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CONSTRAINT FORCES COMPUTATION FOR DIAGONAL 
MASS MATRIX SYSTEMS USING GENERALIZED 

INVERSES 

Răzvan Andrei OPREA1 
Some of the fundamental issues of the constrained dynamics are briefly 

reviewed in the present work. Based on Gauss’ least constraint principle a 
simplified and concise formulation of the constraint forces is developed. The 
solution is consistent for a wide class of problems. A comprehensive and 
straightforward algorithm for the computation of the constraint forces is described. 
The contact problem is solved by means of the generalized matrix inverse (GI). An 
application example relieves the efficiency of the method. 

Keywords: constrained dynamics; non-smooth systems, generalized matrix 
inverse, dry friction. 

1. Introduction 

The evolution of the natural or technical systems is, in most cases, 
subjected to restrictions. The most common constraints are perceived as geometric 
limitations as, for instance, imposing the movement along a specific curve for a 
rigid body or require two bodies to remain a specified distance apart. The study of 
the constrained dynamics aims to connect Newton’s laws and the geometric 
restrictions.  

The first approach of the problem provided an approximate solution based 
on energy functions. Restrictions were imposed through rigid springs which 
accomplish a rough model of the constraint. In order to maintain a constraint, the 
spring constant should be large enough to produce large forces for small 
displacements. Such unbalance in the system parameters gives rise to stiff 
differential equations which are difficult or even impossible to integrate, see for 
instance [1].  

Even more, the employment of additional energy in the system, known as 
penalty method, relates constraint forces with displacements. The displacements 
produced by applied forces act as signals that tell the constraint what restoring 
force is required. Therefore, apart from the stiffness introduced by the penalty 
constraints the system states will become subject to an erroneous drift, e.g., [1-3].  

The alternative solution is to compute the forces required to maintain the 
constraints imposed, rather than using displacements and restoring forces. The 
function of these forces is to cancel the components of the applied forces which 
act against the constraints. Since forces produce acceleration, at this level 
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constraint forces will assure the consistency between constraints and 
accelerations.  

However, in order to this approach a series of problems has to be solved. 
In the rigid body assumption, constraint forces, i.e., normal or dry friction forces, 
are set-valued and do not fit in potential theory. Therefore, they have to be 
determined considering their relation with the motion of the dynamical system [4].  

A major problem of the calculation methods applied to solve non-smooth 
systems is the uniqueness and existence of the solution. Indeterminacy and 
inconsistency have been observed in many planar rigid body problems, in the 
presence of dry friction. Some of them are known as “Painleve paradoxes”. The 
problem comes to a climax when the static friction forces (or other constraint 
types) are redundant. In this case, indeterminacy is attended by a rank-deficient 
constraint matrix.  

Several computational methods have been developed, beginning with the 
regularization method which is completely determinate due to the “hard springs” 
added but brings the previously mentioned shortcomings. Fast and accurate 
methods using conditional statements to describe various modes of the system, as 
for instance the switch model [2], may not be used for a large number of contacts 
as the logical complexity increases in exponential rate.  

Impulse velocity methods have been introduced and developed by [5]. 
Handling more than one impulse at a given moment was settled by [6]. The 
method proposed by [7] may even be used to model continuous contact. Also, in 
order to avoid inconsistent configurations, [8] solved the problem for impulsive 
forces and velocities (instead of forces and accelerations). Friction indeterminacy 
has also been approached as a probability problem by means of a statistical 
analysis of perturbed simulation results.  

Convex analysis tools provide a general framework for problems 
involving set-valued laws. Inclusions may be solved using variational 
formulations, projections, proximations and associated optimization problems. 
Solutions are usually obtained iteratively solving projective equations by Jacobi or 
Gauss-Seidel algorithms, by quadratic programming or by solving 
complementarity problems. Detailed references may be found in [1, 4, 9].  

In contact dynamics, models able to handle unilateral constraints have 
been extensively formulated as linear complementarity problem (LCP), e.g., [4, 
5]. In the case of friction forces, complementarity constraints ensure that either 
static or kinetic friction is applied [10]. LCP solvers take advantage of the ample 
research works in mathematical programming. The point is that they allow the 
forces resolution through the complementarity equations and not by analyzing 
conditional statements.  

It is emphasized, yet, that complementarity conditions and rigid body 
assumption confer a coherent mathematical framework but they may be still 
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empirically corrected to improve their physical realism [5, 11] As available 
algorithms to solve complementarity problem based contact models are mainly 
linear, the friction cone has to be linearized by means of some special 
arrangement of constraints. A poor approximation is to the detriment of accuracy 
while a better one is computationally more expensive. Still, the friction forces 
negate the LCP convexity and the well-posedness of the problem may be assured, 
but only for small values of the friction coefficients. In a study regarding the 
validity of the complementarity conditions, [11] recalls possible physical 
inaccuracies behind the complementarity assumption and recounts that many 
authors [5, 8, 10] are aware of them.  

It may thus be inferred that adequate methods should be tailored for each 
application [12]. Mathematically equivalent problems may be formulated in order 
to follow different computational procedures, e.g., the LCP formulated in the 
contact space.  

The present work develops a method which does not involve 
complementarity conditions. The approach to the evaluation of the constraint 
forces is based on the Gauss’ principle of least constraints and on the notion of 
generalized inverse (GI) of matrices. Practical applications of this method appear 
to be very sparse. Being very intuitive, the principle is sometimes used without 
even being mentioned [13, 14]. However, a slight resurgence of the subject may 
be noticed and applications may be found not only in physics and related domains 
but also in economy. A general outline of such method may be found in [15, 16] 
and related research is presented in [8, 6, 11, 14, 17-20]. The relations deduced 
assume a diagonal mass matrix, but a large number of interesting models studied 
in engineering and physics observe this condition.  

2. A general solution for Constrained Dynamics 

The constrained dynamics of mechanical multibody systems may be 
described by a Lagrangian equation embedding additional algebraic variables λ 
(Lagrangian multipliers) which define the motion constraints.  

ሷࢗࡹ െ ,ݐሺࢎ ,ࢗ ሶࢗ ሻ െ ෍ ௜ߣ௜ݓ
௜࡯ࡵא

ൌ 0 (1) 

The multipliers λ, usually forces or torques, are defined by set-valued laws 
and the constraint vectors w א Թ୬ specify how they are applied; M א Թ୬ൈ୬ is the 
inertia matrix, q א Թ୬ the generalized coordinates vector and h א Թ୬ is the sum 
of the forces described by constitutive laws, e.g., viscous damping or elasticity.  

The action of the constraint forces over the systems component masses is 
defined by the constraint matrix W א Թ୬ൈ୫ (WT ൌ J, the Jacobian) which may be 
obtained by assembling the constraint vectors w. Using the the column vector of 
the constraint forces, λ א Թ୫ the equation may be written as:  

ሷࢗࡹ െ ,ݐሺࢎ ,ࢗ ሶࢗ ሻ െ ࣅࢃ ൌ 0 (2) 
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In order to introduce the formulation deduced by [15] we shall denote by  
ࢇ ൌ ,ݐሺࢎଵିࡹ ,ࢗ ሶࢗ ሻ (3) 

the unconstrained acceleration of the system in the absence of the constraints, 
which results from the unconstrained equation of motion 

ሷࢗࡹ െ ,ݐሺࢎ ,ࢗ ሶࢗ ሻ ൌ 0 (4) 
Motion constraints may be expressed in a general form as 

,ݐሺ்ࢃ ,ࢗ ሶࢗ ሻࢗሷ ൌ ,ݐሺ࢈ ,ࢗ ሶࢗ ሻ (5) 
where ࢃ א Թ୬ൈ୫ is a generalized constrained matrix, the constraints expressions 
࢈ א Թ୫, and they may be ensured if additional generalized constraint forces ࣅࢃ 
are applied.  

Taking into account the Equations of constrained motion (1) and 
Equations (3-5), the constrained system may be described by the following 
differential-algebraic (DAE) equations. Because the equations use more 
coordinates than the underlying system, Equation (6) is known as the redundant 
coordinate system.  

ቂ ࡹ ࢃ
்ࢃ 0 ቃ ቂࢗሷ

ቃࣅ ൌ ቂࢎ
 ቃ (6)࢈

According to Gauss’ principle the system’s accelerations must fulfil 
sufficient optimality conditions for the “acceleration energy” which is a convex 
function and grants existence and uniqueness of the solution. The principle asserts 
that the values of the accelerations of a system subjected to constraints are the 
closest possible to the accelerations of the unconstrained system and, 
consequently, the constraints take the minimum possible values. Therefore, the 
resulting acceleration qሷ  minimizes the function G over the set which satisfies the 
constraint Equation (5).  

min ܩሺࢗሷ ሻ ൌ
1
2

ሺࢗሷ െ ሷࢗሺࡹሻ்ࢇ െ ሻࢇ ൌ
1
2

ԡࢗሷ െ ࡹԡࢇ
ଶ  (7) 

A similar minimum condition may be imposed for the constraints λ. This 
development is described by [15]. The expressions of qሷ  and λ may be obtained 
formally inverting the matrix 

ቂ ࡹ ࢃ
்ࢃ 0 ቃ

ିଵ
ൌ 

൤ିࡹଵ െ ଵିࡹ்ࢃሻିଵࢃଵିࡹ்ࢃሺࢃଵିࡹ ሻିଵࢃଵିࡹ்ࢃሺࢃଵିࡹ

ሺିࡹ்ࢃଵࢃሻିଵିࡹ்ࢃଵ െሺିࡹ்ࢃଵࢃሻିଵ ൨ 
(8) 

which yields the generalized constraint accelerations and forces as 
ሷࢗ ൌ ࢇ ൅ ࢈ሻିଵሺࢃଵିࡹ்ࢃሺࢃଵିࡹ െ  ሻࢇ்ࢃ

ࣅ ൌ ሺିࡹ்ࢃଵࢃሻିଵሺ࢈ െ  ሻࢇ்ࢃ
(9) 
(10) 

Considering the substitution JM
T ൌ Mିభ

మW Equations (9) and (10) may be 
written as  
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ሷࢗ ൌ ࢇ ൅ ଵିࡹ
ଶ ൬ିࡹଵ

ଶࢃ൰ ൬ିࡹ்ࢃଵ
ଶିࡹଵ

ଶࢃ൰
ିଵ

ሺ࢈ െ ሻࢇ்ࢃ

ൌ ࢇ ൅ ଵିࡹ
ଶࡹܬ

் ሺࡹܬࡹܬ
் ሻିଵሺ࢈ െ  ሻࢇ்ࢃ

ࣅࢃ ൌ ࡹ
ଵ
ଶ ൬ିࡹଵ

ଶࢃ൰ ൬ିࡹ்ࢃଵ
ଶିࡹଵ

ଶࢃ൰
ିଵ

ሺ࢈ െ ሻࢇ்ࢃ

ൌ ࡹ
ଵ
ଶࡹܬ

் ሺࡹܬࡹܬ
் ሻିଵሺ࢈ െ  ሻࢇ்ࢃ

 
(11) 

 
 

(12) 
 

Even though the matrices involved in the above relations may not be 
invertible, the minimum condition expressed by the Gauss principle defines a 
unique solution. Yet the GI may be used for least square problems or for 
minimum norm solutions of linear systems [21, 22]. Therefore, employing the GI 
JM

ା ൌ JM
T ሺJMJM

T ሻିଵ the constraint acceleration and force which satisfy Gauss’ 
principle are explicitly given in Equations (13) and (14). Formulation simplicity 
and concision is the main argument for this approach.  

ሷࢗ ൌ ࢇ ൅ ଵିࡹ
ଶࡹܬ

ା ሺ࢈ െ  ሻࢇ்ࢃ

ࣅࢃ ൌ ࡹ
ଵ
ଶࡹܬ

ାሺ࢈ െ  ሻࢇ்ࢃ

(13) 
 

(14) 

2.1 A simplified formulation 

While the above relations provide a general solution, further 
simplifications may be operated for particular sets of constrained systems. Hence 
if the inertia matrix M is diagonal, constraint λ, considering Equation (10), may be 
written as:  

ࣅ ൌ ሺࢃ்ࢃሻିଵሺ࢈ࡹ െ  ሻ (15)ࢇࡹ்ࢃ
In the case of constraints which impose null relative accelerations, 

Equation (11 may be stated as:  
ሷࣈ ൌ ሷ்ࢗࢃ ൌ ࢇ்ࢃ ൅ ሺିࡹ்ࢃଵࢃሻࣅ ൌ ࢈ ൌ 0 (16) 

Bearing in mind the development accomplished in the previous 
paragraphs, the constraint forces T should fulfil the minimum condition imposed 
to Equation (10) for the derived Equation (15) which gives 

ࣅ ൌ െሺࢃ்ࢃሻିଵࢎ்ࢃ ൌ െࢃାࢎ (17) 
This result may be regarded as an expression of the fact that sticking 

contacts of point masses eliminate relative motion between the elements in 
question and, therefore, the contact space Equation (16), subjected to the 
constraint λ becomes a static equilibrium.  

Beside the concision of this formulation, Equation (17) improves the 
numerical integration efficiency. The computation of the unconstrained 
acceleration is not necessary. An important step may be removed from the method 
which shortens computation time and diminishes round-off errors.  
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It should be noted that there is a wide class of constrained systems which 
fulfil the conditions required by the Equation (17) and, in consequence, they may 
be approached as described above. Beyond its limpid formulation and solution 
consistency liability, the numerical algorithm based on the above reasoning 
requires minimal additional programming and, practically, no acquaintance with 
optimization theory.  

3. A particularization: dry friction forces 

The research of the phenomenon emphasized that the models of the dry 
friction, T, should be different for static friction and for kinetic friction [23, 24]. 
In the case of the kinetic friction, the slip force opposes the relative movement 
between the contact points (which may differ from the relative movement between 
the bodies). The stick force opposes to the resultant of all the other exerted forces 
(including inertia force, if applicable) and takes any value from zero up to the 
maximum stick force, TୱMୟ୶. It follows that the set-valued expression of the force 
law may be written as 

ܶ ൌ ቊ ௞ܶ൫ݐ, ,௞ߦ ,ሶ௞൯ߦ ሶ௞ߦ ് 0, ݌݈݅ݏ

௦ܶሺΣܨሻ א ሾെ ௦ܶ࢞ࢇࡹ ௦ܶ࢞ࢇࡹሿ, ሶ௦ߦ ൌ 0, ݇ܿ݅ݐݏ
 (18) 

The indexes k and s are used for kinetic and static values, respectively, 
while ξ, ξሶ and ξሷ denote the relative displacement, velocity and acceleration. The 
static friction force is a function of the applied forces and it exactly cancels them 
if Tୱ is smaller than the limit value TୱMୟ୶; otherwise, its limit value opposes to the 
external forces, ΣF, but a slip phase will begin. The following index sets may be 
used to define the system mode [9]: 

௖ࡵ ൌ ሼ1,2, … , ݉ሽ
௞ࡵ ൌ ൛݇ א ሶ௞ߦ|௖ࡵ ് 0ൟ
௦ࡵ ൌ ൛ݏ א ሶ௦ߦ|௖ࡵ ൌ 0ൟ

 (19) 

The set Iୡ contains the indexes of all the m contact points, while the 
complementary subsets I୩ and Iୱ contain the indexes of the sliding contacts and, 
respectively, those of the potentially sticking contacts.  

The metamorphism of the dry friction force may be summarized as it 
follows: When the other applied forces overcome the threshold value, the motion 
would commence. At this very moment, the value of the friction force is TSMୟ୶, 
and its orientation opposes ΣF. Further, the kinetic friction force opposes relative 
velocity. There have been proposed many laws for its value - see for instance [23, 
24]. Practical applications use Coulomb models with T୩ depending on the relative 
velocity, such as the Stribeck curves Fig. 1. Hence, a general description of 
friction may be of the form:  
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ࢀ ൌ ൞
௦ሻࡵሺࢀ ൌ െΣ݊݃݅ݏܨሺΣܨሻ, ሶ௦ߦ ൌ 0, |Σܨ| ൑ ௦ܶ࢞ࢇࡹ ֞ ሷ௦ߦ ൌ 0

௞ሻࡵሺࢀ ൌ ቊെ ௦ܶ݊݃݅ݏ࢞ࢇࡹሺΣܨሻ, ሶ௞ሶߦ ൌ 0, |Σܨ| ൐ ௦ܶ࢞ࢇࡹ ֞ ሷ௞ߦ ് 0
െܶ൫ߦሶ௞൯݊݃݅ݏ൫ߦሶ௞൯, ሶ௞ߦ ് 0

 (20) 

Such a friction law does not explicitly specify the friction force at zero 
velocity; the static force counteracts the external resultant below its maximum 
value and thus keeps objects in contact not to move relative to each other. 

 
Fig. 1 Friction model 

 
While transitions from stick to slip may not occur until TୱMୟ୶ is reached, 

during slip to stick transitions, when ξሶ vanishes, the force value may jump from 
TୱMୟ୶ anywhere in the set ሾെTୱMୟ୶ TୱMୟ୶ሿ. This feature reveals discontinuity 
and hysteretic behaviour shrunk to one point, ξሶ ൌ 0, [4]. The vertical line drawn 
for  ξሶ ൌ 0 expresses the fact that the static friction force may take any value 
within that set while the relative velocity remains unchanged. However, a unique 
solution may be found in most cases, as these multi-valued laws are used in 
conjunction with the equations of motion of the dynamical systems. 

3.1 Static friction forces computation with the matrix GI 

It is obvious that Equation (17) holds only for static friction forces. 
However, the system resolution may be done, considering kinetic frictions as 
applied forces, given by Equation (18). Such a method implies to change 
constraint matrix W according to the system mode. In the following, an algorithm 
to compute the static friction forces is developed.  
The underlying idea is that the GI may be used for least square problems or for 
minimum norm solutions of linear systems. The aim of the model is to determine 
the static friction forces as the others, including kinetic friction forces, are 
functions of the system states or time and they are known. Therefore, the 
optimization problem may be formulated only for the static friction which occurs 
only in sticking contacts, i.e., when the relative velocity and acceleration vanishes. 

Sliding 
velocity 

Friction 
Force  
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Fig. 2. Flowchart of the static friction forces computation scheme 

 
If any of the computed forces are larger than the limit value, a switch from 

stick to slip occurs at the given contact. The force value is limited to the 
maximum stick force (but the force direction doesn’t change). The mode 
configuration, and correspondingly, W and h matrices are modified. Constraints 

Compute explicit forces ( )xxh ,,t   

Find the set IK of the couplers in slip 
phase 

Compute kinetic friction forces 

Add kinetic friction forces to the explicit 
forces vector ( )xxh t and obtain

Remove ࡵ௞ columns from W 

࢙ࢀ ൌ െࢃ෪ା۶෩  
Compute static friction forces  

Compute the state derivatives

Any static friction 
force larger than 

௦ܶ࢞ࢇࡹ? 

No

Yes

Computed static 
friction forces lying 
outside the friction 
cone, are limited to 

| ௦ܶ| ൑ ௦ܶ࢞ࢇࡹ, they are 
added to the explicit 
forces vector and the 

sliding contacts set Ic is 
updated accordingly 
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are computed iteratively until all of them lie inside the friction cone. The 
flowchart of the numerical scheme is pictured in Fig. 2.  

The above procedure should be performed at each time step before the 
state vector is updated. Some particular tasks must be accomplished. The 
computing of the static forces may necessitate iteration. The decision to reiterate 
the computation may be taken by analyzing the I୩ index set. Another specific task 
is to adjust the constraint matrix W෩  and the known forces vector h෨  in accordance 
to the provisional sticking contacts.  

As implied by Equation (17), static friction forces computation may be 
alternatively formulated either as Tୱ ൌ െሺWTWሻାWTh or Tୱ ൌ െWାh. In the 
first case, both lines and columns corresponding to sliding contacts I୩ are to be 
removed, and also the elements I୩ from the vector WTh. Even if mathematically 
equivalent, formulations and numerical techniques employed prove to be different 
from the computational perspective [16, 17, 25].  

4. Application example: two blocks on a belt 

The example below brings forward the benefits of using the GI algorithm 
for the computation of the constraint forces. It is based on the block on a belt 
system, a classical model in non-smooth dynamics, e.g., [2]. As pictured in Fig.2 
the system comprises two masses laying on a belt which moves with a constant 
velocity v. The model parameters are given in Table 1. Both springs have the 
same stiffness.  

Table 1 
Parameter values for the two blocks on a belt model 

Parameter Value Description Units 
mଵ 4 Mass of block 1 kg 
mଶ 7 Mass of block 2 kg 

TଵMୟ୶ 4 Static friction limit N 
TଶMୟ୶ 7 Static friction limit N 
TଷMୟ୶ 5 Static friction limit N 

k 14 Springs stifness N/m 
v 0.3 Velocity of the belt m/s 

Three contact points where constraint forces may be acting. Between 
masses and belt, dry friction occurs, with friction forces Tଵ and Tଶ , respectively. 
Dry friction, Tଷ, is also present between the masses. These three forces become 
redundant when they all occur in stick phases.  

The constraint forces which occur in the system studied are the friction 
forces, i.e., λ ൌ ሾTଵ Tଶ TଷሿT and the constraint matrix is given in Equation (21a). 
The kinetic friction dependence on the relative velocity is given in Equation 
(21b), in order to allow alternative stick and slip phases for this particular system. 
The vector of the constitutive elastic forces is h ൌ ሾk · ሺ2qଵ െ qଶሻ, െk ·
ሺqଵ െ qଶሻሿT, where qଵ and qଶ are the displacements of the blocks.  
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1 0 1
0 1 1

W
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (21a)

1 3

ξ

ξ

⎛ ⎞
⎜ ⎟
⎝ ⎠= −

⎛ ⎞+ ⋅⎜ ⎟
⎝ ⎠

⋅SMax

k

T sgn
T  (21b)

The blocks velocity versus time is plotted in Fig. 3. Alternative stick and 
slip phases are recorded in the contacts where friction occurs. The sticking phases 
of the blocks on the belt are set apart by constant velocities (v = 0.3m/s). When 
the two blocks stick together, their velocities are equal. During simulation, 
relative rest occurs either simultaneously in all the three contact points or 
individually.  

 
Fig. 3. Two blocks on a belt 

 
Fig. 4. Block velocities versus time 

The plot of the friction forces, Fig. 4, depicts the algorithm ability to compute 
redundant static friction forces and presents specific features. The most striking 
aspects of their evolution are the step discontinuities which point out the slip to 
stick transitions, Fig. 5, or the inversion of the relative motion in the contact point. 
In the latter case the gap of the friction force is two times maximum stick force, 

. 

m2 m1

T3

T1T2

v
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Fig.5 Friction forces versus time 

Before the relative movement switches from slip, the friction attains its 
limit value TୱMୟ୶ and, when the stick begins it sharply changes to equilibrate the 
other forces resultant ΣF which should be smaller than the maximum stick force to 
allow sticking; therefore, the friction gap will be smaller than 2TୱMୟ୶.  

5. Conclusions 

A simplified equation of the constraint forces is developed in the present 
work. The solution may be applied for diagonal mass systems where constraints 
impose null relative accelerations in the contact points. A large number of 
important technical and physical models observe these conditions. The 
formulation deduced allows a convenient computer implementation, taking into 
account that mathematical packages contain GI computation subroutines. But its 
most remarkable features are that redundant sets of equations may be solved as 
systems of ordinary differential equations, degree of freedom changes do not 
involve any additional programming in the solution formulation, rheonomic and 
scleronomic constraints or forward and inverse dynamics are handled in a unified 
manner.  

Based on Gauss’ least constraint principle the matrix GI is employed to 
compute constraint forces. The formulation is far more concise than the general 
solution. Algorithms which determine matrices GIs use robust iterative schemes 
and do not have specific limitations for the input size. Hence the method may be 
used for models with a large number of degrees of freedom and contact points. 
Mathematical packages include routines for the pseudoinverses calculus, so they 
may be easily implemented in ordinary differential equations solvers. Some 
improvements regarding computational efficiency are also mentioned related to 
the GI employment, i.e., [11, 16, 21, 25, 26]. At last, the GI algorithm is simple, 
gives an intuitive description of the constrained system and may be applied 
without detailing the optimization methods.  
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