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AVAILABILITY ASSESSMENT WITH MONTE-CARLO 
SIMULATION OF MAINTENANCE PROCESS MODEL 

László POKORÁDI 1 

Nowadays, the maintenance is one of the most important territories of 
practical engineering. From the mathematical point of view, the operation of 
technical systems and equipment is a discrete state space stochastic process without 
after-effects, so it can be approximated with a Markov-chain. After setting up the 
transition probability matrix, matrix-algebraic tools can be used for investigating 
these processes with systems approach analysis. This paper is aimed to discuss the 
possibilities of the use of Markov matrix-based Monte-Carlo Simulation of 
maintenance processes. The proposed simulation method can be used for the 
assessment of requested number for spare part, availability, maintenance cost of a 
technical system operation depending on required estimating uncertainty. 
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1. Introduction 

A maintenance system can be characterized by the availability of 
equipment. Availability may be generically be defined as the percentage of time 
that a repairable system is in an operating condition. 

By Ushakov [1]: “Availability is the capability of a system to be ready to 
perform its functions when required. Failure is the total or partial loss of the 
capability of a system. Repair is restoration of an object. In many analyses, the 
»repair« means restoration to an operable condition.” 

In recent years, there are several papers that discuss new methods from 
different aspects to help decision making in maintenance management. For 
example, the aim of Dodu’s article is to analyze the causes which conducted to the 
lack of availability of helicopters while the rate of cannibalization and the number 
of not available spare parts increased [2]. 

Duer presented a modeling method of the operation process of repairable 
technical objects of various classes. A particular attention was paid to the model 
of the process which includes a service expert system with an artificial neural 
network. Duer’s paper also included theoretical grounds of the modeling process 
of the operation of objects in the form of the following models: mathematical 
(analytical), graphical and descriptive ones [3].  
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From mathematical point of view, the operation of technical systems and 
equipment is a discrete state space stochastic process without after-effects, so it 
can be approximated with a Markov-chain [4]. 

Lin & Asplund used a Weibull frailty model to analyze the locomotive 
wheels’ degradation [5]. The proposed framework can deal with small and 
incomplete datasets; it can also simultaneously consider the influence of various 
covariates. The Markov Chain Monte Carlo (MCMC) technique is used to 
integrate high-dimensional probability distributions to make inferences and 
predictions about model parameters. Finally, they compared the statistics on re-
profiling work orders, the performance of re-profiling, and wear rates. 

Monte-Carlo (MC) is one of the classical simulation techniques. MC is 
only one particular application of another general method, which is applicable in 
both deterministic and probabilistic settings. At the heart of MC there is a 
computational procedure in which a performance measure is estimated using 
samples drawn randomly from a population with appropriate statistical properties. 
The selection of samples, in turn, requires an appropriate random number 
generator. Ideally, the generated “random” sequence is a completely faithful 
software counterpart of the non-determinism underlying the actual process. 

The idea of the MC calculation is much older than the computer. The 
name “Monte-Carlo” is relatively recent – it was coined by Nicolas Metropolis in 
1949 – but under the older name of “statistical sampling” the method has a history 
which goes back well into the last century, when numerical calculations were 
performed by using pencil and paper and perhaps a slide rule. An early example 
was a MC calculation of the motion and collision of the molecules in gas was 
described by William Thomson (another name for Lord Kelvin) in 1901 [6]. 
Kelvins’s calculations were aimed at demonstrating the truth of the equipartition 
theorem for the internal energy of a classical system. The exponential growth in 
computer power since those early days is a familiar story to us all by now, and 
with this increase – in computational resources MC techniques have looked 
deeper and deeper into the subject of statistical physics. The Monte-Carlo 
Simulations (MCS) have also become more accurate as a result of the invention of 
a new algorithm. 

The essence of the MCS is the invention of games of chance whose 
behavior and outcome can be used for studying some interesting phenomena. 
While there is no essential link to computers, the effectiveness of numerical or 
simulated gambling as a serious scientific pursuit is enormously enhanced by the 
availability of modern digital computers [7]. 

The term MC method is generally used to refer to any simulation 
techniques related to the use of random numbers [8]. Numerical experiments of 
MCS lead us to run the simulation on many sampled inputs before we can infer 
the values of the system performance measures of interest. 
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There are several books and papers that state theory of the MCS and its 
applications. Rubinstein depicted detailed treatment of the theoretical 
backgrounds and the statistical aspects of these methods in his book [9]. Dagpunar 
provided an introduction to the theory and practice of MC and Simulation 
methods [10]. Newman & Barkema applied the MCS to investigate several 
statistical problems in physics [6]. Fang et al. proposed a calculation method for 
evaluating thermal performance of the solar cavity receivers [11]. The MC 
method was employed to calculate radiation inside the receiver. 

By Ispas and Lungu simulations are usually performed with the Monte 
Carlo method which is capable of analyzing multidimensional situations, better 
said, the outcome depends on many variables or risk factors [12]. Their results 
show how the duration of the simulation process affects the total medium duration 
and the sensitivity value. The sensitivity depends on the range in which the 
medium duration take values and not on the medium duration values.. 

Kozelj et al. demonstrated the benefits of including prior information to 
improve the identifiability of estimated parameters [13]. They investigated the 
effect of different sampling strategies of pipe roughness coefficients in the inverse 
solution of hydraulic models of water distribution systems. 

The paper of Madić & Radovanović has three objectives [14]: 
 

(i) to investigate the MC method applicability for solving single-objective 
machining optimization problems; 

(ii) to develop a framework for solving machining optimization problems by 
using the MC method; 

(iii) to analyze efficiency of the MC method for solving machining optimization 
problems by comparing the optimization solutions to those obtained by the 
past researchers using meta-heuristic algorithms. 

 
The aim of research Gál et al. was to develop a dairy farm technology 

planning system which models the material flow and value chain of a sample 
dairy farm [15]. 

In paper of Pengfei et al. a double-loop MCS method was been developed 
for investigating the so called delta indices [16]. Their method is purely based on 
the model evaluation and univariant density estimation. 

The study of Yeelyong et al. proposes a new methodology that combines 
Dynamic Process Simulation (DPS) and MCS to determine the design pressure of 
fuel storage tanks on liquefied natural gas (LNG)-fueled ships [17]. This approach 
provides a realistic distribution of the operating pressure, which the conventional 
process simulation cannot provide. It should be noted that the conventional DPS 
does not account for the failure of equipment and predicts that the peak pressure 
will always be equal to the maximum working pressure in the failure-free mode. 
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Morariu & Zaharia presented a calculation methodology of the testing 
duration of the products’ reliability, using the Weibull distribution, which allows 
the estimation of the mean duration of a censored and/or complete test, as well as 
the confidence intervals for this duration [18]. By using these values they 
improved the adequate planning and allocation of material and human resources 
for the specific testing activities. Their proposed methodology and the results’ 
accuracy were verified using the MC data simulation method. 

Pokorádi showed the possibilities of the use of Markov matrix in the case 
of stationary maintenance processes [4]. A well-algorithmizable method for 
mathematical modeling of stationary stochastic industrial process was presented 
by Pokorádi [19]. This modeling method can be used to estimate maintenance cost 
and the time of availability of equipment. 

The aims of this investigation are the followings: 
 

 apply the method proposed by Pokorádi [4] [19] to depict Markovian model 
of the investigated maintenance process; 

 use MCS of the investigated maintenance process based on its stochastic 
model; 

 propose a method determining  availability and Required Number for Spare 
Part (RNSP) depending on required estimating uncertainty; 

 propose a method estimating the Numbers of Failures (NoF) depending on 
required estimating uncertainty. 

 
The outline of the paper is as follows: Section 2 presents the stochastic 

model of investigated maintenance process. Section 3 shows the proposed 
simulation method to determinate RNSP and NoF depending on required 
estimating uncertainty. Section 4 summarizes the paper, outlines the prospective 
scientific work of the Author. 

2. The Model of Investigated Process 

During the operation of the equipment used in a large number four 
different (A, B, C, D) types component-related failures have been distinguished. 
The feature of the repairs of equipment (except C type failure) is a long – 
approximately 45 day (1080 hours) – period because of logistical matters. This 
investigation is done from point of view of end-user; therefore the repairs are 
characterized by Mean Repair Turnaround Times (MRTT). Additionally it can be 
established that the time of replacement of faulty equipment is negligible. So 
these times are not taken into account during simulation modeling. 

The main data of the failures and their repairs are included in Table 1. The 
Fig. 1 shows weighted directed graph of the process. In the graph, the weights of 
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the edges show probability densities (failure or turnaround rates) of changes of 
operational states. 

The failure rate λi is equal to the probability of the ith failure in a unit time 
interval given that no failure has occurred before it [19]. The turnaround rate μj 
can be interpreted analogically. 

 

 
 

Fig. 1. The Graph Model of Investigated Maintenance Process 
 
The system of differential equations of this process that describes the 

changes in time of the probability of staying in different states can be determined 
as 
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Because of the investigated process is stationary, the differential 

coefficients of eq. (1) are: 
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A further condition of the solution is the 
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probability of event space ( Li∈ , where L set of Latin letters W A B C D) This 
equation expresses that the object of operation has to stay only in one of six states 
(in the present case, the state space consists of them). Then on the basis of 
equations (1) – (3) stochastic model of the investigated stationary operation 
process can be depicted as the following matrix formula: 
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Table 1 

Essential (Nominal) Data of Statistical Analysis 
Failures A B C D 
Mean Time Between Failures MTBF [hour] 183627 162059 152800 179789 
Failure Rate λ [hour-1] 5.446 10-6 6.171 10-6 6.545 10-6 5.562 10-6 
Mean Repair Turnaround Time MRTT [hour] 1080.8 1081.1 167.13 1079.8 
Turnaround Rate μ [hour-1] 9.252 10-4 9.250 0-4 5.983 10-3 9.261 10-4 

 
The methodology of setting up of the model mentioned above can be 

known profoundly by publications of Pokorádi [4]. 
Table 2 consists of results of equation (4) that is stochastic model of 

maintenance process using nominal values of Table 1. 
 

Table 2 
Nominal Results of Model 

State of operation  i W A B C D 
Probability of  
Staying in State Pi 

9.8072 10-1 5.7724 10-3 6.5424 10-3 1.0727 10-3 5.8901 10-3 

3. The Situational Process 

In this Chapter the MCS of operational process modeled in Chapter 2 will 
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be done to investigate effects of parametric uncertainties of probability densities 
(failure and turnaround rates) of changes of operational states. Based on the 
simulation results theoretical and practical conclusions will be deduced for 
maintenance management decision. 

3.1. Creation of Initial Data 

Firstly, the available failure and turnaround data were analyzed 
statistically. The standard deviation, minimum, maximum and expected values of 
times between failures, and repair turnaround times were determined. These 
expected values are the MTBF (Mean Time Between Failures) and MRTT (Mean 
Repair Turnaround Time) parameters that commonly used to characterize the 
operational processes (see Table 1). Table 3 shows the statistical data. 

Due to the relatively small number of available data, the goodness-of-fit 
tests have been left out. According to general engineering practice it is assumed 
that the measured parameters have normal (Gauss) probability distribution. 

 
Table 3 

Results of Statistical Analysis of (Measured) Maintenance Data 
Failure A B C D 

Number of samples 23 24 25 21 
Mean Time Between Failures 
MTBF [hour] 183627 162059 152800 179789 

Minimum of Times between Failures [hour] 176800 156460 147786 172643 
Maximum of Times between Failures [hour] 190305 168287 157968 186602 
Standard deviation of Times between Failures [hour] 2033 1881 1659 2198 
Mean Repair Turnaround Time 
MRTT [hour] 1080.8 1081.1 167.13 1079.8 

Minimum of Repair Turnaround Times [hour] 964.2 990 73.1 994.5 
Maximum of Repair Turnaround Times [hour] 1161.2 1160.1 239.06 1164.6 
Standard deviation of Repair Turnaround Times [hour] 23.9 23.7 23.16 24.3 

3.2. The Simulation 

During simulation to generate actual values of the times between failures, 
and repair turnaround times acceptance-rejection method shown in Chapter 2 was 
used. Table 4 shows results of statistical analysis of input data of simulation. 

Using input data generated above stochastic model set up in Chapter 2 – in 
other words the equation (4) – was solved. On the basis of previous MCS 
experiences, the number of excitations was 10 000. This excitation number can 
provide sufficient statistical data, such as fair conclusions can be drawn from the 
results of simulation. The results can be seen on Table 5 and Figures 2. – 6. show 
the histograms of simulation results.  

On the basis of the statistical fit tests it is stated that each probability of the 
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staying in states has normal (Gauss) distribution. 
 

Table 4 
Results of Statistical Analysis of Input Data of Simulation 

Failure A B C D 
Mean Time Between Failures MTBF [hour] 183663 162129 152848 179820 
Minimum of Times between Failures [hour] 179709 159714 149470 173679 
Maximum of Times between Failures [hour] 187468 167897 155381 183656 
Standard deviation of Times between Failures [hour] 2035 1873 1618 2247 
Mean Repair Turnaround Time MRTT [hour] 1092,2 1081,8 161,86 1084,3 
Minimum of Repair Turnaround Times [hour] 1062 1036,7 117,16 1043 
Maximum of Repair Turnaround Times [hour] 1136,5 1142,9 196,94 1126,9 
Standard deviation of Repair Turnaround Times [hour] 19,4 25,1 22,43 25,5 

 

 
Fig. 2. Histogram of the Availabilities 

 

 
 

Fig. 3. Histogram of Probabilities of the 
Staying in State A-type Failure 

 
 

Fig. 4. Histogram of Probabilities of the 
Staying in State B-type Failure 

 
Table 5 

Results of Statistical Data Analysis of Probabilities of the Staying in States 
State of operation        i W A B C D 
Mean                        mi 9.81 10-1 5.77 10-3 6.54 10-3 1.07 10-3 5.89 10-3 
Minimum 2.91 10-4 1.44 10-4 1.59 10-4 1.49 10-4 1.51 10-4 
Maximum 9.80 10-1 5.19 10-3 6.00 10-3 4.70 10-4 5.39 10-3 
Standard Deviation    si 9.82 10-1 6.30 10-3 7.07 10-3 1.51 10-3 6.41 10-3 
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Fig. 5. Histogram of Probabilities of the Staying 

in State C-type Failure 

 
Fig. 6. Histogram of Probabilities of the Staying 

in State D-type Failure 

3.3. Determination of Requested Number for Spare Part 

This model simulation is done from point of view of end-user 
fundamentally. Thus, the most important question is the Required Number of 
Spare Part (RNSP). Knowing probability of the availability Pw, the RNSP can be 
determined by the following equation: 
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where N is the number of equipment in the system (in the present case: N=5000). 

Applying expected (nominal) value of the availability (PW=0.98072) 
shown by Table 2, in case of 5000 equipment the RNSP is 96. But, this result is 
“only” the expected value of RNSP. The probability that more equipment failure 
occurs at the same time is 0.5 (50%), which is unacceptable for end-users. 

 
Table 6 

Required Number for Spare Part Depending on Estimating Uncertainty 
Estimating
Uncertainty 

R 

Availability
 

PRNS 

Number for 
Spare Part 

RNSP 
10 % 0.9803 101 
5 % 0.9802 101
2 % 0.9801 102
1 % 0.9800 102 

0.5 % 0.9800 103 
0.2 % 0.9799 103 
0.01 % 0.9798 103 

 
Therefore using the probability distribution of simulation results (see 
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Table 5.), it should be determined, in case of which, value PRNS the probability of 
availability Pw will be less than the acceptable estimating uncertainty R. 

For example, – on the basis of the standard normal distribution – in case of 
10% estimating uncertainty (the probability of not having a spare part in case the 
equipment failures is 0.1): 

 
WWRNS smP 29.1−=    .                                                                (6) 

 
The RNSPs were determined in cases of different assessing uncertainty 

values. These results are shown in Table 6. 
 

3. 4. Determination of Numbers of Failures 

The Number of i-th type Failure (NoFi) can be determined by the 
following equation: 
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where T is the length of investigational time (in the present case: T=1 year= 
365·24=8760 hours). 

Applying nominal (expected) values of failure probabilities shown by 
Table 2, results are “only” the expected values of NoFs. Therefore probability 
distributions of simulation results (see Table 5.) should be used too. But, in cases 
of failures, – on the basis of the standard normal distribution – if the estimating 
uncertainty is 10%: 

 
iiiE smP 29.1+=    .                                                                        (8) 

 
The determined NoFs are shown in Table 7. 
The model simulation data presented by Table 7 can be used to estimate 

the NoFs, maintenance cost and work expenditures of operated systems in 
investigated time interval depending on required estimating uncertainties. 

Comparing data of Tables 6 and 7, it is easily remarked that sum of NoFs 
are more than RNSP. At first it may seem to be contradictory. However, it should 
also be taken into account that the NoFs were estimated by a time interval, but the 
RNSP is time-independent. Be it remembered that the repaired equipment will be 
returned to the end-user, where firstly they might be spare ones, and later they will 
replace the other failed ones. 
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Table 7 

Required Number of Failures Depending on Estimating Uncertainty 

i Expected (R = 50 %) R = 10% R = 5% R = 2% 
Pi NoFi PiE NoFi PiE NoFi PiE NoFi 

A 5.7724 10-3 234 5.959 10-3 241 6.011 10-3 243 6.070 10-3 246 
B 6.5424 10-3 265 6.748 10-3 273 6.805 10-3 275 6.871 10-3 278 
C 1.0727 10-3 279 1.265 10-3 329 1.319 10-3 343 1.380 10-3 359 
D 5.8901 10-3 238 6.086 10-3 246 6.140 10-3 249 6.202 10-3 251 

 R = 1% R = 0,50% R = 0,20% R = 0,01% 
PiE NoFi PiE NoFi PiE NoFi PiE NoFi 

A 6.110 10-3 247 6.145 10-3 249 6.188 10-3 250 6.219 10-3 252 
B 6.915 10-3 280 6.953 10-3 281 7.001 10-3 283 7.036 10-3 285 
C 1.422 10-3 370 1.457 10-3 379 1.502 10-3 391 1.535 10-3 400 
D 6.244 10-3 253 6.281 10-3 254 6.326 10-3 256 6.359 10-3 257 

4. Conclusions 

This paper discussed a Monte-Carlo Simulation-based method of 
maintenance processes analysis. Its possibility of use was demonstrated by a case 
study. The following conclusions can be deduced from the results of modeling 
and analysis: The proposed method can be used: 

 
 for analyzing of maintenance processes; 
 for supporting decision making in maintenance management; 
 for estimating the availability and Required Number for Spare Part 

depending on required estimating uncertainty; 
 for assessing the Numbers of Failures depending on required estimating 

uncertainty. 
 
The Author's planned prospective scientific research related to this field of 

applied mathematics and maintenance management decision making includes the 
study of methodologies of mathematical tools for analysis of maintenance systems 
and processes for example stochastic model and simulation-based sensitivity 
analysis of maintenance systems and processes. 
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