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AVAILABILITY ASSESSMENT WITH MONTE-CARLO
SIMULATION OF MAINTENANCE PROCESS MODEL

Laszl6 POKORADI !

Nowadays, the maintenance is one of the most important territories of
practical engineering. From the mathematical point of view, the operation of
technical systems and equipment is a discrete state space stochastic process without
after-effects, so it can be approximated with a Markov-chain. After setting up the
transition probability matrix, matrix-algebraic tools can be used for investigating
these processes with systems approach analysis. This paper is aimed to discuss the
possibilities of the use of Markov matrix-based Monte-Carlo Simulation of
maintenance processes. The proposed simulation method can be used for the
assessment of requested number for spare part, availability, maintenance cost of a
technical system operation depending on required estimating uncertainty.
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1. Introduction

A maintenance system can be characterized by the availability of
equipment. Availability may be generically be defined as the percentage of time
that a repairable system is in an operating condition.

By Ushakov [1]: “Availability is the capability of a system to be ready to
perform its functions when required. Failure is the total or partial loss of the
capability of a system. Repair is restoration of an object. In many analyses, the
yrepair« means restoration to an operable condition.”

In recent years, there are several papers that discuss new methods from
different aspects to help decision making in maintenance management. For
example, the aim of Dodu’s article is to analyze the causes which conducted to the
lack of availability of helicopters while the rate of cannibalization and the number
of not available spare parts increased [2].

Duer presented a modeling method of the operation process of repairable
technical objects of various classes. A particular attention was paid to the model
of the process which includes a service expert system with an artificial neural
network. Duer’s paper also included theoretical grounds of the modeling process
of the operation of objects in the form of the following models: mathematical
(analytical), graphical and descriptive ones [3].
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From mathematical point of view, the operation of technical systems and
equipment is a discrete state space stochastic process without after-effects, so it
can be approximated with a Markov-chain [4].

Lin & Asplund used a Weibull frailty model to analyze the locomotive
wheels’ degradation [5]. The proposed framework can deal with small and
incomplete datasets; it can also simultaneously consider the influence of various
covariates. The Markov Chain Monte Carlo (MCMC) technique is used to
integrate high-dimensional probability distributions to make inferences and
predictions about model parameters. Finally, they compared the statistics on re-
profiling work orders, the performance of re-profiling, and wear rates.

Monte-Carlo (MC) is one of the classical simulation techniques. MC is
only one particular application of another general method, which is applicable in
both deterministic and probabilistic settings. At the heart of MC there is a
computational procedure in which a performance measure is estimated using
samples drawn randomly from a population with appropriate statistical properties.
The selection of samples, in turn, requires an appropriate random number
generator. Ideally, the generated “random” sequence is a completely faithful
software counterpart of the non-determinism underlying the actual process.

The idea of the MC calculation is much older than the computer. The
name “Monte-Carlo” is relatively recent — it was coined by Nicolas Metropolis in
1949 — but under the older name of “statistical sampling” the method has a history
which goes back well into the last century, when numerical calculations were
performed by using pencil and paper and perhaps a slide rule. An early example
was a MC calculation of the motion and collision of the molecules in gas was
described by William Thomson (another name for Lord Kelvin) in 1901 [6].
Kelvins’s calculations were aimed at demonstrating the truth of the equipartition
theorem for the internal energy of a classical system. The exponential growth in
computer power since those early days is a familiar story to us all by now, and
with this increase — in computational resources MC techniques have looked
deeper and deeper into the subject of statistical physics. The Monte-Carlo
Simulations (MCS) have also become more accurate as a result of the invention of
a new algorithm.

The essence of the MCS is the invention of games of chance whose
behavior and outcome can be used for studying some interesting phenomena.
While there is no essential link to computers, the effectiveness of numerical or
simulated gambling as a serious scientific pursuit is enormously enhanced by the
availability of modern digital computers [7].

The term MC method is generally used to refer to any simulation
techniques related to the use of random numbers [8]. Numerical experiments of
MCS lead us to run the simulation on many sampled inputs before we can infer
the values of the system performance measures of interest.
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There are several books and papers that state theory of the MCS and its
applications. Rubinstein depicted detailed treatment of the theoretical
backgrounds and the statistical aspects of these methods in his book [9]. Dagpunar
provided an introduction to the theory and practice of MC and Simulation
methods [10]. Newman & Barkema applied the MCS to investigate several
statistical problems in physics [6]. Fang et al. proposed a calculation method for
evaluating thermal performance of the solar cavity receivers [11]. The MC
method was employed to calculate radiation inside the receiver.

By Ispas and Lungu simulations are usually performed with the Monte
Carlo method which is capable of analyzing multidimensional situations, better
said, the outcome depends on many variables or risk factors [12]. Their results
show how the duration of the simulation process affects the total medium duration
and the sensitivity value. The sensitivity depends on the range in which the
medium duration take values and not on the medium duration values..

Kozelj et al. demonstrated the benefits of including prior information to
improve the identifiability of estimated parameters [13]. They investigated the
effect of different sampling strategies of pipe roughness coefficients in the inverse
solution of hydraulic models of water distribution systems.

The paper of Madi¢ & Radovanovi¢ has three objectives [14]:

(i) to investigate the MC method applicability for solving single-objective
machining optimization problems;

(il)) to develop a framework for solving machining optimization problems by
using the MC method;

(ii1) to analyze efficiency of the MC method for solving machining optimization
problems by comparing the optimization solutions to those obtained by the
past researchers using meta-heuristic algorithms.

The aim of research Gal et al. was to develop a dairy farm technology
planning system which models the material flow and value chain of a sample
dairy farm [15].

In paper of Pengfei et al. a double-loop MCS method was been developed
for investigating the so called delta indices [16]. Their method is purely based on
the model evaluation and univariant density estimation.

The study of Yeelyong et al. proposes a new methodology that combines
Dynamic Process Simulation (DPS) and MCS to determine the design pressure of
fuel storage tanks on liquefied natural gas (LNG)-fueled ships [17]. This approach
provides a realistic distribution of the operating pressure, which the conventional
process simulation cannot provide. It should be noted that the conventional DPS
does not account for the failure of equipment and predicts that the peak pressure
will always be equal to the maximum working pressure in the failure-free mode.
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Morariu & Zaharia presented a calculation methodology of the testing
duration of the products’ reliability, using the Weibull distribution, which allows
the estimation of the mean duration of a censored and/or complete test, as well as
the confidence intervals for this duration [18]. By using these values they
improved the adequate planning and allocation of material and human resources
for the specific testing activities. Their proposed methodology and the results’
accuracy were verified using the MC data simulation method.

Pokoradi showed the possibilities of the use of Markov matrix in the case
of stationary maintenance processes [4]. A well-algorithmizable method for
mathematical modeling of stationary stochastic industrial process was presented
by Pokoradi [19]. This modeling method can be used to estimate maintenance cost
and the time of availability of equipment.

The aims of this investigation are the followings:

~  apply the method proposed by Pokoradi [4] [19] to depict Markovian model
of the investigated maintenance process;

- use MCS of the investigated maintenance process based on its stochastic
model;

-~ propose a method determining availability and Required Number for Spare
Part (RNSP) depending on required estimating uncertainty;

~  propose a method estimating the Numbers of Failures (NoF) depending on
required estimating uncertainty.

The outline of the paper is as follows: Section 2 presents the stochastic
model of investigated maintenance process. Section 3 shows the proposed
simulation method to determinate RNSP and NoF depending on required
estimating uncertainty. Section 4 summarizes the paper, outlines the prospective
scientific work of the Author.

2. The Model of Investigated Process

During the operation of the equipment used in a large number four
different (A, B, C, D) types component-related failures have been distinguished.
The feature of the repairs of equipment (except C type failure) is a long —
approximately 45 day (1080 hours) — period because of logistical matters. This
investigation is done from point of view of end-user; therefore the repairs are
characterized by Mean Repair Turnaround Times (MRTT). Additionally it can be
established that the time of replacement of faulty equipment is negligible. So
these times are not taken into account during simulation modeling.

The main data of the failures and their repairs are included in Table 1. The
Fig. 1 shows weighted directed graph of the process. In the graph, the weights of
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the edges show probability densities (failure or turnaround rates) of changes of
operational states.

The failure rate 4; is equal to the probability of the i failure in a unit time
interval given that no failure has occurred before it [19]. The turnaround rate y;
can be interpreted analogically.

Fig. 1. The Graph Model of Investigated Maintenance Process

The system of differential equations of this process that describes the

changes in time of the probability of staying in different states can be determined
as

djf =—(A4+ A +Ac+Ap )Py + 4Py + 1Py + pic P+ upPp

dr
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dr

dr
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dr

Because of the investigated process is stationary, the differential
coefficients of eq. (1) are:

dPy dP, dPp dPc dPp _0
dr dr dr dr dr
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A further condition of the solution is the

D
> P(r)=1
=W

3)

probability of event space (i e L, where L set of Latin letters W 4 B C D) This
equation expresses that the object of operation has to stay only in one of six states
(in the present case, the state space consists of them). Then on the basis of
equations (1) — (3) stochastic model of the investigated stationary operation
process can be depicted as the following matrix formula:

A+ g+ Ac+2p) wy g s up VB [N
¥y —u, 0 0 0 1|p| |1
A 0 —uz O 0 1|P| |1 W
i 1 1 1 o] 1] |1]
Table 1
Essential (Nominal) Data of Statistical Analysis
Failures A B C D
Mean Time Between Failures MTBF [hour] 183627 162059 152800 179789
Failure Rate 4 [hour™'] 5.446 10° | 6.171 10° | 6.54510° | 5.562 10°
Mean Repair Turnaround Time MRTT [hour] 1080.8 1081.1 167.13 1079.8
Turnaround Rate x [hour™] 9.25210" | 9.2500* | 5.983 10 | 9.261 10™

The methodology of setting up of the model mentioned above can be
known profoundly by publications of Pokoradi [4].
Table 2 consists of results of equation (4) that is stochastic model of
maintenance process using nominal values of Table 1.

Table 2
Nominal Results of Model
State of operation i w A B C D
Probability of 9.8072 107" | 5.7724 107 | 6.5424 107 | 1.0727 10 | 5.8901 107
Staying in State P;

3. The Situational Process

In this Chapter the MCS of operational process modeled in Chapter 2 will
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be done to investigate effects of parametric uncertainties of probability densities
(failure and turnaround rates) of changes of operational states. Based on the
simulation results theoretical and practical conclusions will be deduced for
maintenance management decision.

3.1. Creation of Initial Data

Firstly, the available failure and turnaround data were analyzed
statistically. The standard deviation, minimum, maximum and expected values of
times between failures, and repair turnaround times were determined. These
expected values are the MTBF (Mean Time Between Failures) and MRTT (Mean
Repair Turnaround Time) parameters that commonly used to characterize the
operational processes (see Table 1). Table 3 shows the statistical data.

Due to the relatively small number of available data, the goodness-of-fit
tests have been left out. According to general engineering practice it is assumed
that the measured parameters have normal (Gauss) probability distribution.

Table 3
Results of Statistical Analysis of (Measured) Maintenance Data

Failure A B C D
Number of samples 23 24 25 21
Mean Time Between Failures
MTBF [hour] 183627 | 162059 | 152800 | 179789
Minimum of Times between Failures [hour] 176800 | 156460 | 147786 | 172643
Maximum of Times between Failures [hour] 190305 | 168287 | 157968 | 186602

Standard deviation of Times between Failures [hour] 2033 1881 1659 2198
Mean Repair Turnaround Time 1080.8 | 1081.1 | 167.13 | 1079.8

MRTT [hour]
Minimum of Repair Turnaround Times [hour] 964.2 990 73.1 994.5
Maximum of Repair Turnaround Times [hour] 1161.2 | 1160.1 | 239.06 | 1164.6

Standard deviation of Repair Turnaround Times [hour] 23.9 23.7 23.16 24.3

3.2. The Simulation

During simulation to generate actual values of the times between failures,
and repair turnaround times acceptance-rejection method shown in Chapter 2 was
used. Table 4 shows results of statistical analysis of input data of simulation.

Using input data generated above stochastic model set up in Chapter 2 — in
other words the equation (4) — was solved. On the basis of previous MCS
experiences, the number of excitations was 10 000. This excitation number can
provide sufficient statistical data, such as fair conclusions can be drawn from the
results of simulation. The results can be seen on Table 5 and Figures 2. — 6. show
the histograms of simulation results.

On the basis of the statistical fit tests it is stated that each probability of the
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staying in states has normal (Gauss) distribution.

Table 4
Results of Statistical Analysis of Input Data of Simulation

Failure A B C D
Mean Time Between Failures MTBF [hour] 183663 | 162129 | 152848 | 179820
Minimum of Times between Failures [hour] 179709 | 159714 | 149470 | 173679
Maximum of Times between Failures [hour] 187468 | 167897 | 155381 | 183656
Standard deviation of Times between Failures [hour] 2035 1873 1618 2247
Mean Repair Turnaround Time MRTT [hour] 1092,2 | 1081,8 | 161,86 | 1084,3
Minimum of Repair Turnaround Times [hour] 1062 1036,7 | 117,16 1043
Maximum of Repair Turnaround Times [hour] 1136,5 | 11429 | 196,94 | 1126,9
Standard deviation of Repair Turnaround Times [hour] 19,4 25,1 22,43 25,5

%]

0,0053 0.0055 0,0057 0,0059

Fig. 3. Histogram of Probabilities of the Fig. 4. Histogram of Probabilities of the
Staying in State A-type Failure Staying in State B-type Failure
Table 5
Results of Statistical Data Analysis of Probabilities of the Staying in States
State of operation i w A B C D
Mean m; | 9.8110" | 5.7710° | 6.5410° | 1.0710° | 5.89 107
Minimum 29110% | 14410* | 1.5910* | 1.4910* | 1.5110*
Maximum 9.80 10" | 5.1910° | 6.0010° | 47010* | 539107
Standard Deviation s; | 9.8210"7 | 630107 | 7.0710° | 1.5110° | 6.4110°
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Fig. 5. Histogram of Probabilities of the Staying ~ Fig. 6. Histogram of Probabilities of the Staying
in State C-type Failure in State D-type Failure

3.3. Determination of Requested Number for Spare Part

This model simulation is done from point of view of end-user
fundamentally. Thus, the most important question is the Required Number of
Spare Part (RNSP). Knowing probability of the availability P,,, the RNSP can be
determined by the following equation:

RNSP = HL - IJN—l , (5)
By

where N is the number of equipment in the system (in the present case: N=5000).

Applying expected (nominal) value of the availability (Pw=0.98072)
shown by Table 2, in case of 5000 equipment the RNSP is 96. But, this result is
“only” the expected value of RNSP. The probability that more equipment failure
occurs at the same time is 0.5 (50%), which is unacceptable for end-users.

Table 6
Required Number for Spare Part Depending on Estimating Uncertainty

Estimating | Availability | Number for
Uncertainty Spare Part
R Prys RNSP
10 % 0.9803 101
5% 0.9802 101
2% 0.9801 102
1% 0.9800 102
0.5 % 0.9800 103
0.2 % 0.9799 103
0.01 % 0.9798 103

Therefore using the probability distribution of simulation results (see
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Table 5.), it should be determined, in case of which, value Pgys the probability of
availability P,, will be less than the acceptable estimating uncertainty R.

For example, — on the basis of the standard normal distribution — in case of
10% estimating uncertainty (the probability of not having a spare part in case the
equipment failures is 0.1):

PRNS = my —1.29SW . (6)

The RNSPs were determined in cases of different assessing uncertainty
values. These results are shown in Table 6.

3. 4. Determination of Numbers of Failures

The Number of i-th type Failure (NoF;) can be determined by the
following equation:

NoF, = LE vl (7)
MRTT,

where T is the length of investigational time (in the present case: T=1 year=
365-24=8760 hours).

Applying nominal (expected) values of failure probabilities shown by
Table 2, results are “only” the expected values of NoFs. Therefore probability
distributions of simulation results (see Table 5.) should be used too. But, in cases
of failures, — on the basis of the standard normal distribution — if the estimating
uncertainty is 10%:

PiE =m; +1'29Si . (8)

The determined NoFs are shown in Table 7.

The model simulation data presented by Table 7 can be used to estimate
the NoFs, maintenance cost and work expenditures of operated systems in
investigated time interval depending on required estimating uncertainties.

Comparing data of Tables 6 and 7, it is easily remarked that sum of NoFs
are more than RNSP. At first it may seem to be contradictory. However, it should
also be taken into account that the NoFs were estimated by a time interval, but the
RNSP is time-independent. Be it remembered that the repaired equipment will be
returned to the end-user, where firstly they might be spare ones, and later they will
replace the other failed ones.
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Table 7
Required Number of Failures Depending on Estimating Uncertainty
. | Expected (R = 50 %) R=10% R =5% R=2%
Pi NOFi PiE NOFi PiE NOFi PiE NOFi
Al 5.7724107 | 234 |5.95910° | 241 |6.011 107 | 243 |6.070 107 | 246
B| 6.542410° | 265 |6.748 107 | 273 |6.805 107 | 275 | 6.871 107 | 278
C| 1.072710° | 279 [ 1.26510°| 329 [ 1.319 10| 343 | 1.380 10| 359
D| 5.890110° | 238 |6.086 1073 | 246 |6.140 107 | 249 |6.202 107 | 251
R=1% R =0,50% R =0,20% R=0,01%
PiE NOFi PiE NOFi PiE NOFi PiE NOFi
Al 6.11010° | 247 |6.145107 | 249 |6.188 107 | 250 |6.219 107 | 252
B| 6.91510° | 280 |6.953107 | 281 |7.001 107 | 283 |7.036 107 | 285
C| 1.42210° | 370 [1.45710°] 379 [1.502 10| 391 |1.535 107 | 400
D| 6.24410° | 253 |6.281107 | 254 [6.326 10°| 256 |6.359 107 | 257

4. Conclusions

This paper discussed a Monte-Carlo Simulation-based method of
maintenance processes analysis. Its possibility of use was demonstrated by a case
study. The following conclusions can be deduced from the results of modeling
and analysis: The proposed method can be used:

- for analyzing of maintenance processes;

== for supporting decision making in maintenance management;

= for estimating the availability and Required Number for Spare Part
depending on required estimating uncertainty;

- for assessing the Numbers of Failures depending on required estimating
uncertainty.

The Author's planned prospective scientific research related to this field of
applied mathematics and maintenance management decision making includes the
study of methodologies of mathematical tools for analysis of maintenance systems
and processes for example stochastic model and simulation-based sensitivity
analysis of maintenance systems and processes.
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