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In this short comment we report on our test of the generalisation pro-

posed by Shang in [8]. Shang in [8] claims to generalise previous results developed

by Kiss and Simon in [5] and Nagy, Kiss and Simon in [7]. However, our tests

show that the proposed generalisation performs poorly for all networks proposed by

Shang, except for heterogenous networks with high average degree. While the bino-

mial closure gives good results, in that the solution of the Kolmogorov equations,

with the newly proposed rates, agrees well with the closed system, the agreement

with simulation is extremely poor.
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1. Introduction

Kiss and Simon in [5] considered the susceptible-infected-suceptible (SIS)

dynamics on a fully connected network with N nodes. The model was formulated

in terms of the master equation given by

ṗk(t) = ak−1pk−1(t)− (ak + ck)pk(t) + ck+1pk+1(t), (KE)

where pk(t) is the probability that there are k infectious nodes at time t ≥ 0, with

k = 0, 1, 2, . . . , N . Furthermore, the rates of infection, ak, and rates or recoveries,

ck are given by

ak = τk(N − k), ck = γk for k = 0, 1, . . . , N with a−1 = cN+1 = 0.

All infection and recovery processes are modelled as independent Poisson processes.

The infection rates encode all the information about the network, and the rate of

recovery is simply a rate corresponding to pooled Poisson processes. Kiss and Simon

in [5] show that rather than solving this full system, it is possible to derive a low-

dimensional ODE based on the assumption that the number of infectious nodes is
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binomially distributed. Namely, it is assumed that pk(t) is distributed binomially,
i.e. B(n, p), where n and p depend on time.

More precisely, the low-dimensional ODE is formulated for the first moment
of the distribution, and this will also involve the second moment and the third.
However, due to the assumption that pk(t) is binomially distributed, it is possible
to express the third moment in terms of the first and second. This then yields an
ODE system with 2 equations only. We briefly focus on deriving equations for the
moment. Namely, for

yj(t) =

N∑
k=0

(
k

N

)j

pk(t) or Yj(t) =

N∑
k=0

kjpk(t), (1)

whereN jyj = Yj with j = 1, 2, . . .. Deriving evolution equations for these is straight-
forward. For example, the derivative of the first moment, and in a similar way for
all other moments, can be given in function of higher-order moments upon using the
Kolmogorov equations, Eq. (KE). The derivation for the first moment is outlined
below,

Ẏ1(t) =

N∑
k=0

kṗk =

N∑
k=0

k(ak−1pk−1 − (ak + ck)pk + ck+1pk+1)

=
N∑
k=0

(kak−1pk−1 − kakpk − kckpk + kck+1pk+1).

By changing the indices of the summation, plugging in the corresponding expressions
for the transition rates ak and ck, and taking into account that a−1 = cN+1 = 0 the
following expression holds,

Ẏ1(t) =
N∑
k=0

(τ(k + k2)(N − k)− τk2(N − k)− k2γ + (k2 − k)γ)pk.

Based on our notations, see Eq. (1), the equation above reduces to

Ẏ1(t) = τNY1 − τY2 − γY1. (2)

We emphasise that this was possible due to the special form of the ak coefficients,
namely that these are quadratic plynomials in k. Using a similar procedure, the
equation for the second moment Y2 can be easily computed and is given by

Ẏ2 = 2(τN − γ)Y2 − 2τY3 + (τN + γ)Y1 − τY2. (3)

Equations (2) & (3) can be recast in terms of the density dependent moments yjs
to give

ẏ1 = (τN − γ)y1 − τNy2, (4)

ẏ2 = 2(τN − γ)y2 − 2τNy3 +
1

N
((τN + γ)y1 − τNy2) . (5)

The above equations are not closed or self-contained since the second moment de-
pends on the third and an equation for this is also needed. It is easy to see that
this dependence of the moments on higher moments leads to an infinite but count-
able number of equations. Hence, a closure is needed and below we show that it is
possible to express Y3 as a function of Y1 and Y2. The first three moments of the
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binomial distribution can be specified easily in terms of the two parameters and are
as follows,

Y1 = np (6)

Y2 = np+ n(n− 1)p2 (7)

Y3 = np+ 3n(n− 1)p2 + n(n− 1)(n− 2)p3. (8)

Using Eqs. (6) & (7), n and p can be expressed in term of Y1 and Y2 as follows,

p = 1 + Y1 −
Y2
Y1

, n =
Y 2
1

Y1 + Y 2
1 − Y2

. (9)

Plugging the expressions for p and n, Eq. (9), into Eq. (8), the closure for the third
moment is found to be

Y3 =
2Y 2

2

Y1
− Y2 − Y1(Y2 − Y1).

This relation defines the new closure, and in terms of the density dependent moments
this is equivalent to

y3 =
2y22
y1

− y1y2 +
1

N
(y21 − y2).

Using the equation for the first moment, Eq. (4), the closure at the level of second
moment yields the following approximate equation

ẋ1 = (τN − γ)x1 − τNx21.

Using the equations for the first two moments, Eqs. (4) & (5), and the closure at
the level of the third moment yields

ẋ1 = (τN − γ)x1 − τNx2,

ẋ2 = 2(τN − γ)x2 − 2τNx3 +
((

τ +
γ

N

)
x1 − τx2

)
,

where

x3 =
2x22
x1

− x1x2 +
1

N
(x21 − x2).

Hence, we have derived two approximate system, with the first and second closed
at the level of the second and third moment, respectively. It is in general true
that the higher the moment at which the closure the more likely that the resulting
approximate model performs well. We note that we used x instead of y to highlight
that the closed systems, define in term of x, are only an approximation to the exact
system given in terms of y.

The major challenge is generalising this to arbitrary networks is in finding a
correct functional form for the infection rates ak for any network in general. Kiss
and Simon [5] have shown that for homogenous random networks and based on the
random mixing argument ak can be written as

ak = τ(N − k)⟨k⟩ k

N − 1
,

where it is assumed that infectious nodes are distributed at random around suscep-
tible nodes. Our numerical experiments also show that such a formula also performs
well for Erdős-Rényi random networks. For other graphs no such immediate or
intuitive formula exists.
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Shang in [8] proposed that ak in general could be written as

ak =
τk(N − k)⟨k2⟩
⟨k⟩(N − 1)

, ck = γk for k = 0, 1, . . . , N with a−1 = cN+1 = 0,

(10)
where the network is given in terms of a degree distribution with P (k) denoting the
probability that a randomly chosen node has degree k, with k = 0, 1, 2, . . . , N − 1
for a network of size N . Moreover ⟨k⟩ =

∑
kP (k) and ⟨k2⟩ =

∑
k2P (k). While

there is not explicit explanation for this, we can heuristically explain how such a
formula could be arrived at. A newly infected node, under the assumption of random
mixing will have degree l with probability lP (l)/⟨k⟩. Hence, such a node has l
onward connections and one such links leads to a susceptible node with probability
(N − k)/(N − 1). Putting this together for a single node and averaging across all
degrees gives ∑

l

lP (l)

⟨k⟩
× l × N − k

N − 1
,

and upon multiplying this with k, the number of infectious nodes, yields

ak =
τk(N − k)⟨k2⟩
⟨k⟩(N − 1)

.

Shang then used the same procedure as above to derive a set of 2 ODEs for these
potentially more general infection term. His closed system yields

ẋ1(t) =

(
τ⟨k2⟩N

⟨k⟩(N − 1)
− γ

)
x1 −

τ⟨k2⟩N
⟨k⟩(N − 1)

x2, (11)

ẋ2(t) =

(
τ⟨k2⟩(2N − 1)

⟨k⟩(N − 1)
− 2γ

)
x2 −

2τ⟨k2⟩N
⟨k⟩(N − 1)

x3

+

(
τ⟨k2⟩

⟨k⟩(N − 1)
+

γ

N

)
x1, (12)

where the same closure applies, namely

x3 =
2x22
x1

− x1x2 +
1

N
(x21 − x2).

2. Testing Shang’s generalisation

To carry out our tests we used the same networks and parameters as give
in Shang’s paper [8]. We note that some of these choices are not natural, as the
proposed network have a very low average degree, which in general makes it very dif-
ficult to obtain good mean-field like approximation for stochastic processes unfolding
on sparse networks.

2.1. Full versus reduced/closed ODEs

Here we show that solving the master equations, Eq. (KE), directly with the
more general infection term, Eq. (10), gives good agreement with the solution of
the closed/reduced system, Eqs. (11-12). In Fig. 1, we show that for a range of
parameter values the agreement is excellent, and in line with what Shang found
in [8], which simply means that the assumption of a binomial distribution for the
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number of infected individuals at a given time is a valid approximation. However,
it does neither confirm nor invalidates the appropriateness of the choice of the new
infection rate ak, as proposed by Shang in [8]. Their appropriateness is tested via
comparing the output from the master and / or reduced equations to the average of
stochastic simulations and this is what we test next.
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Figure 1. Time evolution of the fraction infected (I/N) based on
networks with N = 1000 nodes, I0 = 10 initial infectious nodes
chosen at random, γ = 1 and τ = 1.6. Continuous lines represent
the solution of the full equations, see Eq. (KE), while the solution
of reduced model is given by Eqs. (11-12) for (�) - homogeneous
distribution P (4) = 1, (◦) - bimodal distribution P (2) = P (4) = 0.5
, (⋄) - Poisson distribution with ⟨k⟩ = 10, and (◃) - truncated power
law distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20. For all
cases there is excellent agreement between the full and reduced equa-
tions.

2.2. Comparison of Shang’s generalisation to simulation

We first generate networks with the prescribed degree distribution by using
the configuration method. This is followed by implementing the epidemic as a
continuous-time Markov Chain on these networks. This is done by using a Gillespie-
type approach [2, 3]. In this case, inter event times are chosen from an exponential
distribution with a rate given by the sum of the rates of all possible events, followed
by the choice of an event at random but proportionally to its rate.

We now move on to the crucial comparison of output based on the closed
system to results from explicit stochastic network simulations. First, we validate
our own simulations for the range of networks suggested by Shang in [8], see Table 1
for a summary. We use the pairwise [4], see Appendix 4.1, and effective-degree
models [6], see Appendix 4.2, and as shown in Figs. 2 and 3, the agreement with our
simulations is excellent. As pointed out before, the small disagreements are due to
the very small average degree of the networks used in [8]. A small average degree is
well-known to make the approximation with mean-field type models difficult. The
same figures show that the agreement improves as the average degree increases, see
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Table 1. Network models with degrees in the range 1 ≤ k ≤ 20 for
the truncated power laws and k ∈ {0, 1, 2, . . .} for the networks with
Poisson degree distributions.

Network Degree distribution ⟨k⟩ ⟨k2⟩
Homogenous/regular P (4) = 1 4 16

Bimodal P (2) = P (4) = 0.5 3 10

Poisson P (k) = ⟨k⟩k e−⟨k⟩

k! 10 110

Truncated power law (a) P (k) = 0.673k−2e−k/30 2.0406 9.6613

Truncated power law (b) P (20− k) = 0.673k−2e−k/30 17.9635 328.1197

the case of networks with homogeneous and heterogeneous degree distributions with
⟨k⟩ = k = 4 and ⟨k⟩ = 10, respectively.
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Figure 2. Time evolution of the fraction infected (I/N) based on
networks with N = 1000 nodes, I0 = 10 initial infectious nodes
chosen at random, γ = 1 and τ = 1.6. Simulations are averaged
over 20 different network realisations and 20 simulations on each of
these: homogeneous distribution P (4) = 1 (�), bimodal distribu-
tion P (2) = P (4) = 0.5 (◦), Poisson distribution with ⟨k⟩ = 10 (⋄)
and truncated power law distribution P (k) = 0.673k−2 exp(−k/30)
for 1 ≤ k ≤ 20 (◃) (simulation: black dashed line, effective degree
model: green line, compact pairwise model: blue line). We note that
the effective degree model has not been implemented for networks
with Poisson distribution due to the degrees being theoretically un-
bounded.

In Figs. 4 and 5, we plot the prevalence based on Shang’s closed model, Eqs.
(11-12), versus that from simulations. These plots show clearly that the agreement
is poor, except for heterogenous networks with relatively large average degree and
for networks with the inverted truncated power law distribution with very high de-
gree as shown in Fig. 5. Our tests significantly differ from Shang’s results and we
infer that Shang’s simulation method, which is not described in [8], is flawed or
incorrectly implemented. We point out that the results concerning the full master
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Figure 3. Time evolution of the fraction infected (I/N) based
on networks with N = 1000 nodes, I0 = 10 initial infectious
nodes chosen at random, γ = 1 and τ = 1.6. The networks
have truncated power law distribution P (k) = 0.673k−2 exp(−k/30)
for 1 ≤ k ≤ 20 (◃) and degree inverted distribution (▹), i.e.
P (20− k) = 0.673k−2 exp(−k/30). Simulations are averaged over 20
different network realisations and 20 simulations on each of these
(simulation: black dashed line, effective degree model: gree line, com-
pact pairwise model: blue line).

equation and its reduction are correct and we were able to reproduce these. How-
ever, this alone neither leads to nor guarantees agreement with results based on
simulations. In all our tests, and in line with Shang’s work, we also attempted to
time shift the prevalence, see the right panel in Fig. 4, but this did not lead to
better agreement. Moreover, a close visual inspection shows clearly that there are
fundamental differences between Shang’s closed model and simulation results and
that no amount of time shifting will lead to a better agreement. For example, the
equilibrium prevalence is very different and this again is in stark disagreement with
Shang’s results.

3. Discussion

It is our view that identifying general infectious terms ak remains a major
challenge as this is highly dependent on the structure of the network, parameters of
the disease dynamics, and more importantly on the correlations that build up during
the spreading process. It is unfortunate that this generalisation does not work and,
as we shown in [7], it is possible to try and derive semi-analytical or numerical
approximations for the infection rates. We conclude that Shang’s simulation method
is flawed and that Shang’s generalisation is not valid. We look forward to any
clarifications.
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Figure 4. Time evolution of the fraction infected (I/N) based on
networks with N = 1000 nodes, I0 = 10 initial infectious nodes
chosen at random, γ = 1 and τ = 1.6. Simulations are averaged over
20 different network realisations and 20 simulations on each of these:
homogeneous distribution P (4) = 1 (�), bimodal distribution P (2) =
P (4) = 0.5 (◦), Poisson distribution with ⟨k⟩ = 10 (⋄) and truncated
power law distribution P (k) = 0.673k−2 exp(−k/30) for 1 ≤ k ≤ 20
(◃). Simulations are black dashed lines and results based on Shang’s
model, see Eqs. (11-12), are given by the red lines.
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4. Appendices

4.1. Appendix A: Compact pairwise model

House and Keeling [4] have successfully extended the general pairwise model
of Eames and Kelling [1] to heterogeneous networks and for both SIR and SIS



Comment on “A binomial moment approximation scheme for epidemic spreading in networks” 83

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Iteration time

I/
N

Figure 5. Time evolution of the fraction infected (I/N) based
on networks with N = 1000 nodes, I0 = 10 initial infectious
nodes chosen at random, γ = 1 and τ = 1.6. The networks
have truncated power law distribution P (k) = 0.673k−2 exp(−k/30)
for 1 ≤ k ≤ 20 (◃) and degree inverted distribution (▹), i.e.
P (20− k) = 0.673k−2 exp(−k/30). Simulations are averaged over 20
different network realisations and 20 simulations on each of these.
Simulations are black dashed lines and results based on Shang’s
model, see Eqs. (11-12), are given by red lines.

models. The reduced/compact pairwise SIS model is given by:

[Ṡk] = γ([k]− [Sk])− τ [SI]
k[Sk]∑
l l[Sl]

,

[ṠI] = τ [SI]
(∑

k

k[Sk]− 2[SI]
)∑

l l(l − 1)[Sl]

(
∑

mm[Sm])2
− (τ + γ)[SI]

+γ
(∑

k

k([k]− [Sk])− [SI]
)
,

where [k] is the number of nodes of degree k. This system results from the standard
pairwise model of Eames and Kelling [1] by using the following more compact closure

[AkB] ≈ [AB]
k[Ak]∑
l l[Al]

.

We note that [Ak] stands for the expected number of nodes of degree k across the
whole network in state A, [AkB] =

∑
l[AkBl], where [AkBl] represents the number

of links of type A−B when A has degree k and B has degree l. τ is the transmission
rate and γ is the recovery rate.

4.2. Appendix B: Effective degree model

Lindquist et al. [6] formulated the SIS mean-field model base on the effective
degree approach. This model is based on keeping track of the expected number of
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susceptible and infected nodes with all possible neighbourhood combinations, Ssi

and Isi, respectively. Ssi represents the expected number of susceptible nodes that
have s connections to other susceptible nodes and i connections to infected nodes,
with similar argument for Isi.

Accounting for all possible transitions, the equations as formulated by Lindquist
et al. [6] are:

Śsi = −τiSsi + γIsi + γ
[
(i+ 1)Ss−1,i+1 − iSsi

]

+

∑M
k=1

∑
j+l=k τjlSjl∑M

k=1

∑
j+l=k jSjl

[
(s+ 1)Ss+1,i−1 − sSsi

]
,

Ísi = τiSsi − γIsi + γ
[
(i+ 1)Is−1,i+1 − iIsi

]

+

∑M
k=1

∑
j+l=k τ l

2Sjl∑M
k=1

∑
j+l=k jIjl

[
(s+ 1)Is+1,i−1 − sIsi

]
,

for {(s, i) : s ≥ 0, i ≥ 0, s + i ≤ M}, where M is the maximum node degree in the
network.
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