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ENHANCING INVERTED PENDULUM CONTROL USING
THE ULTIMATE PERIOD METHOD UNDER RANDOM
DISTURBANCES

Nguyen Thi LAN"?3, Lam Nguyen Thanh NHAN!>, Nguyen Cong VAN'2,
Nguyen Duc DUNG'"?, Pham Nguyen Nhat QUANG'"2, Ngo THINH">*

Inverted pendulums play an important role in automation and mechatronic
systems since it is widely applied in products like self-balancing vehicles. Inspiring
its mechanism, this paper presents a method for tuning the motion controller using
the critical cycle method to address and smooth the response of inverted pendulums.
Firstly, theoretical model of this system is established and its controller is proposed
to manipulate whole pendulum. To imitate the real-world platform, external forces
can be introduced as unwanted disturbances which might reduce system performance.
By ensuring stable operation under the effects of disturbances, the ultimate period
method is able to drive this system robustly and effectively. From these results of
simulations, our method promises significant improvement in control performance
under various conditions.

Keywords: stable mechanism, motion control, optimization, mechanical stability,
theory control.

1. Introduction

Inverted pendulum systems have long been fundamental models in control
theory and robotics due to their inherent instability and nonlinear dynamics [1-3].
They serve as quintessential benchmarks for testing and validating control
algorithms before deploying them on more complex and practical systems. The
mathematical representation of inverted pendulums is relatively straightforward,
yet they encapsulate the challenges inherent in balancing and stability control,
making them invaluable for both theoretical exploration and practical application.

Over the years, significant advancements have been made in controlling
inverted pendulum systems. Classical control methods, such as Proportional-
Integral-Derivative (PID) controllers, have been widely used for their simplicity
and effectiveness in linear systems [4]. However, these methods often struggle with
the nonlinearities and external disturbances present in real-world scenarios. To
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address these limitations, various advanced control strategies have been proposed,
including fuzzy logic controllers [5, 6], neural network approaches [7], sliding
mode control [8], and model predictive control techniques [9].

The challenge of controlling inverted pendulum systems is further
compounded when random disturbances are introduced. Real-world applications
often involve unpredictable environmental factors and uncertainties that can
adversely affect system performance. Robust and adaptive control methods have
been developed to mitigate these issues, focusing on maintaining stability and
performance in the presence of such disturbances [10-13]. Despite these efforts,
achieving optimal control under random disturbances remains a significant
challenge in the field.

The ultimate period method has emerged as a promising approach for
system identification and controller tuning, particularly in dealing with nonlinear
systems [ 14]. By analyzing the system's oscillatory behavior, this method facilitates
the design of controllers that can adapt to changing dynamics and disturbances.
However, its application to inverted pendulum systems under random disturbances
has not been extensively explored, presenting an opportunity for further research.

Inverted pendulum models are not only theoretical constructs but also have
practical implementations across various domains. They are instrumental in the
development of wheeled robots, providing insight into balance and navigation [15].
In obstacle avoidance algorithms, the principles derived from inverted pendulum
control contribute to more efficient and responsive systems [16]. Additionally,
these models are utilized in the design and control of humanoid robots, where
maintaining upright posture is critical [17]. Beyond robotics, inverted pendulum
systems serve educational purposes, offering a tangible means to teach control
theory concepts, and even find applications in the entertainment industry, such as
in balancing toys and interactive exhibits.

The primary aim of this paper is to enhance the control of inverted pendulum
systems under random disturbances by utilizing the ultimate period method. We
propose a novel control strategy that integrates the ultimate period method with
adaptive control techniques to improve system stability and performance. The
specific objectives of this study are:

1. To develop a comprehensive control framework for inverted pendulum
systems that accounts for nonlinear dynamics and random disturbances.

2. To analyse the effectiveness of the ultimate period method in tuning
controllers for inverted pendulum models subjected to unpredictable
environmental factors.

3. To validate the proposed control strategy through simulations and
experimental setups, demonstrating its superiority over conventional control
methods in terms of stability and response time.
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2. Problem Statement

In general, the inverted pendulum is a classic control system widely used in
teaching and research at institutes or universities around the world. This system is
considered an ideal model to validate and develop both nonlinear and linear control
algorithms, especially in restoring and maintaining stability. It is a typical SIMO
(Single Input Multi Output) system, with one input being the force acting on the
motor, and multiple outputs including the position and driving angle of the
pendulum that needs to be controlled to maintain a stable state.

In previous studies, the authors of [12] compared the effectiveness of the
PID algorithm and the neural fuzzy controller for controlling an inverted pendulum
system. While the PID controller was highlighted for its simplicity and
effectiveness in maintaining balance and position control, researchers in [13] noted
the challenges posed by disturbances and external forces, which the PID controller
must handle simultaneously. Investigators in [14], along with scholars in [15],
explored the control of an inverted pendulum system using the PID algorithm
enhanced with genetic optimization techniques.

Those researches have indicated the potential of PID controllers in
controlling inverted pendulums, but have also shown that improvements are needed
to enhance control efficiency under disturbed conditions. In our work, this
investigation proposes to use a new approach in fine-tuning the PID controller to
improve the ability of system to respond to disturbances. Owing to the method of
adjusting PID parameters via Nichol & Zieglers law [16], it does not only enhance
the effectiveness of the PID controller in ideal environments but also in complex
real-life conditions.

3. Design of mechanical architecture

The mathematical model of the system is launched due to the mechanical
physics of Newton law since system model is needed to compute the parameters of
controller and simulate its performance. In the initial state, when considering the
angular coordinate of the inverted pendulum system as shown in Fig. 1, its angle
would be treated as ¢=n. Then, the challenge to transfer angle ¢ to 0 degrees is
defined as the swing-up phenomenon. Besides, the trouble of oscillating an inverted
pendulum around the equilibrium point at ¢=0 is termed as the equilibrium topic. It
is considered that our target is to balance an inverted pendulum under random
disturbance conditions. Later, this controller would cause the response of the
inverted pendulum to oscillate around the position from 0° to 90°.
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Fig. 1. Theoretical principle of the inverted pendulum (b).

We assume that the inverted pendulum is uniform and has its CoG (Center
of Gravity) at the center of the bar. Releasing the link and analyzing the impact
dynamics, the acting forces in the system can be shown in Fig. 2. By ignoring the
friction force, we analyze the forces on the cart and the pendulum and obtain the
equations of motion in the horizontal direction:

MX+ N=F (1)
where: N is the acting force in the horizontal direction, F is the external
force and x is the position of cart. Summing up the horizontal forces, we achieve

N = mi + ml cos(p) — mlg? sin(p) )
From equation (1) and (2), we have

(M + m)X + mlg cos(p) — mlgo'2 sin(p) =F (3)
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(a) Acting forces on the cart (b) Acting forces in the inverted pendulum system

Fig. 2. Analysis of the acting forces on the cart (a) and in the inverted pendulum system (b).

Considering that the acting force is perpendicular to the pendulum as Fig. 2

Psin(¢g) + Ncos(p) — mgsin(p) = mlp + m@ cos(p) 4)
Total moment at the center of the bar, we have
—Plsin(¢) — Nlcos(p) = 1§ (5)

where I: inertial moment which is measured by the mass centre of this system
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From equation (4) and (5):
(I + ml*»)§ + mglsin(e) = —mli cos(p) (6)
Equation (3) and (6) describe the relative motion in this system. Angle ¢
is assumed to be small, above equations could be approximated as below

cosp = 1
sing = @
9*~0
At that time, the system of equations can be represented as follows
(I +ml*»)$ + mglp = —mli (7)
M+m)k+mlp =u (8)

To obtain the transfer function of the linearized system equations, we take
the Laplace transform of the system equations with the assumption of zero initial
conditions.

(I + ml?)D(s)s? + mgld(s) = —mlX(s)s? 9)
(M + m)X(s)s? + mld(s)s? = U(s) (10)
Solving the first equation for X(s):

(I + ml?)$ + mgle = —mli (1)
(M+m)i+mlp =u (2)

To obtain the transfer function of the linearized system equations, we take
the Laplace transform of the system equations with the assumption of zero initial
conditions.

(I + ml?)®(s)s? + mgld(s) = —mlX(s)s? (9)
(M +m)X(s)s? + mld(s)s? = U(s) (10)

Solving the first equation for X(s):
X(s) = [

Substituting equation (11) into equation (10)

I+ml?
ml

-] @) (11)
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(M +m) [% — 2o (s)s? + mid(s)s? = U(s) (12)

We have the transfer function

®(s) s
S) _ q
U(s) G4 _ (M + m)mgls2 (13)
q
Hence,
q=[(M+m)I+ml? — (ml)?] (14)

From above transfer function, both zeros and poles locate at origin, it can be
re-written as

ml
B d(s) B 75 rad
Ppena(s) = U(s) 3 (M + m)mgls [T] (15)
q

The transfer function with cart position X(s) as output can be derived in a
similar way, we get
(I + ml?)s? — gml
X(s) q m
Peart(s) = U(s) G4 M + m)mgls2 [ﬁ] (16)
q

On the other hand, the modeled system can be represented as a state space
x = Ax + Bu + f(t) with

x=[x x ¢ @]

0 1 0 0
0 —(1+mi?) m2gl? 0
— D D

A= 0 0 0 1
0 _mFl mgl(I;Hm) 0

2 T

B = [0 I+ml 0 ﬂl]
D D
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with D =I(M +m) + Mml?

where f(t): random disturbance acting on this system in the range of 8, u:
control signal from cart.

4. The proposed approach

A. Design of PID controller

Generally, a Proportional Integral Derivative (PID) controller is a feedback
loop mechanism widely used in industrial control systems as shown in Fig. 3. It is
one of the most favorite controllers in the feedback control systems. The PID
scheme computes the error by taking the difference between the measured value of
the variable parameter and the desired value. By adjusting these parameters, the
PID controller tries to reduce that error to a minimum value.

The computational algorithm of this controller includes three separated
parameters, and is therefore sometimes named as three-stage control: proportional
(P), integral (I), and differential/derivative (D). The proportional value affects the
current error, the effect of integral value is on the sum of previous errors, and the
derivative value impacts the rate of change of the error. The combination of these
three influences is used to regulate the process through the control element. This
clarifies the timing relation such that P stage depends on the current error, I stage is
subject to the accumulation of past errors, and D stage predicts future errors based
on the current rate of change.

In detail, PID controller can only control one parameter of the system. To
manipulate both the pendulum angle and the position of vehicle at the same time,
two PID controllers must be used. In which, one is considered as main controller
and directly controls the motor torque, while the other parameter applies to the
impact of the reference point of the main parameter. Two input signals are fed into
the PID controller and the output signal is the force acting on the vehicle. To ensure
the pendulum is stable, it is necessary to use a feedback controller. This adds system
information to the output data.

The proportional, integral, and derivative stages are added together to
evaluate the output of the PID controller. The output of the controller u(t) is defined
as the final expression of the PID algorithm
where

Proportional gain (Kp): The larger the value is, the faster the response is.
Hence the larger the error is, the larger the proportional compensation achieves. A
proportional gain value that is too large, would lead to process instability and
oscillation.
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Integral gain (Ki): The larger the value, the faster the steady-state error is
eliminated. However, this results in a greater overshoot: any negative error
integrated during the transient response must be compensated by positive error
before reaching a steady state.
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Fig. 1 Block diagram of PID controller

Derivative gain (Kd): The larger the value, the more it reduces overshoot,
but it also slows down the transient response and can lead to instability due to the
amplification of noise in the differentiation of the error signal.

B. Design of the ultimate period

In the early 1940s, the critical period method was first introduced by Nichols
and Ziegler [17]. The term ultimate is utilized with this method since it requires
determining the ultimate gain Ky (or ultimate proportional band PBy). It is the
maximum gain (or maximum proportional band) at which the process remains
stable. The ultimate period Py is the oscillating period of the process with the gain
or proportional band at its highest value (critical value). To identify the ultimate
gain Ky or the ultimate proportional band PBy, the controller must be operated in
proportional mode (P-mode). Fig. 4 shows the response of a control system at the
value Ky or PBy. This diagram exhibits the measured variable oscillating at a fixed
amplitude and frequency which is named the critical frequency.

A 360° phase shift exists in the control system. The amplitude of oscillation
is constant. Therefore, the system gain is 1 approximately, which is the ultimate
gain (or ultimate proportional band). In other words, it is the time from when the
controlled variable upsurges to reach its maximum amplitude until it falls back and
then rises again to reach the maximum amplitude. These two pieces of information
are then deployed in formulas to compute the P, I, and D parameters for the
controller in different modes. To find the value of Ky and PBy, the system must
be measured, and the process characteristics should be observed.
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Algorithm 1:

1: | Switch the controller to manual control mode (MANUAL)

2: | Set the parameters of controller in proportional mode, it means that
Kp = minimum value; T; = 0 or RPM =0and Tp = 0)
Insert the setting value SV
Adjust MV in order to stabilize PV with the value of SV at step 3
Switch the controller to automated control mode (AUTOMATIC)
Establish disturbance by increasing SV about 5%

B Bl Bl g

By observing the response of the measured variable PV, its performance
may fail to one of three cases as below:

Case 1: if PV variable continuously goes up as curve B shown in Fig. 5 then
decrease the proportional gain Kp. Consequently, this system is controlled by

updating Kp in the procedure from step 1 to step 5 until the response of PV variable
has a sinusoidal oscillation shape.

Table 1
List of parameters for PID controller by using the ultimate period method
Control

mode Kp Pg T, RPM Tp
P 0.5Ky 2PBy o0 0 0

PI 0.45K 2.2PB Py 12 0

. U . U E PU
Py
PD 0.6Ky 1.66PBy 0 - a5
P 2 P
PID 0.6Ky 1.66PBy A — Y
2 Py 8
RPM (repeats per minute)

Case 2: If the oscillation of the controlled variable is gradually decreasing
as curve A shown in Fig. 5, it means that this system would be stabilized. Thus, the
proportional gain Kp needs to be augmented. At that moment, control the system

with the new Kp value from steps 1 to 5 until the response of PV takes on a
sinusoidal shape.
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Case 3: If the response of the measured variable has a sinusoidal oscillation
as shown in Fig. 4, the value of the proportional gain Kp is restored. This value is
the ultimate gain Ky, and the ultimate period Py is also identified from the graph.
Due to these values of both Ky and Py, we can compute the controller settings as
Table 1.

It is noted that the formulas for estimating these settings do not produce
perfect results. However, using those raw values as a basis for fine-tuning the
parameters would achieve the best results for the controller.

5. Results of study

To validate the effectiveness and feasibility of our approach, several
numerical simulations have been conducted. The system parameters for theoretical
model of the inverted pendulum are launched in Simulink/Matlab as Table 2. Our
host computer includes CPU Intel Core 17 gen 10 up to 5.4GHz, 16 core 24 thread,
24MB cache, 16GB 3200MHz DDR4, OS Windows 10 Professional. The system
response of the cart regarding its position and the system response of the pendulum
regarding its rotation angle are sampled. In both cases, the proposed algorithm is
deployed to drive the pendulum from its initial position at ¢ = 7 to oscillate around
the equilibrium point ¢ = 0 within 15 seconds, and then move to the position ¢ =
/2 in the next 15 seconds.

Table 2
List of the system parameters for the inverted pendulum

Description Value
Weight of pendulum [m, kg] 0.1
Weight of cart [M, kg] 1
Distance from the center of pendulum to origin [l, m] 0.25
Inertial moment of pendulum [I, kgm] 0.0021
Gravitational acceleration [g, m/s?] 9.81

Additionally, to imitate the practical scenario, the noise condition is added
when simulating. In the initial stage, several simulations of the response, control
signal values, and phase trajectories are presented in the absence of external
disturbances. Under the influence of random external forces within a 20% range,
the response of inverted pendulum must suffer them. Similar to the case without
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noise, the initial position of the pendulum is subjected to the proposed algorithm to
bring the pendulum to the equilibrium position oscillating around ¢ = 0.

5.1 Results of preliminary simulations
PID control mode: Ky =25% and Py = 76s then this system reaches to the
stable condition after 2,5 second with offset = 0 as Fig. 6.
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Fig. 4 Result of system response with PID control mode

PD control mode: In the same situation such Ky = 25% and Py = 76s, our
pendulum still stabilizes but high value of offset, angular error is approximately 10
degrees in the first 15 second and 30 degrees in next 15 second as Fig. 7.
PI control mode: Correspondingly, Ky = 25% and Py = 76s, the proposed system
is stabilized absolutely as Fig. 8.
5.2 Tuning procedure

Since the PID control mode produces the desired results, it means that the
pendulum is stable at 0° and 90° during the simulation period. As a result, there is
no need to tune the controller in this mode. However, the simulation results in PD
mode indicate that the steady-state error is still high, so tuning the parameters of
this controller is necessary to achieve better results.
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Table 3
List of tuning parameters for our controller
No. Ky Kp Kp offset tsteady (5)
1 25 415 9.5 ~ 25° ~1
2 50 83.0 9.5 ~ 10° ~1
3 75 124.5 9.5 =~ 7° ~1
4 100 166.0 9.5 ~ 5° ~1
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Due to the fact that the steady-state error (offset) is mainly influenced by
the gain factor K, only Kp is tuned while maintaining the unchanged value of
derivative term Kj,. The parameters for simulation after tuning the PD controller are
shown in Table 3
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Fig. 7 Result of system response with PD control mode (tuning Ky = 50%)
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Fig. 8 Result of system response with PD control mode (tuning Ky = 75%)
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180 Response of the Pendulum to PD Control with Ku = 100%
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Fig. 9 Result of system response with PD control mode (tuning Ky = 100%)

From the provided table 3 and the responds of the system shown at Fig. 9,
Fig. 10, and Fig. 11, we can observe that the parameter K;; increases progressively
from 25 to 100, while the corresponding offset decreases from approximately 25°
to 5°. This suggests that as Kj; increases, the system's error (represented by the
offset) becomes smaller, indicating improved accuracy in the control response.
Despite the changes in K, the time to reach steady-state (ts;eqqy Jremains constant
at approximately 1 second for all cases. This indicates that increasing K;; improves
the precision of the system by reducing the offset without affecting the speed of
stabilization.

6. Conclusions

In this paper, we investigated a new method for controlling an inverted
pendulum system on a cart by integrating a PID control law with the ultimate period
method. Utilizing linear matrix inequalities, the pendulum system was modeled and
linearized based on small oscillation angles within a range of +10°. Simulation
results demonstrated that the controlled system responds stably under both PID and
PD control modes, even in the presence of random disturbances. The tuning of the
PID controller parameters in PD mode was performed to optimize performance and
minimize control errors. These findings provide a strong foundation for applying
this method to real-world systems, especially in noisy environments.
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Limitations of the Study

Despite the promising results, the study has certain limitations. The
linearization of the pendulum system was based on small oscillation angles, which
may not accurately capture the system's behavior under larger deviations.
Additionally, the simulations were conducted under ideal conditions, and factors
such as model uncertainties, parameter variations, and external disturbances were
not fully explored. The control method's performance in a real-world setting with
hardware imperfections and sensor noise remains to be validated.

Prospects for Research Development

For future research, it would be beneficial to extend the proposed control
strategy to accommodate larger oscillation angles and to enhance its robustness
against a wider range of disturbances and model uncertainties. Implementing the
control approach on an actual inverted pendulum system will provide valuable
insights into its practical applicability and effectiveness. Furthermore, exploring the
integration of adaptive or nonlinear control techniques with the ultimate period
method could lead to improved performance in more complex and uncertain
environments. Investigating the scalability of this method to multi-degree-of-
freedom systems or other nonlinear control applications could also open new
avenues for research and development in advanced control systems.
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