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ENHANCING INVERTED PENDULUM CONTROL USING 
THE ULTIMATE PERIOD METHOD UNDER RANDOM 

DISTURBANCES 

Nguyen Thi LAN1,2,3, Lam Nguyen Thanh NHAN1,2, Nguyen Cong VAN1,2, 
Nguyen Duc DUNG1,2, Pham Nguyen Nhat QUANG1,2, Ngo THINH1,2,* 

Inverted pendulums play an important role in automation and mechatronic 
systems since it is widely applied in products like self-balancing vehicles. Inspiring 
its mechanism, this paper presents a method for tuning the motion controller using 
the critical cycle method to address and smooth the response of inverted pendulums. 
Firstly, theoretical model of this system is established and its controller is proposed 
to manipulate whole pendulum. To imitate the real-world platform, external forces 
can be introduced as unwanted disturbances which might reduce system performance. 
By ensuring stable operation under the effects of disturbances, the ultimate period 
method is able to drive this system robustly and effectively. From these results of 
simulations, our method promises significant improvement in control performance 
under various conditions. 

Keywords: stable mechanism, motion control, optimization, mechanical stability, 
theory control. 

1. Introduction 

Inverted pendulum systems have long been fundamental models in control 
theory and robotics due to their inherent instability and nonlinear dynamics [1-3]. 
They serve as quintessential benchmarks for testing and validating control 
algorithms before deploying them on more complex and practical systems. The 
mathematical representation of inverted pendulums is relatively straightforward, 
yet they encapsulate the challenges inherent in balancing and stability control, 
making them invaluable for both theoretical exploration and practical application. 

Over the years, significant advancements have been made in controlling 
inverted pendulum systems. Classical control methods, such as Proportional-
Integral-Derivative (PID) controllers, have been widely used for their simplicity 
and effectiveness in linear systems [4]. However, these methods often struggle with 
the nonlinearities and external disturbances present in real-world scenarios. To 
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address these limitations, various advanced control strategies have been proposed, 
including fuzzy logic controllers [5, 6], neural network approaches [7], sliding 
mode control [8], and model predictive control techniques [9]. 

The challenge of controlling inverted pendulum systems is further 
compounded when random disturbances are introduced. Real-world applications 
often involve unpredictable environmental factors and uncertainties that can 
adversely affect system performance. Robust and adaptive control methods have 
been developed to mitigate these issues, focusing on maintaining stability and 
performance in the presence of such disturbances [10-13]. Despite these efforts, 
achieving optimal control under random disturbances remains a significant 
challenge in the field. 

The ultimate period method has emerged as a promising approach for 
system identification and controller tuning, particularly in dealing with nonlinear 
systems [14]. By analyzing the system's oscillatory behavior, this method facilitates 
the design of controllers that can adapt to changing dynamics and disturbances. 
However, its application to inverted pendulum systems under random disturbances 
has not been extensively explored, presenting an opportunity for further research. 

Inverted pendulum models are not only theoretical constructs but also have 
practical implementations across various domains. They are instrumental in the 
development of wheeled robots, providing insight into balance and navigation [15]. 
In obstacle avoidance algorithms, the principles derived from inverted pendulum 
control contribute to more efficient and responsive systems [16]. Additionally, 
these models are utilized in the design and control of humanoid robots, where 
maintaining upright posture is critical [17]. Beyond robotics, inverted pendulum 
systems serve educational purposes, offering a tangible means to teach control 
theory concepts, and even find applications in the entertainment industry, such as 
in balancing toys and interactive exhibits. 

The primary aim of this paper is to enhance the control of inverted pendulum 
systems under random disturbances by utilizing the ultimate period method. We 
propose a novel control strategy that integrates the ultimate period method with 
adaptive control techniques to improve system stability and performance. The 
specific objectives of this study are: 

1. To develop a comprehensive control framework for inverted pendulum 
systems that accounts for nonlinear dynamics and random disturbances. 

2. To analyse the effectiveness of the ultimate period method in tuning 
controllers for inverted pendulum models subjected to unpredictable 
environmental factors. 

3. To validate the proposed control strategy through simulations and 
experimental setups, demonstrating its superiority over conventional control 
methods in terms of stability and response time. 
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2. Problem Statement 

In general, the inverted pendulum is a classic control system widely used in 
teaching and research at institutes or universities around the world. This system is 
considered an ideal model to validate and develop both nonlinear and linear control 
algorithms, especially in restoring and maintaining stability. It is a typical SIMO 
(Single Input Multi Output) system, with one input being the force acting on the 
motor, and multiple outputs including the position and driving angle of the 
pendulum that needs to be controlled to maintain a stable state. 

In previous studies, the authors of [12] compared the effectiveness of the 
PID algorithm and the neural fuzzy controller for controlling an inverted pendulum 
system. While the PID controller was highlighted for its simplicity and 
effectiveness in maintaining balance and position control, researchers in [13] noted 
the challenges posed by disturbances and external forces, which the PID controller 
must handle simultaneously. Investigators in [14], along with scholars in [15], 
explored the control of an inverted pendulum system using the PID algorithm 
enhanced with genetic optimization techniques. 

Those researches have indicated the potential of PID controllers in 
controlling inverted pendulums, but have also shown that improvements are needed 
to enhance control efficiency under disturbed conditions. In our work, this 
investigation proposes to use a new approach in fine-tuning the PID controller to 
improve the ability of system to respond to disturbances. Owing to the method of 
adjusting PID parameters via Nichol & Zieglers law [16], it does not only enhance 
the effectiveness of the PID controller in ideal environments but also in complex 
real-life conditions. 

3. Design of mechanical architecture 

The mathematical model of the system is launched due to the mechanical 
physics of Newton law since system model is needed to compute the parameters of 
controller and simulate its performance. In the initial state, when considering the 
angular coordinate of the inverted pendulum system as shown in Fig. 1, its angle 
would be treated as φ=π. Then, the challenge to transfer angle φ to 0 degrees is 
defined as the swing-up phenomenon. Besides, the trouble of oscillating an inverted 
pendulum around the equilibrium point at φ=0 is termed as the equilibrium topic. It 
is considered that our target is to balance an inverted pendulum under random 
disturbance conditions. Later, this controller would cause the response of the 
inverted pendulum to oscillate around the position from 0° to 90°. 
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Fig. 1. Theoretical principle of the inverted pendulum (b). 

 
We assume that the inverted pendulum is uniform and has its CoG (Center 

of Gravity) at the center of the bar. Releasing the link and analyzing the impact 
dynamics, the acting forces in the system can be shown in Fig. 2. By ignoring the 
friction force, we analyze the forces on the cart and the pendulum and obtain the 
equations of motion in the horizontal direction: 

𝑀𝑀𝑥̈𝑥 + 𝑁𝑁 = 𝐹𝐹      (1) 
where: N is the acting force in the horizontal direction, F is the external 

force and x is the position of cart. Summing up the horizontal forces, we achieve 
𝑁𝑁 = 𝑚𝑚𝑥̈𝑥 + 𝑚𝑚𝑚𝑚𝜑̈𝜑 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) −𝑚𝑚𝑚𝑚𝜑𝜑2̇ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑)    (2) 

From equation (1) and (2), we have 

(𝑀𝑀 + 𝑚𝑚)𝑥̈𝑥 + 𝑚𝑚𝑚𝑚𝜑̈𝜑 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) −𝑚𝑚𝑚𝑚𝜑𝜑2̇ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) = 𝐹𝐹   (3) 

𝐹𝐹 
𝑥𝑥 

𝑁𝑁 

𝑃𝑃 
 

𝑁𝑁 
𝑃𝑃 

𝐼𝐼𝜑̇𝜑2 

𝐼𝐼𝜑̈𝜑 

 

(a) Acting forces on the cart (b) Acting forces in the inverted pendulum system 

Fig. 2. Analysis of the acting forces on the cart (a) and in the inverted pendulum system (b). 
 
Considering that the acting force is perpendicular to the pendulum as Fig. 2 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜑𝜑) + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜑𝜑) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜑𝜑) = 𝑚𝑚𝑚𝑚𝜑̇𝜑 + 𝑚𝑚𝜑̈𝜑 cos(𝜑𝜑)  (4) 
Total moment at the center of the bar, we have 

−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜑𝜑) − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜑𝜑) = 𝐼𝐼𝜑̈𝜑    (5) 
where I: inertial moment which is measured by the mass centre of this system 
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From equation (4) and (5): 
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝜑̈𝜑 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜑𝜑) = −𝑚𝑚𝑚𝑚𝑥̈𝑥 cos(𝜑𝜑)   (6) 

Equation (3) and (6) describe the relative motion in this system. Angle 𝜑𝜑 
is assumed to be small, above equations could be approximated as below  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 1       

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝜑𝜑       

𝜑̇𝜑2 ≈ 0       

At that time, the system of equations can be represented as follows 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝜑̈𝜑 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑚𝑚𝑚𝑚𝑥̈𝑥     (7) 

(𝑀𝑀 + 𝑚𝑚)𝑥̈𝑥 + 𝑚𝑚𝑚𝑚𝜑̈𝜑 = 𝑢𝑢    (8) 

To obtain the transfer function of the linearized system equations, we take 
the Laplace transform of the system equations with the assumption of zero initial 
conditions. 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)Φ(𝑠𝑠)𝑠𝑠2 + 𝑚𝑚𝑚𝑚𝑚𝑚Φ(𝑠𝑠) = −𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)𝑠𝑠2   (9) 

(𝑀𝑀 + 𝑚𝑚)𝑋𝑋(𝑠𝑠)𝑠𝑠2 + 𝑚𝑚𝑚𝑚Φ(𝑠𝑠)𝑠𝑠2 = 𝑈𝑈(𝑠𝑠)  (10) 

Solving the first equation for 𝑋𝑋(𝑠𝑠): 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝜑̈𝜑 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑚𝑚𝑚𝑚𝑥̈𝑥 (1) 

(𝑀𝑀 + 𝑚𝑚)𝑥̈𝑥 + 𝑚𝑚𝑚𝑚𝜑̈𝜑 = 𝑢𝑢 (2) 

To obtain the transfer function of the linearized system equations, we take 
the Laplace transform of the system equations with the assumption of zero initial 
conditions. 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)Φ(𝑠𝑠)𝑠𝑠2 + 𝑚𝑚𝑚𝑚𝑚𝑚Φ(𝑠𝑠) = −𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)𝑠𝑠2                          (9) 

(𝑀𝑀 + 𝑚𝑚)𝑋𝑋(𝑠𝑠)𝑠𝑠2 + 𝑚𝑚𝑚𝑚Φ(𝑠𝑠)𝑠𝑠2 = 𝑈𝑈(𝑠𝑠)                                     (10) 

Solving the first equation for 𝑋𝑋(𝑠𝑠): 

𝑋𝑋(𝑠𝑠) = �𝐼𝐼+𝑚𝑚𝑙𝑙2

𝑚𝑚𝑚𝑚
− 𝑔𝑔

𝑠𝑠2
� Φ(𝑠𝑠)                                                         (11) 

Substituting equation (11) into equation (10) 
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(𝑀𝑀 + 𝑚𝑚) �𝐼𝐼+𝑚𝑚𝑙𝑙2

𝑚𝑚𝑚𝑚
− 𝑔𝑔

𝑠𝑠2
�Φ(𝑠𝑠)𝑠𝑠2 + 𝑚𝑚𝑚𝑚Φ(𝑠𝑠)𝑠𝑠2 = 𝑈𝑈(𝑠𝑠)                 (12) 

We have the transfer function 

Φ(𝑠𝑠)
𝑈𝑈(𝑠𝑠) =  

𝑚𝑚𝑚𝑚
𝑞𝑞 𝑠𝑠2

𝑠𝑠4 − (𝑀𝑀 + 𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞 𝑠𝑠2

                                                       (13) 

Hence,  

𝑞𝑞 = [(𝑀𝑀 + 𝑚𝑚)(𝐼𝐼 + 𝑚𝑚𝑙𝑙2) − (𝑚𝑚𝑚𝑚)2]                                           (14) 

From above transfer function, both zeros and poles locate at origin, it can be 
re-written as  

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠) =
Φ(𝑠𝑠)
𝑈𝑈(𝑠𝑠) =

𝑚𝑚𝑚𝑚
𝑞𝑞 𝑠𝑠

𝑠𝑠3 − (𝑀𝑀 + 𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞 𝑠𝑠

           �
𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁
�               (15) 

The transfer function with cart position X(s) as output can be derived in a 
similar way, we get  

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠) =
𝑋𝑋(𝑠𝑠)
𝑈𝑈(𝑠𝑠) =

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝑠𝑠2 − 𝑔𝑔𝑔𝑔𝑔𝑔
𝑞𝑞

𝑠𝑠4 − (𝑀𝑀 + 𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞 𝑠𝑠2

           �
𝑚𝑚
𝑁𝑁
�             (16) 

 

On the other hand, the modeled system can be represented as a state space 
𝒙̇𝒙 = 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝑢𝑢 + 𝑓𝑓(𝑡𝑡) with  

𝒙𝒙 = [𝑥𝑥 𝑥̇𝑥 𝜑𝜑 𝜑̇𝜑 ]𝑇𝑇     

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
0 1 0 0
0 −�𝐼𝐼+𝑚𝑚𝑙𝑙2�

𝐷𝐷
𝑚𝑚2𝑔𝑔𝑙𝑙2

𝐷𝐷
0

0 0 0 1
0 −𝑚𝑚𝑚𝑚

𝐷𝐷
𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀+𝑚𝑚)

𝐷𝐷
0⎦
⎥
⎥
⎥
⎤

     

𝑩𝑩 = �0 𝐼𝐼+𝑚𝑚𝑙𝑙2

𝐷𝐷
0 𝑚𝑚𝑚𝑚

𝐷𝐷
 �
𝑇𝑇
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with       𝐷𝐷 = 𝐼𝐼(𝑀𝑀 + 𝑚𝑚) + 𝑀𝑀𝑀𝑀𝑙𝑙2 
where 𝑓𝑓(𝑡𝑡): random disturbance acting on this system in the range of 𝛿𝛿𝑓𝑓, 𝑢𝑢: 

control signal from cart. 

4. The proposed approach  

A. Design of PID controller 

Generally, a Proportional Integral Derivative (PID) controller is a feedback 
loop mechanism widely used in industrial control systems as shown in Fig. 3. It is 
one of the most favorite controllers in the feedback control systems. The PID 
scheme computes the error by taking the difference between the measured value of 
the variable parameter and the desired value. By adjusting these parameters, the 
PID controller tries to reduce that error to a minimum value. 

The computational algorithm of this controller includes three separated 
parameters, and is therefore sometimes named as three-stage control: proportional 
(P), integral (I), and differential/derivative (D). The proportional value affects the 
current error, the effect of integral value is on the sum of previous errors, and the 
derivative value impacts the rate of change of the error. The combination of these 
three influences is used to regulate the process through the control element. This 
clarifies the timing relation such that P stage depends on the current error, I stage is 
subject to the accumulation of past errors, and D stage predicts future errors based 
on the current rate of change. 

In detail, PID controller can only control one parameter of the system. To 
manipulate both the pendulum angle and the position of vehicle at the same time, 
two PID controllers must be used. In which, one is considered as main controller 
and directly controls the motor torque, while the other parameter applies to the 
impact of the reference point of the main parameter. Two input signals are fed into 
the PID controller and the output signal is the force acting on the vehicle. To ensure 
the pendulum is stable, it is necessary to use a feedback controller. This adds system 
information to the output data. 

The proportional, integral, and derivative stages are added together to 
evaluate the output of the PID controller. The output of the controller 𝑢𝑢(𝑡𝑡) is defined 
as the final expression of the PID algorithm  
where 

Proportional gain (𝐾𝐾𝐾𝐾): The larger the value is, the faster the response is. 
Hence the larger the error is, the larger the proportional compensation achieves. A 
proportional gain value that is too large, would lead to process instability and 
oscillation. 
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Integral gain (𝐾𝐾𝐾𝐾): The larger the value, the faster the steady-state error is 
eliminated. However, this results in a greater overshoot: any negative error 
integrated during the transient response must be compensated by positive error 
before reaching a steady state. 

 
Fig. 1 Block diagram of PID controller 

 
Derivative gain (𝐾𝐾𝐾𝐾): The larger the value, the more it reduces overshoot, 

but it also slows down the transient response and can lead to instability due to the 
amplification of noise in the differentiation of the error signal. 

B. Design of the ultimate period  

In the early 1940s, the critical period method was first introduced by Nichols 
and Ziegler [17]. The term ultimate is utilized with this method since it requires 
determining the ultimate gain 𝑲𝑲𝑼𝑼 (or ultimate proportional band 𝑷𝑷𝑷𝑷𝑼𝑼). It is the 
maximum gain (or maximum proportional band) at which the process remains 
stable. The ultimate period 𝑷𝑷𝑼𝑼 is the oscillating period of the process with the gain 
or proportional band at its highest value (critical value). To identify the ultimate 
gain 𝑲𝑲𝑼𝑼 or the ultimate proportional band 𝑷𝑷𝑷𝑷𝑼𝑼, the controller must be operated in 
proportional mode (P-mode). Fig. 4 shows the response of a control system at the 
value 𝑲𝑲𝑼𝑼 or 𝑷𝑷𝑷𝑷𝑼𝑼. This diagram exhibits the measured variable oscillating at a fixed 
amplitude and frequency which is named the critical frequency. 

A 360° phase shift exists in the control system. The amplitude of oscillation 
is constant. Therefore, the system gain is 1 approximately, which is the ultimate 
gain (or ultimate proportional band). In other words, it is the time from when the 
controlled variable upsurges to reach its maximum amplitude until it falls back and 
then rises again to reach the maximum amplitude. These two pieces of information 
are then deployed in formulas to compute the P, I, and D parameters for the 
controller in different modes. To find the value of 𝑲𝑲𝑼𝑼 and 𝑷𝑷𝑷𝑷𝑼𝑼, the system must 
be measured, and the process characteristics should be observed. 
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Fig. 2 Description of the control system at the 
ultimate gain 𝑲𝑲𝑼𝑼 or ultimate proportional band 𝑷𝑷𝑷𝑷𝑼𝑼 

Fig. 3 Response of the measured variable in 
respect to disturbance 

 
Algorithm 1: 

1: Switch the controller to manual control mode (MANUAL) 
2: Set the parameters of controller in proportional mode, it means that 

𝐾𝐾𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣;  𝑇𝑇𝐼𝐼 = ∞ 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝐷𝐷 = 0) 
3: Insert the setting value SV 
4: Adjust MV in order to stabilize PV with the value of SV at step 3 
5: Switch the controller to automated control mode (AUTOMATIC) 
6: Establish disturbance by increasing SV about 5% 

 
By observing the response of the measured variable PV, its performance 

may fail to one of three cases as below:  
Case 1: if PV variable continuously goes up as curve B shown in Fig. 5 then 

decrease the proportional gain 𝐾𝐾𝑃𝑃. Consequently, this system is controlled by 
updating 𝐾𝐾𝑃𝑃 in the procedure from step 1 to step 5 until the response of PV variable 
has a sinusoidal oscillation shape. 

Table 1  
List of parameters for PID controller by using the ultimate period method 

Control 
mode 𝑲𝑲𝑷𝑷 𝑷𝑷𝑩𝑩 𝑻𝑻𝑰𝑰 𝑹𝑹𝑹𝑹𝑹𝑹 𝑻𝑻𝑫𝑫 

P 0.5𝐾𝐾𝑈𝑈 2𝑃𝑃𝑃𝑃𝑈𝑈  ∞ 0 0 

PI 0.45𝐾𝐾𝑈𝑈 2.2𝑃𝑃𝑃𝑃𝑈𝑈 
𝑃𝑃𝑈𝑈
1.2

 
1.2
𝑃𝑃𝑈𝑈

 0 

PD 0.6𝐾𝐾𝑈𝑈 1.66𝑃𝑃𝑃𝑃𝑈𝑈 0 - 
𝑃𝑃𝑈𝑈
8

 

PID 0.6𝐾𝐾𝑈𝑈 1.66𝑃𝑃𝑃𝑃𝑈𝑈 
𝑃𝑃𝑈𝑈
2

 
2
𝑃𝑃𝑈𝑈

 
𝑃𝑃𝑈𝑈
8

 
RPM (repeats per minute) 

Case 2: If the oscillation of the controlled variable is gradually decreasing 
as curve A shown in Fig. 5, it means that this system would be stabilized. Thus, the 
proportional gain 𝐾𝐾𝑃𝑃 needs to be augmented. At that moment, control the system 
with the new 𝐾𝐾𝑃𝑃 value from steps 1 to 5 until the response of PV takes on a 
sinusoidal shape. 
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Case 3: If the response of the measured variable has a sinusoidal oscillation 
as shown in Fig. 4, the value of the proportional gain 𝐾𝐾𝑃𝑃 is restored. This value is 
the ultimate gain 𝑲𝑲𝑼𝑼, and the ultimate period 𝑷𝑷𝑼𝑼 is also identified from the graph. 
Due to these values of both 𝑲𝑲𝑼𝑼 and 𝑷𝑷𝑼𝑼, we can compute the controller settings as 
Table 1. 

It is noted that the formulas for estimating these settings do not produce 
perfect results. However, using those raw values as a basis for fine-tuning the 
parameters would achieve the best results for the controller. 

5. Results of study 

To validate the effectiveness and feasibility of our approach, several 
numerical simulations have been conducted. The system parameters for theoretical 
model of the inverted pendulum are launched in Simulink/Matlab as Table 2. Our 
host computer includes CPU Intel Core i7 gen 10 up to 5.4GHz, 16 core 24 thread, 
24MB cache, 16GB 3200MHz DDR4, OS Windows 10 Professional. The system 
response of the cart regarding its position and the system response of the pendulum 
regarding its rotation angle are sampled. In both cases, the proposed algorithm is 
deployed to drive the pendulum from its initial position at 𝜑𝜑 = 𝜋𝜋 to oscillate around 
the equilibrium point 𝜑𝜑 = 0 within 15 seconds, and then move to the position 𝜑𝜑 =
 𝜋𝜋/2 in the next 15 seconds. 

Table 2  
List of the system parameters for the inverted pendulum 

Description Value 

Weight of pendulum [𝑚𝑚, 𝑘𝑘𝑘𝑘] 0.1 

Weight of cart [𝑀𝑀, 𝑘𝑘𝑘𝑘] 1 

Distance from the center of pendulum to origin [𝑙𝑙,𝑚𝑚] 0.25 

Inertial moment of pendulum [𝐼𝐼, 𝑘𝑘𝑘𝑘𝑘𝑘] 0.0021 

Gravitational acceleration [𝑔𝑔,𝑚𝑚/𝑠𝑠2] 9.81 

Additionally, to imitate the practical scenario, the noise condition is added 
when simulating. In the initial stage, several simulations of the response, control 
signal values, and phase trajectories are presented in the absence of external 
disturbances. Under the influence of random external forces within a 20% range, 
the response of inverted pendulum must suffer them. Similar to the case without 
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noise, the initial position of the pendulum is subjected to the proposed algorithm to 
bring the pendulum to the equilibrium position oscillating around 𝜑𝜑 = 0. 
5.1 Results of preliminary simulations 

PID control mode: 𝑲𝑲𝑼𝑼 = 25% and 𝑷𝑷𝑼𝑼 = 76s then this system reaches to the 
stable condition after 2,5 second with offset = 0 as Fig. 6. 

 
 

Fig. 4 Result of system response with PID control mode 
 
PD control mode: In the same situation such 𝑲𝑲𝑼𝑼 = 25% and 𝑷𝑷𝑼𝑼 = 76s, our 
pendulum still stabilizes but high value of offset, angular error is approximately 10 
degrees in the first 15 second and 30 degrees in next 15 second as Fig. 7. 
PI control mode: Correspondingly, 𝑲𝑲𝑼𝑼 = 25% and 𝑷𝑷𝑼𝑼 = 76s, the proposed system 
is stabilized absolutely as Fig. 8. 
5.2 Tuning procedure 

Since the PID control mode produces the desired results, it means that the 
pendulum is stable at 0° and 90° during the simulation period. As a result, there is 
no need to tune the controller in this mode. However, the simulation results in PD 
mode indicate that the steady-state error is still high, so tuning the parameters of 
this controller is necessary to achieve better results.  
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Fig. 5 Result of system response with PD control mode 

 

 
Fig. 6 Result of system response with PI control mode 

Table 3  
List of tuning parameters for our controller 

No. 𝑲𝑲𝑼𝑼 𝑲𝑲𝑷𝑷 𝑲𝑲𝑫𝑫 offset 𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (s) 

1 25 41.5 9.5 ≈ 25° ≈ 1 

2 50 83.0 9.5 ≈ 10° ≈ 1 

3 75 124.5 9.5 ≈ 7° ≈ 1 

4 100 166.0 9.5 ≈ 5° ≈ 1 
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Due to the fact that the steady-state error (offset) is mainly influenced by 
the gain factor 𝑲𝑲𝑼𝑼, only 𝐾𝐾𝑃𝑃 is tuned while maintaining the unchanged value of 
derivative term 𝐾𝐾𝐷𝐷. The parameters for simulation after tuning the PD controller are 
shown in Table 3 
 

 
Fig. 7 Result of system response with PD control mode (tuning 𝑲𝑲𝑼𝑼 = 50%) 

 

 
Fig. 8 Result of system response with PD control mode (tuning 𝑲𝑲𝑼𝑼 = 75%) 
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Fig. 9 Result of system response with PD control mode (tuning 𝑲𝑲𝑼𝑼 = 100%) 

 
From the provided table 3 and the responds of the system shown at Fig. 9, 

Fig. 10, and Fig. 11, we can observe that the parameter 𝐾𝐾𝑈𝑈 increases progressively 
from 25 to 100, while the corresponding offset decreases from approximately 25° 
to 5°. This suggests that as 𝐾𝐾𝑈𝑈  increases, the system's error (represented by the 
offset) becomes smaller, indicating improved accuracy in the control response. 
Despite the changes in 𝐾𝐾𝑈𝑈 the time to reach steady-state (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 )remains constant 
at approximately 1 second for all cases. This indicates that increasing 𝐾𝐾𝑈𝑈 improves 
the precision of the system by reducing the offset without affecting the speed of 
stabilization. 

6. Conclusions 

In this paper, we investigated a new method for controlling an inverted 
pendulum system on a cart by integrating a PID control law with the ultimate period 
method. Utilizing linear matrix inequalities, the pendulum system was modeled and 
linearized based on small oscillation angles within a range of ±10°. Simulation 
results demonstrated that the controlled system responds stably under both PID and 
PD control modes, even in the presence of random disturbances. The tuning of the 
PID controller parameters in PD mode was performed to optimize performance and 
minimize control errors. These findings provide a strong foundation for applying 
this method to real-world systems, especially in noisy environments. 
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Limitations of the Study 
Despite the promising results, the study has certain limitations. The 

linearization of the pendulum system was based on small oscillation angles, which 
may not accurately capture the system's behavior under larger deviations. 
Additionally, the simulations were conducted under ideal conditions, and factors 
such as model uncertainties, parameter variations, and external disturbances were 
not fully explored. The control method's performance in a real-world setting with 
hardware imperfections and sensor noise remains to be validated. 

Prospects for Research Development 
For future research, it would be beneficial to extend the proposed control 

strategy to accommodate larger oscillation angles and to enhance its robustness 
against a wider range of disturbances and model uncertainties. Implementing the 
control approach on an actual inverted pendulum system will provide valuable 
insights into its practical applicability and effectiveness. Furthermore, exploring the 
integration of adaptive or nonlinear control techniques with the ultimate period 
method could lead to improved performance in more complex and uncertain 
environments. Investigating the scalability of this method to multi-degree-of-
freedom systems or other nonlinear control applications could also open new 
avenues for research and development in advanced control systems. 
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