥ < ϵ. Then the above problem is essentially un-
constrained and convex, and first-order conditions provide that ∇P̄q

ρ(xk + s∗k;xk) = 0,

and so there exists λk = ρ sign(F (xk) + JF (xk)s
∗
k) ◦ |F (xk) + JF (xk)s

∗
k|q−1 such that

∇f(xk) + JF (xk)
Tλk = 0, which implies that (16) holds. It remains to consider ∥s∗k∥ = ϵ.
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Then first-order conditions for s∗k imply that there exist λk = ρ sign(F (xk) + JF (xk)s
∗
k) ◦

|F (xk) + JF (xk)s
∗
k|q−1, u∗

k ≥ 0, and z∗k ∈ ∂(∥s∗k∥) such that

∇f(xk) + JF (xk)
Tλk + u∗

kz
∗
k = 0. (17)

It follows from the definition of Ψr(xk) that

Ψϵ(xk) = P̄q
ρ(xk;xk)− P̄q

ρ(xk + s∗k;xk)

= −⟨∇f(xk), s
∗
k⟩+

ρ

q

(
∥F (xk)∥qq − ∥F (xk) + JF (xk)s

∗
k∥qq
)
,

and replacing ∇f(xk) from (17) into the above, we deduce:

Ψϵ(xk) =
ρ

q

(
∥F (xk)∥qq − ∥F (xk) + JF (xk)s

∗
k∥qq
)
+ ⟨s∗k, JF (xk)

Tλk⟩+ u∗
k⟨s∗k, z∗k⟩

=
ρ

q

(
∥F (xk)∥qq − ∥F (xk) + JF (xk)s

∗
k∥qq
)
+ ⟨s∗k, JF (xk)

Tλk⟩+ u∗
k × ϵ, (18)

where we also used that ⟨s∗k, z∗k⟩ = ∥s∗k∥ = ϵ. Let φ(s) = ρ
q ∥F (xk) + JF (xk)s∥qq, which is

convex; then φ(0) − φ(s∗k) ≥ (−s∗k)TJF (xk)
Tλk, where λk = ρ sign(F (xk) + JF (xk)s

∗
k) ◦

|F (xk) + JF (xk)s
∗
k|q−1. We then deduce that:

ρ

q

(
∥F (xk)∥qq − ∥F (xk) + JF (xk)s

∗
k∥qq
)
+ (s∗k)

TJF (xk)
Tλk ≥ 0,

and thus from (18) and the fact that Ψϵ(xk) ≤ ϵ2, we have:

ϵ2 ≥ Ψϵ(xk) ≥ u∗
k × ϵ.

From (17) and ∥z∗k∥ = 1, we deduce

u∗
k = u∗

k∥z∗k∥ = ∥∇f(xk) + JF (xk)
Tλk∥ ≤ ϵ.

Hence, (16) holds with λk = ρ sign(F (xk) + JF (xk)s
∗
k)|F (xk) + JF (xk)s

∗
k|q−1. Now, let us

consider a KKT point x∗ ∈ S. LICQ ensures the existence of a corresponding y∗ such that:

∇f(x∗) + JF (x
∗)

T
y∗ = 0 and F (x∗) = 0.

Let us analyze how much λk deviates from a Lagrange multiplier y∗. We have:

y∗ = −JF (x∗)
+∇f(x∗).

Moreover, considering:

∥∇f(xk) + JF (xk)
Tλk∥ ≤ ϵ,

it then follows that there exists a vector d ∈ Rn with ∥d∥ ≤ 1 such that:

∇f(xk) + JF (xk)
Tλk = ϵd.

This implies:

λk = −JF (xk)
+∇f(xk) + ϵJF (xk)

+d.

Hence:

∥λk − y∗∥ = ∥ − JF (xk)
+∇f(xk) + JF (x

∗)+∇f(x∗) + ϵJF (xk)
+d∥

≤ ∥JF (x∗)+∇f(x∗)− JF (xk)
+∇f(xk)∥+ ϵ∥JF (xk)

+d∥.

Given the continuity of J+
F and ∇f , along with the fact that xk and x∗ belong to the

compact set S and that ∥d∥ ≤ 1, we conclude that there exists a constant M1 ≥ 0 such that:
∥λk − y∗∥ ≤M1. Then: ∥λk∥ ≤M1 + ∥y∗∥. Consequently:

∥F (xk) + JF (xk)s
∗
k∥ =

∥|λk|
1

q−1 ∥
ρ

1
q−1

≤
(
∥λk∥q

ρ

) 1
q−1

≤ O(ϵ). (19)
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It then follows that:

∥F (xk)∥ ≤ ∥F (xk) + JF (xk)s
∗
k∥+ ∥JF (xk)s

∗
k∥

≤ ∥F (xk) + JF (xk)s
∗
k∥+MF ∥s∗k∥ ≤ O(ϵ) +MF ∥s∗k∥.

Moreover, since ∥s∗k∥ ≤ ϵ, we get:

∥∇f(xk) + JF (xk)
Tλk∥ ≤ ϵ and ∥F (xk)∥ ≤ O(ϵ),

after K = O

(
ρ

1
q

ϵ2

)
= O

(
1

ϵ
2+

q−1
q

)
iterations. □

Remark 4.1. Note that from the convergence rate to an ϵ-first-order solution of problem

(1) which is of order O

(
1

ϵ
2+

q−1
q

)
outer iterations (i.e., number of functions, gradients and

Jacobians evaluations), as q approaches values close to 1, the convergence rate of Algorithm
3.1 becomes O

(
1
ϵ2

)
, which coincides with the standard convergence rate for exact penalty

methods [2, 12]. On the other hand, when q = 2, the convergence rate becomes O
(

1
ϵ2.5

)
,

matching the rate of quadratic penalty methods established e.g., in [6]. Furthermore, for
the total complexity (inner and outer iterations), note that the subproblem in Step 5 of
our algorithm is unconstrained with a strongly convex objective function whose gradient is
Hölder continuous with exponent q − 1. According to [5], solving this subproblem to an

accuracy ϵsub = ϵ using an accelerated gradient method requires O

(
ρ

2
3q−2

¯
β

q
q−1 ϵ

2−q
3q−2

)
gradient

steps (i.e., products of the form Jacobian at xk times vectors), up to a logarithmic factor.

By selecting ρ = O
(

1
ϵq−1

)
and

¯
β = O

(
ρ

1
q

)
= O

(
1

ϵ
q−1
q

)
, the worst-case complexity of

solving the subproblem simplifies to O

(
1

ϵ
1

3q−2

)
. Thus, the total complexity for obtaining

an ϵ-first-order solution of problem (1) is O

(
1

ϵ
2+

q−1
q

+ 1
3q−2

)
. In particular, as q → 1, this

complexity approaches O
(

1
ϵ3

)
, while for q = 2, it reduces to O

(
1

ϵ2.75

)
. The optimal total

complexity is O
(

1
ϵ2.74

)
and it is achieved for q = 1+ 1√

3
≈ 1.33. Paper [2], which employs a

Lipschitz penalty function approach, has a total complexity of order O
(

1
ϵ3

)
, when employing

the scheme in [5], which is usually higher than our total complexity for any q ∈ (1, 2].
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Appendix

Proof of Lemma 3.3. Note that the subproblem’s objective function x 7→ P̄q
ρ(·;xk) +

βk+1

2 ∥x−xk∥2 is strongly convex with strong convexity constant βk+1. Combining this with

the optimality of xk+1 and the fact that P̄q
ρ(xk;xk) = Pq

ρ(xk), we get:

P̄q
ρ(xk+1;xk) ≤ Pq

ρ(xk)− βk+1∥xk+1 − xk∥2. (20)

Further, since f has a Lipschitz gradient, we have the following.

f(xk+1)− lf (xk+1;xk) ≤
Lf

2
∥xk+1 − xk∥2. (21)
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Moreover, using the fact that the gradient of ρ
q ∥ · ∥

q
q is Holder continuous, we obtain:

ρ

q
∥F (xk+1)∥qq −

ρ

q
∥lF (xk+1;xk)∥qq

(5)

≤ ⟨ρ sign (lF (xk+1;xk)) ◦ |lF (xk+1;xk)|q−1, F (xk+1)− lF (xk+1;xk)⟩

+
3×m

2−q
2 ρ

q
∥F (xk+1)− lF (xk+1;xk)∥q

≤ ⟨ρ|lF (xk+1;xk)|q−1, |F (xk+1)− lF (xk+1;xk)|⟩+ 3×m
2−q
2 ρ

q ∥F (xk+1)− lF (xk+1;xk)∥q

= ρ

(
m∑
i=1

|lfi(xk+1;xk)|q−1 × |fi(xk+1)− lfi(xk+1;xk)|

)q× 1
q

+
3×m

2−q
2 ρ

q
∥F (xk+1)− lF (xk+1;xk)∥q.

Further, using Holder inequality, we get:

ρ

q
∥F (xk+1)∥qq −

ρ

q
∥lF (xk+1;xk)∥qq

≤ ρ

(
m∑
i=1

|lfi(xk+1;xk)|q
) q−1

q

×

(
m∑
i=1

|fi(xk+1)− lfi(xk+1;xk)|q
) 1

q

+
3×m

2−q
2 ρ

q
∥F (xk+1)− lF (xk+1;xk)∥q

= ρ∥lF (xk+1;xk)∥q−1
q ∥F (xk+1)− lF (xk+1;xk)∥q + 3×m

2−q
2 ρ

q ∥F (xk+1)− lF (xk+1;xk)∥q

≤ ρ∥lF (xk+1;xk)∥q−1
q ×m

2−q
2q × ∥F (xk+1)− lF (xk+1;xk)∥+ 3×m

2−q
2 ρ

q ∥F (xk+1)− lF (xk+1;xk)∥q

Ass. 2
≤ ρ∥lF (xk+1;xk)∥q−1

q
m

2−q
2q ×LF

2 ∥∆xk+1∥2 + 3×m
2−q
2 ρ

q

(
LF

2 ∥∆xk+1∥2
)q

, (22)

where the second inequality follows from the fact that ∥v∥2 ≤ ∥v∥q ≤ m
2−q
2q ∥v∥2, ∀q ∈ (1, 2]

and v ∈ Rm. Furthermore, using Young’s inequality, which states that for any r, s ∈ (1,∞)
satisfying the conjugate relation 1

r +
1
s = 1, the following inequality holds for all nonnegative

scalars a, b: ab ≤ ar

r + bs

s . Using this for r = q and s = q
q−1 , we bound ρ∥lF (xk+1;xk)∥q−1

q
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as follows:

ρ∥lF (xk+1;xk)∥q−1
q − q−1

q
βk+1−Lf

LF
≤ ρ

q2−q

(
LF

βk+1−Lf

)q−1 (
ρ
q ∥lF (xk+1;xk)∥qq

)q−1

=
ρ

q2−q

(
LF

βk+1 − Lf

)q−1 (
P̄q
ρ(xk+1;xk)− f(xk+1) + f(xk+1)− lf (xk+1;xk)

)q−1

(20),(21)

≤ ρ

q2−q

(
LF

βk+1 − Lf

)q−1(
Pq
ρ(xk)− f(xk+1)−

2βk+1 − Lf

2
∥∆xk+1∥2

)q−1

≤ ρ

q2−q

(
LF

βk+1 − Lf

)q−1 (
Pq
ρ(xk)− f(xk+1)− (βk+1 − Lf ) ∥∆xk+1∥2

)q−1

(f(xk+1)≥f̄)

≤ ρ

q2−q

(
LF

βk+1 − Lf

)q−1 ((
Pq
ρ(xk)− f̄

)
− (βk+1 − Lf ) ∥∆xk+1∥2

)q−1

≤ 3×m
(2−q)(q−1)

2q ρ
q2−q

(
LF

βk+1−Lf

)q−1 ((
Pq
ρ(xk)− f̄

)
− (βk+1 − Lf ) ∥∆xk+1∥2

)q−1
.

≤ 3×m
(2−q)(q−1)

2q ρ
q2−q

(
LF

βk+1−Lf

)q−1 (
22−q

(
Pq
ρ(xk)− f̄

)q−1 − (βk+1 − Lf )
q−1 ∥∆xk+1∥2(q−1)

)
≤ 3×m

(2−q)(q−1)
2q ×22−qρ
q2−q

(
LF

βk+1−Lf

)q−1 (
Pq
ρ(xk)− f̄

)q−1 − 3×m
(2−q)(q−1)

2q ρLq−1
F

q2−q ∥∆xk+1∥2(q−1)

(9)

≤ βk+1 − Lf

qLF
−

3×m
(2−q)(q−1)

2q ρLq−1
F

q2−q
∥∆xk+1∥2(q−1), (23)

where in the sixth inequality we used the fact that for any a ≥ b ≥ 0 and any ν ∈ (0, 1], we
have: (a− b)ν ≤ 21−νaν − bν , and setting ν = q − 1 ∈ (0, 1]. Further, using (23) in (22), we
get:

ρ

q
∥F (xk+1)∥qq −

ρ

q
∥lF (xk+1;xk)∥qq

≤ βk+1−Lf

2 ∥∆xk+1∥2 − 3×m
2−q
2 ρLq

F

(
1

2q2−q − 1
q2q

)
∥∆xk+1∥2q ≤ βk+1−Lf

2 ∥∆xk+1∥2. (24)

Moreover, we have:

Pq
ρ(xk+1)− P̄q

ρ(xk+1;xk) = f(xk+1)− lf (xk+1;xk) +
ρ
q ∥F (xk+1)∥qq −

ρ
q ∥lF (xk+1;xk)∥qq.

Using (21) and (24) in the previous relation, it follows (inequality (8)):

Pq
ρ(xk+1) ≤ P̄q

ρ(xk+1;xk) +
βk+1

2
∥∆xk+1∥2.

Finally, using (20), we get the decrease in (10). This proves our statement. □

Proof of Lemma 4.2 Let us first assume that βk+1r
2 ≤ Ψr(xk). Then:

min
s∈Rn

{
P̄q
ρ(xk + s;xk) +

βk+1

2
∥s∥2

}
≤ min

∥s∥≤r

{
P̄q
ρ(xk + s;xk) +

βk+1

2
∥s∥2

}
≤ min

∥s∥≤r

{
P̄q
ρ(xk + s;xk)

}
+

βk+1r
2

2
≤ min

∥s∥≤r

{
P̄q
ρ(xk + s;xk)

}
+

Ψr(xk)

2
,

and so, from (7) and (6), it follows that:

Ψ̄(xk, βk+1) ≥ P̄q
ρ(xk;xk)−min∥s∥≤r P̄

q
ρ(xk + s;xk)− Ψr(xk)

2 = Ψr(xk)− Ψr(xk)
2 = Ψr(xk)

2 ,

which proves (15) in the case when βk+1r
2 ≤ Ψr(xk).

Now let βk+1r
2 > Ψr(xk) and s∗k ≜ argmin∥s∥≤r P̄

q
ρ(xk + s;xk). Then, by defining sk ≜
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xk+1 − xk, we get:

P̄q
ρ(xk + sk;xk) +

βk+1

2
∥sk∥2 ≤ P̄q

ρ

(
xk +

Ψr(xk)

βk+1r2
s∗k;xk

)
+

βk+1

2

∥∥∥∥Ψr(xk)

βk+1r2
s∗k

∥∥∥∥2
≤ P̄q

ρ

(
xk +

Ψr(xk)

βk+1r2
s∗k;xk

)
+

Ψr(xk)
2

2βk+1r2
,

where, to obtain the second inequality, we used ∥s∗k∥ ≤ r. This and (7) give

Ψ̄(xk, βk+1) ≥ P̄q
ρ (xk;xk)− P̄q

ρ

(
xk +

Ψr(xk)

βk+1r2
s∗k;xk

)
− Ψr(xk)

2

2βk+1r2
. (25)

Using 0 < Ψr(xk)
βk+1r2

< 1 and the fact that P̄q
ρ is convex, we obtain:

P̄q
ρ

(
xk +

Ψr(xk)

βk+1r2
s∗k;xk

)
≤
(
1− Ψr(xk)

βk+1r2

)
P̄q
ρ (xk;xk) +

Ψr(xk)

βk+1r2
P̄q
ρ (xk + s∗k;xk) ,

which substituted into (25) gives

Ψ̄(xk, βk+1) ≥
Ψr(xk)

βk+1r2
(
P̄q
ρ (xk;xk)− P̄q

ρ (xk + s∗k;xk)
)
− Ψr(xk)

2

2βk+1r2

=
Ψr(xk)

2

βk+1r2
− Ψr(xk)

2

2βk+1r2
=

Ψr(xk)
2

2βk+1r2
,

where we also used (6) and the choice of s∗k. This concludes our proof. □

Proof of Lemma 4.3 It suffices to prove that given any ϵ ∈ (0, 1], the total number of
iterations of Algorithm 3.1 with Ψϵ(xk) > ϵ2 is at most

K ≤
⌈
2β̄
(
P̄ −

¯
P
)
ϵ−2
⌉
≤ O

(
ρ

1
q

ϵ2

)
.

Using Lemma 4.2 with the fact that βk ≤ β̄ for any k ≥ 1, it follows that:

Ψ̄(xk, βk+1) ≥
1

2
min

(
1,

Ψϵ(xk)

β̄ϵ2

)
Ψϵ(xk), for k ≥ 0.

Thus, while Algorithm 3.1 does not terminate, Ψϵ(xk) > ϵ2 and ϵ ≤ 1 provide

Ψ̄(xk, βk+1) ≥
1

2
min

(
1,

ϵ2

β̄ϵ2

)
ϵ2 =

ϵ2

2β̄
,

where the equality follows from the fact that β̄ ≥ 1. Combining the above inequality with
(12), we get

Pq
ρ(xk)− Pq

ρ(xk+1) ≥ Ψ̄(xk, βk+1) ≥
ϵ2

2β̄
.

Let K > 0. Summing up the above inequality over k, we get

P̄ −
¯
P ≥

K∑
k=0

[Pq
ρ(xk)− Pq

ρ(xk+1)] ≥ K
ϵ2

2β̄
,

and so K ≤ 2
β̄(P̄−

¯
P )

ϵ2 ≤ O

(
ρ

1
q

ϵ2

)
, which proves our claim. □
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