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CONSTRAINT FORCES COMPUTATION FOR DIAGONAL
MASS MATRIX SYSTEMS USING GENERALIZED
INVERSES

Rizvan Andrei OPREA'

Some of the fundamental issues of the constrained dynamics are briefly
reviewed in the present work. Based on Gauss’ least constraint principle a
simplified and concise formulation of the constraint forces is developed. The
solution is consistent for a wide class of problems. A comprehensive and
straightforward algorithm for the computation of the constraint forces is described.
The contact problem is solved by means of the generalized matrix inverse (GI). An
application example relieves the efficiency of the method.

Keywords: constrained dynamics; non-smooth systems, generalized matrix
inverse, dry friction.

1. Introduction

The evolution of the natural or technical systems is, in most cases,
subjected to restrictions. The most common constraints are perceived as geometric
limitations as, for instance, imposing the movement along a specific curve for a
rigid body or require two bodies to remain a specified distance apart. The study of
the constrained dynamics aims to connect Newton’s laws and the geometric
restrictions.

The first approach of the problem provided an approximate solution based
on energy functions. Restrictions were imposed through rigid springs which
accomplish a rough model of the constraint. In order to maintain a constraint, the
spring constant should be large enough to produce large forces for small
displacements. Such unbalance in the system parameters gives rise to stiff
differential equations which are difficult or even impossible to integrate, see for
instance [1].

Even more, the employment of additional energy in the system, known as
penalty method, relates constraint forces with displacements. The displacements
produced by applied forces act as signals that tell the constraint what restoring
force is required. Therefore, apart from the stiffness introduced by the penalty
constraints the system states will become subject to an erroneous drift, e.g., [1-3].

The alternative solution is to compute the forces required to maintain the
constraints imposed, rather than using displacements and restoring forces. The
function of these forces is to cancel the components of the applied forces which
act against the constraints. Since forces produce acceleration, at this level
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constraint forces will assure the consistency between constraints and
accelerations.

However, in order to this approach a series of problems has to be solved.
In the rigid body assumption, constraint forces, i.e., normal or dry friction forces,
are set-valued and do not fit in potential theory. Therefore, they have to be
determined considering their relation with the motion of the dynamical system [4].

A major problem of the calculation methods applied to solve non-smooth
systems is the uniqueness and existence of the solution. Indeterminacy and
inconsistency have been observed in many planar rigid body problems, in the
presence of dry friction. Some of them are known as “Painleve paradoxes”. The
problem comes to a climax when the static friction forces (or other constraint
types) are redundant. In this case, indeterminacy is attended by a rank-deficient
constraint matrix.

Several computational methods have been developed, beginning with the
regularization method which is completely determinate due to the “hard springs”
added but brings the previously mentioned shortcomings. Fast and accurate
methods using conditional statements to describe various modes of the system, as
for instance the switch model [2], may not be used for a large number of contacts
as the logical complexity increases in exponential rate.

Impulse velocity methods have been introduced and developed by [5].
Handling more than one impulse at a given moment was settled by [6]. The
method proposed by [7] may even be used to model continuous contact. Also, in
order to avoid inconsistent configurations, [8] solved the problem for impulsive
forces and velocities (instead of forces and accelerations). Friction indeterminacy
has also been approached as a probability problem by means of a statistical
analysis of perturbed simulation results.

Convex analysis tools provide a general framework for problems
involving set-valued laws. Inclusions may be solved using variational
formulations, projections, proximations and associated optimization problems.
Solutions are usually obtained iteratively solving projective equations by Jacobi or
Gauss-Seidel algorithms, by quadratic programming or by solving
complementarity problems. Detailed references may be found in [1, 4, 9].

In contact dynamics, models able to handle unilateral constraints have
been extensively formulated as linear complementarity problem (LCP), e.g., [4,
5]. In the case of friction forces, complementarity constraints ensure that either
static or kinetic friction is applied [10]. LCP solvers take advantage of the ample
research works in mathematical programming. The point is that they allow the
forces resolution through the complementarity equations and not by analyzing
conditional statements.

It is emphasized, yet, that complementarity conditions and rigid body
assumption confer a coherent mathematical framework but they may be still
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empirically corrected to improve their physical realism [5, 11] As available
algorithms to solve complementarity problem based contact models are mainly
linear, the friction cone has to be linearized by means of some special
arrangement of constraints. A poor approximation is to the detriment of accuracy
while a better one is computationally more expensive. Still, the friction forces
negate the LCP convexity and the well-posedness of the problem may be assured,
but only for small values of the friction coefficients. In a study regarding the
validity of the complementarity conditions, [11] recalls possible physical
inaccuracies behind the complementarity assumption and recounts that many
authors [5, 8, 10] are aware of them.

It may thus be inferred that adequate methods should be tailored for each
application [12]. Mathematically equivalent problems may be formulated in order
to follow different computational procedures, e.g., the LCP formulated in the
contact space.

The present work develops a method which does not involve
complementarity conditions. The approach to the evaluation of the constraint
forces is based on the Gauss’ principle of least constraints and on the notion of
generalized inverse (GI) of matrices. Practical applications of this method appear
to be very sparse. Being very intuitive, the principle is sometimes used without
even being mentioned [13, 14]. However, a slight resurgence of the subject may
be noticed and applications may be found not only in physics and related domains
but also in economy. A general outline of such method may be found in [15, 16]
and related research is presented in [8, 6, 11, 14, 17-20]. The relations deduced
assume a diagonal mass matrix, but a large number of interesting models studied
in engineering and physics observe this condition.

2. A general solution for Constrained Dynamics

The constrained dynamics of mechanical multibody systems may be
described by a Lagrangian equation embedding additional algebraic variables A
(Lagrangian multipliers) which define the motion constraints.

Mij - h(t,q.9) — ) wili =0 "
i€lc
The multipliers A, usually forces or torques, are defined by set-valued laws
and the constraint vectors w € R" specify how they are applied; M € R™" is the
inertia matrix, q € R" the generalized coordinates vector and h € R" is the sum
of the forces described by constitutive laws, e.g., viscous damping or elasticity.
The action of the constraint forces over the systems component masses is
defined by the constraint matrix W € R™™ (WT = ], the Jacobian) which may be
obtained by assembling the constraint vectors w. Using the the column vector of
the constraint forces, A € R™ the equation may be written as:
Mg —h(t,q,q) —WA=0 ()
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In order to introduce the formulation deduced by [15] we shall denote by
a=M"h(t,q,q) 3)
the unconstrained acceleration of the system in the absence of the constraints,
which results from the unconstrained equation of motion

Mg —h(t,q,9) =0 4
Motion constraints may be expressed in a general form as
W'(t,q,@)4 = b(t.q.q) (5)

where W € R™™ is a generalized constrained matrix, the constraints expressions
b € R™, and they may be ensured if additional generalized constraint forces WA
are applied.

Taking into account the Equations of constrained motion (1) and
Equations (3-5), the constrained system may be described by the following
differential-algebraic (DAE) equations. Because the equations use more
coordinates than the underlying system, Equation (6) is known as the redundant

coordinate system. )
wr ol [1=[3] ©)

According to Gauss’ principle the system’s accelerations must fulfil
sufficient optimality conditions for the “acceleration energy” which is a convex
function and grants existence and uniqueness of the solution. The principle asserts
that the values of the accelerations of a system subjected to constraints are the
closest possible to the accelerations of the unconstrained system and,
consequently, the constraints take the minimum possible values. Therefore, the
resulting acceleration  minimizes the function G over the set which satisfies the
constraint Equation (5).

I , 1.
min G(§) =5 (- )"M({ - a) =5 1§ — ally (7
A similar minimum condition may be imposed for the constraints A. This

development is described by [15]. The expressions of § and A may be obtained
formally inverting the matrix

M w]‘l _
wr ol
M~ — MW (WTM~'W) ‘W™ M1 M‘1W(WTM‘1W)‘1] ®)
WTMw)-'wTmM-1 -w'M—w)?!
which yields the generalized constraint accelerations and forces as
Gg=a+MWW'M W) 1(b—WTa) 9)
A=WTMW)"1(b-WTa) (10)

1
Considering the substitution J§; = M™2W Equations (9) and (10) may be
written as
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1 1 1 1 !
g=a+M?2 (M_?W> (WTM_7M7W> (b—WTa)
1 (11)
=a+M2/y(u/n) " (b—W'a)

1 1 1 1 -1
WA= M2 (M_7W> (WTM_fM_fW> (b—WTa) (12)

1
= M5l (b — W a)

Even though the matrices involved in the above relations may not be
invertible, the minimum condition expressed by the Gauss principle defines a
unique solution. Yet the GI may be used for least square problems or for
minimum norm solutions of linear systems [21, 22]. Therefore, employing the GI
4 =T 0MIf) ™! the constraint acceleration and force which satisfy Gauss’
principle are explicitly given in Equations (13) and (14). Formulation simplicity
and concision is the main argument for this approach.

q= a+M_%];5,(b—WTa) (13)
WA = M2 (b — W'a) (14)

2.1 A simplified formulation

While the above relations provide a general solution, further
simplifications may be operated for particular sets of constrained systems. Hence
if the inertia matrix M is diagonal, constraint A, considering Equation (10), may be
written as:

A=WTW)"}(Mb - WT"Ma) (15)

In the case of constraints which impose null relative accelerations,
Equation (11 may be stated as:

E=Wl'g=Wla+ WM "W)A=b=0 (16)

Bearing in mind the development accomplished in the previous
paragraphs, the constraint forces T should fulfil the minimum condition imposed
to Equation (10) for the derived Equation (15) which gives

A=—-W'W)"'WTh=-W*h (17)

This result may be regarded as an expression of the fact that sticking
contacts of point masses eliminate relative motion between the elements in
question and, therefore, the contact space Equation (16), subjected to the
constraint A becomes a static equilibrium.

Beside the concision of this formulation, Equation (17) improves the
numerical integration efficiency. The computation of the unconstrained
acceleration is not necessary. An important step may be removed from the method
which shortens computation time and diminishes round-off errors.
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It should be noted that there is a wide class of constrained systems which
fulfil the conditions required by the Equation (17) and, in consequence, they may
be approached as described above. Beyond its limpid formulation and solution
consistency liability, the numerical algorithm based on the above reasoning
requires minimal additional programming and, practically, no acquaintance with
optimization theory.

3. A particularization: dry friction forces

The research of the phenomenon emphasized that the models of the dry
friction, T, should be different for static friction and for kinetic friction [23, 24].
In the case of the kinetic friction, the slip force opposes the relative movement
between the contact points (which may differ from the relative movement between
the bodies). The stick force opposes to the resultant of all the other exerted forces
(including inertia force, if applicable) and takes any value from zero up to the
maximum stick force, Tgyax. [t follows that the set-valued expression of the force
law may be written as

T = { Te(t €0 ék), Sk #0,  slip (18)
T;(ZF) € [~Tsmax  Tsmax], $s =0, stick

The indexes k and s are used for kinetic and static values, respectively,

while & £ and £ denote the relative displacement, velocity and acceleration. The

static friction force is a function of the applied forces and it exactly cancels them

if Ty is smaller than the limit value Tgy,4; otherwise, its limit value opposes to the

external forces, XF, but a slip phase will begin. The following index sets may be
used to define the system mode [9]:

I.={12,..,m}

I = {k € I|¢, # 0} (19)

I; ={s el |é =0}

The set I. contains the indexes of all the m contact points, while the
complementary subsets I and I contain the indexes of the sliding contacts and,
respectively, those of the potentially sticking contacts.

The metamorphism of the dry friction force may be summarized as it
follows: When the other applied forces overcome the threshold value, the motion
would commence. At this very moment, the value of the friction force is Tgpax,
and its orientation opposes XLF. Further, the kinetic friction force opposes relative
velocity. There have been proposed many laws for its value - see for instance [23,
24]. Practical applications use Coulomb models with Ty depending on the relative
velocity, such as the Stribeck curves Fig. 1. Hence, a general description of
friction may be of the form:
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T(I) = —XFsign(ZF), .= 0,|5F| < Topgay © &, = 0
T = T(Ik) _ {_TsMaxSign(ZF):. ék : 0, |ZF| > TsMax (= ék *+0 (20)
_T(Ek)‘gign(gk): S;k #0

Such a friction law does not explicitly specify the friction force at zero
velocity; the static force counteracts the external resultant below its maximum
value and thus keeps objects in contact not to move relative to each other.

Friction
Force
............................ >
Sliding
velocity
—_—

Fig. 1 Friction model

While transitions from stick to slip may not occur until Tgy,, i reached,
during slip to stick transitions, when £ vanishes, the force value may jump from
Tomax anywhere in the set [—Tsmax  Tsmax]. This feature reveals discontinuity
and hysteretic behaviour shrunk to one point, € = 0, [4]. The vertical line drawn
for £ =0 expresses the fact that the static friction force may take any value
within that set while the relative velocity remains unchanged. However, a unique
solution may be found in most cases, as these multi-valued laws are used in
conjunction with the equations of motion of the dynamical systems.

3.1 Static friction forces computation with the matrix Gl

It is obvious that Equation (17) holds only for static friction forces.
However, the system resolution may be done, considering kinetic frictions as
applied forces, given by Equation (18). Such a method implies to change
constraint matrix W according to the system mode. In the following, an algorithm
to compute the static friction forces is developed.

The underlying idea is that the GI may be used for least square problems or for
minimum norm solutions of linear systems. The aim of the model is to determine
the static friction forces as the others, including kinetic friction forces, are
functions of the system states or time and they are known. Therefore, the
optimization problem may be formulated only for the static friction which occurs
only in sticking contacts, i.e., when the relative velocity and acceleration vanishes.
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Compute the state derivatives

Fig. 2. Flowchart of the static friction forces computation scheme

If any of the computed forces are larger than the limit value, a switch from
stick to slip occurs at the given contact. The force value is limited to the
maximum stick force (but the force direction doesn’t change). The mode
configuration, and correspondingly, W and h matrices are modified. Constraints
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are computed iteratively until all of them lie inside the friction cone. The
flowchart of the numerical scheme is pictured in Fig. 2.

The above procedure should be performed at each time step before the
state vector is updated. Some particular tasks must be accomplished. The
computing of the static forces may necessitate iteration. The decision to reiterate
the computation may be taken by analyzing the I, index set. Another specific task
is to adjust the constraint matrix W and the known forces vector h in accordance
to the provisional sticking contacts.

As implied by Equation (17), static friction forces computation may be
alternatively formulated either as T, = —(WTW)*WTh or T, = —W™"h. In the
first case, both lines and columns corresponding to sliding contacts I are to be
removed, and also the elements I from the vector WTh. Even if mathematically
equivalent, formulations and numerical techniques employed prove to be different
from the computational perspective [16, 17, 25].

4. Application example: two blocks on a belt

The example below brings forward the benefits of using the GI algorithm
for the computation of the constraint forces. It is based on the block on a belt
system, a classical model in non-smooth dynamics, e.g., [2]. As pictured in Fig.2
the system comprises two masses laying on a belt which moves with a constant
velocity v. The model parameters are given in Table 1. Both springs have the
same stiffness.

Table 1
Parameter values for the two blocks on a belt model
Parameter Value Description Units
m, 4 Mass of block 1 kg
m, 7 Mass of block 2 kg
TiMax 4 Static friction limit N
ToMax 7 Static friction limit N
Tamax 5 Static friction limit N
k 14 Springs stifness N/m
v 0.3 Velocity of the belt m/s

Three contact points where constraint forces may be acting. Between
masses and belt, dry friction occurs, with friction forces T; and T, , respectively.
Dry friction, Ts, is also present between the masses. These three forces become
redundant when they all occur in stick phases.

The constraint forces which occur in the system studied are the friction
forces, i.e., A = [Ty T, T3] and the constraint matrix is given in Equation (21a).
The kinetic friction dependence on the relative velocity is given in Equation
(21b), in order to allow alternative stick and slip phases for this particular system.
The vector of the constitutive elastic forces is h = [k-:(2q; —q,), —k-
(q; — q2)]7, where q; and q, are the displacements of the blocks.
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W—l 0 1
“lo 1 -1 (21a)

Tomax - SN (fj
— (21b)
(1+3- 5‘)

The blocks velocity versus time is plotted in Fig. 3. Alternative stick and
slip phases are recorded in the contacts where friction occurs. The sticking phases
of the blocks on the belt are set apart by constant velocities (v = 0.3m/s). When
the two blocks stick together, their velocities are equal. During simulation,
relative rest occurs either simultaneously in all the three contact points or
individually.

T, =-

T3
-
ph v
| m- |/\ /\/\ ms
T, Ts
v
—

Fig. 3. Two blocks on a belt

0.4

Blocks velocies [ms]

0.6

Fig. 4. Block velocities versus time
The plot of the friction forces, Fig. 4, depicts the algorithm ability to compute
redundant static friction forces and presents specific features. The most striking
aspects of their evolution are the step discontinuities which point out the slip to
stick transitions, Fig. 5, or the inversion of the relative motion in the contact point.
In the latter case the gap of the friction force is two times maximum stick force,
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Friction forces [N]

Fig.5 Friction forces versus time
Before the relative movement switches from slip, the friction attains its
limit value Tgpax and, when the stick begins it sharply changes to equilibrate the
other forces resultant XF which should be smaller than the maximum stick force to
allow sticking; therefore, the friction gap will be smaller than 2Tgy,«-

5. Conclusions

A simplified equation of the constraint forces is developed in the present
work. The solution may be applied for diagonal mass systems where constraints
impose null relative accelerations in the contact points. A large number of
important technical and physical models observe these conditions. The
formulation deduced allows a convenient computer implementation, taking into
account that mathematical packages contain GI computation subroutines. But its
most remarkable features are that redundant sets of equations may be solved as
systems of ordinary differential equations, degree of freedom changes do not
involve any additional programming in the solution formulation, rheonomic and
scleronomic constraints or forward and inverse dynamics are handled in a unified
manner.

Based on Gauss’ least constraint principle the matrix GI is employed to
compute constraint forces. The formulation is far more concise than the general
solution. Algorithms which determine matrices GIs use robust iterative schemes
and do not have specific limitations for the input size. Hence the method may be
used for models with a large number of degrees of freedom and contact points.
Mathematical packages include routines for the pseudoinverses calculus, so they
may be easily implemented in ordinary differential equations solvers. Some
improvements regarding computational efficiency are also mentioned related to
the GI employment, i.e., [11, 16, 21, 25, 26]. At last, the GI algorithm is simple,
gives an intuitive description of the constrained system and may be applied
without detailing the optimization methods.
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