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NEW TOOL FOR SYSTEM IDENTIFICATION AND
PREDICTIVE CONTROL BASED ON NEURAL NETWORKS
USING LABVIEW SOFTWARE

Hamid ALSHAREEFI!, Ciprian LUPU?, Hayder ALBOUDKHAL?, Laith
ISMAIL*

In this paper, a new tool for system identification and model predictive
control (MPC) has been developed. The mathematical approximation of the model
identification was derived using the neural network theory. The emphasis of this
paper is to employ a multi-layer recurrent neural network with three layers to match
an autoregressive-moving average (ARMA) model in the identification stage to
provide the mathematical model for the model predictive controller in the control
stage. The tool was designed using LabVIEW software and the MathScript facility.
The tool can be used to identify and control simulated or real systems using the
stored input/output data of the system.

Keywords: system identification, neural network, ARMA, MPC, LabVIEW,
MathScript

1. Introduction

An artificial neural network (ANN) is part of a computing system proposed to
simulate the method by which the human brain processes and analyzes data. It is
the basis of artificial intelligence (Al) and is used to solve issues that would be
difficult or impossible for humans to solve by classical standards. ANN has the
property of self-learning, which allows improving their performance as more data
is collected. By mapping input-output data, ANN is utilized as a black-box model
to detect unknown models. An artificial neural network in identification and
control applications has been the subject of numerous books and papers [1] [2] [3]
[4]. The goal of this work is to develop a tool that includes two main parts. The
identification part, where converting the ANN model into a transfer function
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model, where will reveal more details for the dynamic behavior of the physical
system.

The second part is to use the result mathematical model of the dynamic
system in the design of the model predictive control (MPC) controller. The tool
was designed using LabVIEW software and the MathScript facility. The major
contribution of this paper is to clarify the clear and strong relation between the
transfer function parameters and the artificial neural network weights, to develop
a software tool that can estimate the mathematical model for an unknown system
with two structures, transfer function and state-space using LabVIEW software.
The identified model which approximated in this tool according to the input-
output data set was used to design a model predictive controller. The tool utilized
to estimate the mathematical model for any real or simulated system according to
the set of input-output data.

2. System identification

The process of determining the model of a dynamic system from input and
output data through minimizing an error cost function between the model output
and the real system's output is known as system identification.

The Auto-Regressive Moving-Average (ARMA) models represent the
linear regression models. The linear structure of ARMA processes also lead to a
substantial simplification of linear prediction which utilize difference equations to
link the model output to current inputs from previous outputs and previous inputs.
A general formula of a discrete-time ARMA model is illustrated in (1) [5] [6].

vik)= ayv(k—1)+ -+ a,v(k —n)+ byx(k) +-—-+ b, x(k—m) (1)

Also can be represented as:
v(k) = ZiZobix(k — i) + Zi-a;3(k — j) )

Where y(k) and x(k) represent the variables of the model’s output and input at
sample k, a; and b; are the parameters of the model. By using the z-transform, the
transfer function can be represented as in (3).
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As a vector form, equation (2) can be represented as y(k) = 8" @(k), where @(k) =
[y(k-1)...., y(k-n), x(K),..., x(k-m)] is the vector of the measurement, and & =
[ai,..., an, bo, ..., bm] is the vector of the parameters. The concept of parameter
system identification is to estimate the parameters a;, bi, to find the identified
parameter vector & = [&,..., dn, b o..., b m], Which is used to compute the
predicted output y(k) = &' @K). The main problem is to approximate the
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parameters that minimize the error between the required output y(k) and the
predicted output y(k). As shown in Fig. 1.
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Fig. 1. General block structure of system identification
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Most real systems are nonlinear in their behavior, and it demands a nonlinear
modeling method. However, because of nonlinear input-output relationships in
dynamic systems have so many structural options, identifying possible types of
these systems with suitable structural models is relatively difficult. Identification
of such models required sophisticated methods like Volterra series and
Hammerstein models [7]. Or to update the ARMA structure to involve nonlinear
elements and produce a nonlinear ARMA structure to be NARMA as in (4).

y(k) = En u box(k —i) + Yoy ay(k—j) + Zio Xl=g byx(k — ) x(k —
J]"‘Ee:i j= 1“:;1(1‘5—1]1’[-15_}] +2 DE_; 1 z_;x(k )y(k—j)

(4)
This structure added new parameters (aij, bij, and cij) which produce more
drawbacks in estimating the approximate order for each summation part.
Furthermore, this structure doesn’t follow the common transfer function in
equation (3). These difficulties make neural networks a good solution for the
modeling of nonlinear systems.

3. Neural network architecture

A neural network structure consists of multiple layers each layer can have
many neurons. These neurons are information-processing units that represent the
basis of neural networks. Two major classes of a neural network are distinct in the
literature of neural networks. Feedforward network, where the information flows
in a forward direction (from input to output). Recurrent network, which allows the
information for feedback [8]. In special cases where the entire neural network’s
input represents the delayed network’s inputs and output, this type of network can
be considered a dynamic network as shown in Fig. 2.
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Fig. 2. General structure for a Dynamic Neural network

It's also feasible to employ delayed plant output instead of network output in
feedback signals; in this scenario, the network's output will be a function of
previous outputs and inputs, like in (5).

Ver (k) = fx(k),x(k—1),...,yv(k — 1), y(k—2),..) (5)

The input samples multiplied by their relative weights, as shown in Fig. 3, for
example, win links the input variables x(k-i) with the hidden neuron h, and vjs links
the output variables y(k-j) with the same hidden neuron. The nodes in the hidden
layer produce the node outputs Ni(K) ... Nn(k) which they multiplied by the output
weights wouts ... woutn to produce the output of the network ynet(k).

Njg Wwout

Fig. 3. Neural network structure used for system identification.

In the Fig. 3 architecture, the biases were omitted to avoid introducing new inputs
to the network which may add new difficulties for model identification theory.
The mathematical representation of the network will be as follows:

}F:zar(kj = H[ Ii':r:j_ Nh(kjw‘ju’th] (6)

Ny (k) = fIZEZ o wepx(k — D) wout, + Z7oy v,y (k = )] (7)
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Where g and f represent the activation functions (transfer functions) of the output
and hidden nodes respectively. Sigmoid, tangent sigmoid or other activation
functions could be used.

Any identification problem demand to optimize a cost function that represents the
error between the system output y(k) and the network output ynet(k). The most
commonly utilized cost function is the Sum Square Error (SSE) as in (8).

SSE = L=y (e(k))? = ey (Vnee (k) — ¥(K))? (8)

Many approaches can be used to train the network by adjusting the optimal
weights, such as gradient descent as in (9).

W, = W, —al 9)

naw

Where « is the learning rate, J is the cost function which refers to the error
between the network output and the system output.

The focus of this paper is on using converged network weights for
designing a tool to mimic the original system's transfer function, rather than on
weight convergence. As a result, there will be no extensive discussion of how to
train the network weights. This has been well-documented in [1]. Linear and
nonlinear systems have been effectively identified using neural networks, because
the neural network has high approximation capabilities and adaptable
characteristics.

4. Neural network to transfer function approximation

For the transfer function approximation, an ARMA model has been used
to match the neural network architecture. The most commonly used activation
function in a neural network is the hyper tangent which gives a flat and
continuous output between +1 and -1, as well as it is simple to differentiate. As a
result, the hidden node output from equation (7) becomes:

—GRELTR

N, (k)= i:-aw (10)
nety (k) = Ll wy,x(k—i) + Z_:'I=1 ”th"(k —J) (11)
For the approximation of equation (10) it is possible to use Taylor
expansion about the ‘0’ point, as in (12)

1—en
1+el

—Zen[i—en]
r1+eh)?

Nh (kj =

+ %2’ (net, (k)—0) + (net, (k) —0)> + - (12)

For simplicity and avoiding the nonlinearities the only first two terms are used,
and equation (12) will be

N(k)=05E wyx(k—i) +0.5%L vy v(k—j) (13)
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The output neuron is
ynet(k)=X]_, (wout, N, (k)) (14)

By substituting (13) in (14) results
ynet(k) = 0.5 Tf_, [wout, [Z, wyx(k— i) + T vuy(k— ]| (15)

By comparing (15) with (2), the parameters of ARMA model can be
approximated as in (16) and (17)

d; = 0.5[Zf-, (wout,v;,)] (16)

Ei =0. 5[2;::1(“"““%“’5:1 )] (17)

Equations (16) and (17) confirm the mathematical relation between the ARMA
model parameters and neural network weights, where finally the neural network
used for the parametric system identification and transfer function approximation.
Note that, in the case of using the sigmoid activation function the parameters &
and b will be multiplied by 0.25 instead of 0.5, and there an offset factor equal to
(0.5X7_, wout;,) will be added to the final predicted output, brief explanation in
[9]. In general, the advantage of using neural networks in systems identification
rather than traditional methods, due to its capability to model nonlinear dynamic
system according to the nonlinear mapping of its structure, as well as, its
capability to adapts and training in online mode which make it very good choice
for identifying dynamic systems.

5. Model predictive control (MPC) algorithm

MPC is considered one of the advanced methods of process control, which
is considered a type of open-loop optimal control method. MPC refers to a type of
computer control algorithm that uses a linear system model to predict the future
output response of a real system is primarily based on a problem of optimization
at each time sample, k. The major purpose of this optimization issue is to find a
new control input sequence while also taking into account the system output and
input constraints [10] [11] [12]. The structure of an MPC algorithm is shown in
Fig. 4, which is organized into three essential parts:
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Reference Trajectory

Past inputs

Predicted output

Model

Future errors
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Cost function Constraint

Fia. 4. Basic structure of MPC

5.1. Model

The fundamental challenge with MPC algorithm design is that it requires a
system model, i.e., a model that specifies the system's input to output relationship.
It is possible to utilize a linear or nonlinear mathematical model generated from
physical rules or empirical data. In MPC it is supposed that the model is a discrete
state-space model as in (18).

¥ = Cx, + Dy,

Where Xk system state, yk system output, xx+1 is the predicted state, B is the matrix
of the system input, A is the matrix of the system, C is the matrix of the system
output, D is the feedforward matrix, (D is zero matrix in a case where the system
model does not have direct feedthrough).

5.2. Cost function

The MPC main concept is that it computes a vector of future control in
such a way that a cost function is minimized inside the control and prediction
horizons Nc, Np, respectively where (Nc < Np), as seen in Fig. 5.

Output set-point

Past output Predicted output

Measurements
// Control action
- T"—
K K+N, K+N, ime

Control horizon

‘ Prediction horizon )

Fig. 5. Control and prediction horizon
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For generic MIMO systems, the cost function frequently utilized in MPC is as
shown in (19) (linear-quadratic function).

J =05 —1)TQ(F— 1) + INe, AuT RAu (19)

Where Nc is control horizon, Np is prediction horizon, y is predicted system
output, r is set-point, R is control weight matrix, Q is output error weight matrix,
Au is predicted change in control value as in (20).

Ay, = uy —Up_y (20)
Where for SISO systems as in (21)

I = Zﬁzu Q'(j:? - T)z + Z::P:ur'&uz (21)

So the basic problem is to solve: S—i =0

We obtain the future optimal control input by solving this optimization issue.
5.3. Constraints

Most of the practical systems have constraints, like actuator limits, as well
as safety restrictions like pressure and temperature. Furthermore, we have
performance constraints and limitations such as overshoot. Normally, MPC
defines the following constraints:

a) Constraints in the outputs:
=y =y

L
}?J"Iii'! < TR

b) Constraints in the input and rate change of input:
Au = Au = Au

min max

u U U

min max

When determining future controls, the MPC algorithm takes all of these
limitations into considerations.

6. Software design using LabVIEW software

The LabVIEW design of the tool includes the of the Block Diagram part
and the Front Panel Page part
6.1. Block Diagram design

The Block Diagram designed with two main control tab the first control
tab for the identification algorithm and the second for the MPC controller
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a) ldentification algorithm
In this part, the algorithm of the identification has been written using the
MathScript facility in LabVIEW according to the mathematical analysis
mentioned in section 3. The architecture of ANN and the optimal hidden and
output neuron’s weight have been found using the MATLAB functions “newff()”
and “train()” as shown in Fig. 6.

NeNeNeNsNeNeNeNeNeNs NeNeNeNeNeks NeNeNeNeNeRs NaNeNaNsNeRs NeNeNaN+ e Ne Neek= ¥ Yy T s Nele N eNe NeRs NeleNeRe R Ns NeNeReNe N Rs NaNeNas e Rs NeNeN=N+NeNs N=Ne =N+ ReNek=]
w

Current VI's Path  Build Path MATLAB script|

path(path, pal;
ﬂk 2] xnew=P;
fori=Tord-1;

xnew=[xnew; [zeros(1,i) P(:N-0] ];
file path (dialog if empty) end:
fori=T:ord;
xnews=[xnew; [zeros(1,) TN-ITT;
end:
net = newff(xnew,T,H,{aa },a,223,a0a);
netbiasConnect=[0:0];
SnettrainParam.Ir = 001
nettrainParam.goal =g;
net.trainParam.min_grad = mg:
nettrainParam.me = mu;
net.rainParam.showWindow = 0;
nettrainParam.epochs = ep;
net=init(net);
net=train(net xnew,T);
ynet=sim(netxnew);
wout = netLW(2, 1}
wn = netlW{1,1};
subplot(2,2,1);
2] plot(T,b)
xlabel('Real output') i
subplot(2,2,2); ——
plot(ynet,'g); i
xlabel('Predicted output)
subplot(2,2,3);
S%subplot(?,2,[3,41);
x = D:(N-1);
xynet, 'g');
‘b Pynet, 'g);
I and Predicted output)

State-Space Model 2

=
= e-Space Mode|

nettrainParam.cpochs
0

nettrainParam.goal
0

fori= lord;
nettrainParam.me W wid=wni) Range (55)

7 end;

Fig. 6. Block diagram design of the neural network system identification tool

The nominator and denominator of the discrete transfer function that result from
the MathScript code, used to construct the transfer function of the system by using
the LabVIEW Vis “CD Transfer Function Model.vi”. As it mentioned before the
MPC algorithm relies on state-space representing, for that, a VIs “CD Convert to
State-Space Model.vi” is used to convert the transfer function model to state-
space model as shown in Fig (4).

b) MPC part

For the design of the MPC controller, a selector switch has been added for
the purpose of selecting the model that will be adopted in the MPC controller’s
calculations. There are two types of models that are selected by the selector. The
first model is the model which constructed manually through using the Vis “CD
Construct Special TF Model.vi”’ which is converted from continuous to discrete
by using the Vis “CD Convert Continuous to Discret.vi”, and then convert the
transfer function to state-space, the second model is the identified model which
derived from the identification algorithm in MathScript. As shown in Fig. 7.
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Fig. 7. Model constructing Block diagram design for MPC

Finally, implementing the MPC controller through using the Vis “CD Implement
MPC Controller.vi” as shown in Fig. 8.

Initial state (k)
[=s

Disturbance
[DBLK

time samplg o
n|
S

Fig. 8. MPC Block diagram design

6.2. Front Panel design

The front panel is designed from two main control tabs, one for the
identification and the other for the MPC controller. Each one from these two main
control tabs include sub-control tabs
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a) ldentification part

The page of identification algorithm include the following control tabs

Network parameter settings. On this page, the data input/output of
the real or simulated system is imported through the ‘file path’
window. On the same menu page, it is possible to adjust the order
of the identified system and the number of hidden neurons of the
network. Moreover, it is possible to adjust all the Neural network
settings and training options, like the activation function “tansig or
sigmoid”. Training function, which can be any of the
backpropagation training functions like “trainbfg, trainlm, trainrp
and traingd”. Learning function, which can be “learngd or
learngdm”. Performance function, which can be “mse or msereg”
[13] [14] [15]. Al these functions are MATLAB functions and
written using MathScript facility in LabVIEW as shown Fig. 9.

System identification ‘ Model peridective control |

Network parameter settings |NEtwnrkmputloulput | ‘model displaying | Frequency analysis | Nyquist analysis

file path (dialog if empty)

C\Users\iT\Desktop\New folder (41 =
tool5.csv

%

ol
El
Hidden layer activation function =4n trainPara
tansig =I1E- i
: net.rai
learning function :

learngd
Backprop netwark training function I (Maximum number of epochs to train. The default value is 1000)
trainbfg

performance function ’,}! 1 (Order of the identifide system)

mse

ance gradient. The default value is 1e-5)

o5 (Momentum constant. The default value is 0.9)

net.trainParam.epochs

H
i} 3 (Nr. of hidden layer neurons)

N
) 261 (Nr. of samples)

Fig. 9. Network parameter settings page

Network input/output. This page shows the vectors of input and
output data and the optimized weights as shown in Fig. 10.
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Fig. 10. Network input/output page

e Model displaying. This page shows the mathematical model result of
the identified system in transfer function and state-space representing,
as well as the chart of the input/output data curves for the real system
and the neural network output. The other chart shows the output
response of the real system and the parametric identified model as
shown in Fig. 11.

Fig. 11. Model displaying page
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e Frequency analysis. This page shows the bode plot of the frequency
response for the identified model, displaying the Bode magnitude plot
and Bode Phase plot for the identified system model as shown in Fig.
12.

Fig. 12. Frequency analysis page

e Nyquist analysis. This page shows the Nyquist plot and data for the
identified system model as shown in Fig. 13.

Fig. 13. Nyquist analysis page
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b) MPC part

The page of identification algorithm includes the following control tabs
e MPC response

This page includes the data entry of the prediction and control
horizon, selector to select between the model-based from the MPC
algorithm, either from the manually setting transfer function or
from the identified model transfer function, in addition to the chart
to display the output response of the system output with MPC
control and the control input action as shown in Fig. 14

0 10 20 30 4 50 60 70 & 9
Time [s]

B T T T Y N T N T T N
0 10 20 30 40 50 6 70 80 9%
Time [5]

Fig. 14. Front Panel page of MPC response

e Controller parameters
This page includes the setting of the MPC constraints (Barrier) and
the controller cost weights parameters as shown in Fig. 15.

0.0E+0

u.m n.m ‘lﬂ[*" u.m
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: i Wlonts [
C Rl gl o
o [zen 1 afo (500 150 hices Ao
0.00 0.0E+0 2 0.00

0.00 0.00 0.0E+0 0.00
.fr;m "1&. u.:nn Lm
0.00 0.00 0.0E+0 0.00
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[

A
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AR LR L

=S =S

o
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Fig. 15. Front Panel page of MPC parameters setting
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5. Results

The neural network system identification tool was tested on the proposed
second-order ARMA model as in (22). The proposed system is stimulated by a
pseudo-random binary sequence (PRBS) input signal as illustrated in Fig. 16,
which represents the LabVIEW design of the PRBS input generator and the
proposed system. The input/output data is logged and imported by the tool as
explained in Fig. 9.

y(k)=0.099+ u(k—1)— 0.082* u(k—2)+ 1.85+y(k—1) — 0.082 =
y(k—2)

|y(lc]: 0.09%*u(k-1)-0.082*u(k-2)+ 1.85%y{k-1)-0.082%y(k-2) | (2 2)

L
a7 2>
|> [Waveform Chart]
T -]
1.801 |> *
= =] .
hd L
c B [
= 0.09968
= Prb |>
Ths time 'r s " b
=3 08159 - s
. . spab
iteration spap
i e .
n L
J systime
3 *
e
terati
eration = __

Fig. 16. PRBS signal generator and ARMA system model by LabVIEW

The test showed very good results in terms of estimation accuracy and the
matching between the proposed system and the identified model. Fig. 17 shows
the input signal which stimulated the supposed system and the output response of
the original system with the neural network output.

137 Input e |
§ 1= Real systern |
%_ Mrnet
E 5 i
<L O.S_

0- 1 1 (|

02:03 02:04 02:04 02:
Time

Fig. 17. Output response of the original system with neural
network output

Fig. 18 illustrates the output of the supposed system with the parametric
ARMA identified model which is illustrated in (23). It is clear from Fig. 17, Fig.
18, and equation (23), that the identified model, approximately matches the
original system with high accuracy.
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y(k)=0.1028 *u(k— 1) —0.0845 s u(k—2)+ 1.701 = y(k— 1) —
0.7187 = y(k— 2)

(23)
L5 Real system rav
:§ i k_parametricmodel Fas
- 0.5'
0-) 1 | I
02:03 02:04 02:04 02:04

Time
Fig. 18. Output response of the original system with an
estimated parametric model

Another third-order ARMA model was proposed to show the capability of the
neural network to model high order system as in (24).

y(k)=0.0143 u(k— 1) —0.0923 s u(k—2)+ 0.1183 s u(k—3) +

0.998 * y(k—1)+0.653+y(k—2)+0.4724 = y(k—3)
(24)

. Input W
Real systemn ’K

Amplitude

0 50 100 150 ?_{I)D P_EILD 205
Time
Fig. 19. Output response of the original system with neural
network output

Fig. 19 shows the input signal which stimulated the supposed system and the
output response of the original system with the neural network output.

'y Real system Y,
1.5- :
Y . Parametric model [
a=l
g -
-
E 0.5-
=
0_
0.3+ 1 1 1 1 1 1
0 50 100 150 200 250 295
Time

Fig. 20. Output response of the original system with an
estimated parametric model
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Fig. 20 illustrates the output of the proposed third-order system with the
parametric ARMA identified model which is illustrated in (25). It is clear from
Fig. 19, Fig. 20, and equation (25), that the identified model, approximately
matches the original system with high accuracy.

v(k)=0.00843* u(k—1)— 0.0123*u(k—2)+0.203+«u(k—3) +
0.198+y(k—1)+0.951+y(k—2)+ 0.205 = y(k—3)
(25)

For the sake of result confirmation table 1 shows some statistical data
regarding the results of the neural network model when the network structure and
ARMA model were changed (for the first example). The model order was
changed from 2 to 3 and the number of hidden neurons was changed from 3 to 4.
These changes were applied to examine the proposed tool with different
conditions and aspects to generate some statistical data. In all cases, a linear
activation function was utilized in the network output layer, and the hyper tangent
activation function was utilized to activate the neurons in the hidden layer

Table 1
Statistical data of the identified neural network model
Model order | No. of hidden MIN MAX Average Variance
neurons
3 0.000116 0.019676 -0.03789 0.002551627
Second 4 0.000354 0.023991 -0.03394 0.002479
3 0.000354 0.023991 -0.00052 0.002479
Third 4 3.9E-05 0.012211 -0.0339 0.002765306

Regarding the control part, Fig. 21 shows the perfect effect of the designed
MPC controller on the proposed system through the setpoint tracking and
overshoot eliminating. To examine the robustness of the controller, a disturbance
input was added to the system output in seconds 30 and 70, respectively, and it’s
clear from Fig. 19, the small effect of the disturbances on the output response of
the system was rejected rapidly through the high and fast response of the MPC
controller
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Fig. 21. Output response of the simulated system with MPC

6. Conclusions

A neural network as an important part of artificial intelligence theories has
been utilized in a variety of practical applications. Researchers have had a lot of
success using neural network models in system identification and control
applications. These network models, on the other hand, hide the system's
parametric information within their architecture. This paper showed a design of a
software tool for solving the system identification problem using LabVIEW
software, getting into consideration the advantage of MATLAB neural network
functions through the MathScript facility, and using the identified model in the
design of the MPC controller. This tool can transform the weights of the neurons
in a multi-layer neural network to an estimated transfer function for any real or
simulated system through the import of the input-output data of the system and
can be used to discover important information about the estimated system with
some reliable options like the order of the identified system and the number of the
hidden neurons and some other training options. Testing the tool involved
estimating an arbitrary second-order system and showing the comparison between
the neural network output and the output of the proposed system with the output
of the parametric estimated system. For this example, a table of some statistical
data is illustrated regarding to the results of the neural network model when the
network structure and ARMA model were changed. These changes were applied
to examine the proposed tool with different conditions and aspects. A third-order
system was examined to show the capability of the neural network to model high-
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order systems. The test showed very good results in terms of the estimation
accuracy and the matching between the proposed systems with the identified
models, regarding to system identification problem. Regarding to the control
problem, the MPC controller which implemented by the VIs LabVIEW functions
showed a perfect setpoint tracking and high robustness due to the fast disturbance
rejecting. The tool can be developed in the future for more identification
requirements and with more comprehensive features to achieve some functionality
requirements of any simulated or real-time identification and control application.

REFERENCES

[1]. S. Haykin, Neural Networks and Learning Machines 3rd edition. Prentice Hall 2008.

[2]. B. Haznedar, A. Kalinli, "Training ANFIS structure using simulated annealing algorithm for
dynamic systems identification, Neurocomputing,” 2018, Pages 66-74,
https://doi.org/10.1016/j.neucom.2018.04.006.

[3]. O.lsaac Abiodun, A. Jantan, A. Omolara, K. Dada, N. Mohamed, H.a Arshad, "State-of-the-
art in artificial neural network applications: A survey,"” Volume 4, Issue 11, 2018, ISSN
2405-8440, https://doi.org/10.1016/j.heliyon.2018.e00938.

[4]. H. Demuth, M. Beale. And M. Hagan. Neural Network Toolbox 6 User’s Guide Mathworks
2009.

[5]. Landau ID, Zito G., Digital control systems. London: Springer; 2006.

[6]. WANG, Chen, et al. Auto-regressive moving average parameter estimation for 1/f process
under colored Gaussian noise background. Journal of Algorithms & Computational
Technology, 2019, 13: 1748302619867439.

[7]. G. Franklin, J. Powel and M. Workman, Digital Control of Dynamic Systems. 3rd edition
Ellis-Kagle Press 1998.

[8]. SN. Kumpati. P. Kannan,“Identification an control of dynamical systems using neural
networks”, IEEE transactions on neural networks. VOL. I. NO. |. March 1990.

[9]. T. A. Tutunji “Approximating transfer functions using neural network weights,”2009 4th
International IEEE/EMBS Conference on Neural Engineering, 04 2009.

[10]. M. Norambuena, J. Rodriguez, Z. Zhang, F. Wang, C. Garcia and R. Kennel, "A Very Simple
Strategy for High-Quality Performance of AC Machines Using Model Predictive Control,"
in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 794-800, Jan. 2019, doi:
10.1109/TPEL.2018.2812833.

[11]. G. Marafioti,“Enhanced Model Predictive Control: Dual Control Approach and State
Estimation Issues,” Doctoral theses at NTNU, 2010:235, ISBN 978-82-471-2462-8, ISSN
1503-8181.

[12]. Rawlings, J.B., Mayne, D.Q., and Diehl, M.M,“Model Predictive control:Theory,
Computation, and Design, Second Edition” (2017). Nob Hill Publishing.

[13]. Hans-petter Halvorsen, “Tutorial on Model Predictive Control in LabVIEW?”, Department of
Electrical Engineering, Information Technology and Cybernetics, Telemark University
College, 2011.



110 Hamid Alshareefi, Ciprian Lupu, Hayder Alboudkhal, Laith Ismail

[14]. K. Deepak, K. R. Sharma and T. Ananthan, "Model Predictive Control for rotary inverted
pendulum using LabVIEW", IOP Conference Series: Materials Science and Engineering, vol.
577, no. 1, pp. 012113, 2019

[15]. Hans-Petter Halvorsen, (2011) LabVIEW Math Script. Tutorial. Telemark University
College, Norway.

[16]. MATLAB, www.mathworks.com.
[17]. ***National Instruments, https://www.ni.com/pdf/manuals/371057g.pdf.


http://www.mathworks.com/

