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UNSUPERVISED CHANGE DETECTION IN MULTISPECTRAL
SATELLITE IMAGES USING OPTIMAL THRESHOLDING
TECHNIQUES

Anamaria RADOI!

With the constant development of satellite sensors and the existence of huge
Earth Observation data archives, unsupervised change detection techniques be-
come important for the analysis of the Earth surface dynamics. In this paper, we
present effective unsupervised change detection methods that use optimal thresh-
olding techniques and reduce the number of singular detections by considering the
degree of change in the proximity of each pixel. Additionally, we propose a simple
solution to reduce the influence of clouds, which is a common problem when deal-
ing with multispectral imagery. We also show that sample-based thresholding is
efficient in the analysis of large images.

Keywords: Unsupervised change detection, Expectation-Maximization algorithm,
optimal discriminant thresholding, cloud-contaminated multispectral data, noise.

1. Introduction

The current progress of satellite sensors leads to a great volume of high-
resolution optical images, for which precise, fast and, most important, unsupervised
algorithms have to be designed. In this sense, machine learning techniques show
promising results in this field, but, due to the specific properties of remote sensing
data, many challenges still exist (i.e., heterogeneity of the data in time and space,
absence of data, context-dependence, scarcity of land-cover changes) [1].

Usually, change detection implies the comparison of two remote sensing
images acquired over the same geographical area at two different moments of time
[2]. These changes might appear in different scenarios, such as modifications in
land use (agriculture), appearance of new buildings (urban areas), natural disaster,
flooding, forest monitoring, and so on. An unsupervised change detection algorithm
has to be able to discover changes starting only from the two available, and, often,
very large image files, without any external aid (e.g., user interaction) or additional
information regarding the distribution of the pixels.

Many change detection techniques are based on the analysis of the differ-
ence image, which is computed as the subtraction between pixel intensities of the
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two images [2]. For unchanged pixels, the corresponding values in the difference
image are significantly smaller than the values associated to changed pixels [3].
Then, the delimitation of changed pixels is done by applying a threshold over the
difference image. The threshold might be determined through an empirical search
[4], but this strategy is usually time-demanding and prone to error. In a recent paper
[5], we showed that the changes can be ranked depending on the intensity of change
suffered by the analyzed areas using binary descriptors and the Lloyd Max’s quanti-
zation algorithm. Another method to find the threshold delimiting the changes from
non-changes is to minimize the overall change detection error probability. This
can be done by using the Expectation-Maximization (EM) algorithm [3]. In the
same paper, an optimization of this solution is considered by using Markov Ran-
dom Fields (MRFs) to penalize those pixels that receive a label (change/no change)
that is different by the neighboring ones. Although effective in grouping the changes
together, the MRF technique requires a very large number of computations which
makes it unsuitable for online change detection.

The difference image can be analyzed also from the perspective Principal
Component Analysis (PCA) with the aim of finding the main directions (i.e., eigen-
vectors) of change [6]. The classification into change versus no change is performed
by applying K-means over the features extracted by projecting the neighborhood of
each pixel on these eigenvectors.

The aim of this paper is to build a simple, fast, effective, complete and unsu-
pervised change detection framework that takes into consideration various aspects
such as multispectral information, contextual change information, online change
analysis, and cloud-contaminated data. The proposed approaches use thresholding
techniques coming into two flavors: the Maximum Likelihood Estimation with Ex-
pectation Maximization (MLE-EM) and optimal discriminant thresholding (ODT).
By inserting neighboring change information into the change vector, the algorithm
is able to effectively distinguish the zones that were affected by change (i.e., grouped
changes rather than isolated ones). As a consequence, singular pixels affected by
noise, changes in illumination, digital image artifacts are not treated as change.
Moreover, a solution for change detection over very large images is envisaged by
considering sample-based versions of the proposed algorithms. This solution main-
tains a high performance level of change detection accuracy while significantly de-
creasing the average running time of the algorithm. Additionally, a pre-processing
step for the extraction of cloud-contaminated areas is included in the analysis.

The remainder of the paper is structured as follows. Section 2 introduces the
proposed methodologies and two optimizations for big data images and for cloud
contaminated data, respectively. The next section presents a set of results obtained
with the proposed methodology, along with the performances of state-of-the-art
methods. Finally, the last section concludes the paper.
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2. Proposed Change Detection Techniques

As stated already, this paper aims at providing a solution for the unsuper-
vised change detection problem in multispectral remote sensing images. In this
regard, both the multispectral and local information are taken into consideration for
each pixel. The proposed method consists in building change vectors that, in the
next stage, have to be separated in change versus no change classes. The class sep-
aration is done by finding the optimal threshold that divides the change vector space
into two multidimensional subsets. In this sense, the optimality of the thresholding
techniques is regarded from two different perspectives: the Maximum-likelithood
(ML) criterion and the discriminant criterion, respectively. The main steps of the
change detection procedure described in this paper are the following:

(1) Compute difference image (D)

(2) Apply cloud detection mask

(3) Build change vectors (CV)

(4) Find optimal thresholds that separate change from no change
(5) Retrieve final Change Detection map (CDM)

2.1. Building Change Vectors from the Difference Image

In the following, let us consider two multispectral images, I; and I, of size
W x H pixels and B spectral bands. The difference image between the two original
images, normalized between [0, 1], is defined as:

D=1 (1)

Starting from this multispectral difference image D, a three-dimensional ma-
trix W x H x B of change vectors CV can be easily derived. At each pixel location,
each change vector CV; ; contains B elements that correspond to the B spectral
bands (1 <i<W,1 < j < H). In order to take into consideration the change occur-
ring in the p X p neighborhood of each pixel, each element of the change vector is
computed as:

1 le/2] Lp/2]
CVijp=— 3, Y, Diivjijp (2)
i'==[p/2]j'==|p/2]

Generally speaking, the averaging operation recalls the moving average fil-
ter, which is the simplest and among the most widely used solutions to reduce the
level of noise in an image. Here, we employ this type of image transformation in
order to take into account the degree of change in the immediate neighborhood of
a pixel with almost no additional computational resources. After local averaging,
if change occurs, the observed pixel and those surrounding it will likely be charac-
terized by higher values in the difference image than the pixels in unchanged areas
or isolated changed pixels. Thus, a compact changed area is represented by high
values in the change vectors CV;, ;.
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2.2. The MLE-EM Approach

For the beginning, let us consider only one band of the multispectral CV
matrix, namely CV;, = [CV; ;)i ;. The change detection algorithm is applied on
each CV,, and the resulting change maps are merged into a final change detection
map CDM, as detailed below.

Following the formalism initially presented in [7] and, then, particularized
in [3], the optimal threshold that separates the values in CV,, into change and no
change classes, can be determined under the framework of the Bayesian decision
theory. In the change detection context, the MLE-EM approach can be regarded
as a method of determining an optimal separation threshold with respect to the
Maximum-Likelihood (ML) criterion.

As already known from the literature, the statistical distribution of classes in
images acquired by optical sensors follow, in most cases, a Gaussian distribution,
or it can be modeled as a mixture of Gaussian distributions [3]. In the change detec-
tion context, this means that the values of the CV}, are drawn from a mixture of two
Gaussian random variables, i.e. CV,|Q. ~ N(u.,62) and CV,|Q, ~ N(u,,c?),
where (U,0,) and (U, o.) are the mean and variance pairs of the density com-
ponents that correspond to the no change class €, and change class Q., respec-
tively. More precisely, under these assumptions, the overall posterior probability
for x € CV,, is modeled as:

po(x) = ﬁnN(an, Gr%) + ﬂcN(XWm Gcz) (3)

where 0 = [7,, 1, 07, T, lic, 02 is the set of the model parameters, whilst 7, and
7. are the unknown prior probabilities (or, mixture probabilities [8]) of classes €2,
and Q., respectively, such that m, + 7. = 1. Each component of the mixture is
represented by a Gaussian density:

1

1
N (x|, o) = —CXP{——Q(X—Hk)Z} 4)
\/2mo} 20y

with k € {n,c}. The set of statistical parameters 0 is determined iteratively us-
ing the Expectation-Maximization (EM) algorithm under the Maximum Likelihood
Estimation (MLE) framework. Each iteration ¢ > O consists of two basic steps:
(1) Expectation step (E-step). Compute the log-likelihood (i.e., the logarithm of
the posterior probability) with respect to the current values of the parameters
9;:
L(6;) = Inpg,(x) )
(2) Maximization step (M-step). The model parameters are updated such that the
log-likelihood approaches its maximum [8]. According to [7] and following the
notations in [8], the mixture probabilities, the means and the covariances for
each class k € {n,c} can be re-estimated using the following mapping between
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the new model parameters, 6, and the previous ones, 6;:

%V CkJ (x)
X
T = — (6)
2
Y () -x L G (x— )
Wp) = xeCV,, (72 __ xeCV,, %
= —2 =
o Y Cei(x) b Y Gie(x)
xeCV,, xeCV,,
where W x H is the total number of pixels in the image and {; ,(x) is:
nk,tN(x‘“kJ? sz )
G (x) = ; ®)

Zk’ nk',tN(x‘uuk',h sz’,t)

The initialization of the EM algorithm is done by dividing the pixels of CV, into
two subsets, 8,0 and 8., through a K-means pre-clustering. A rearrangement of
the initial classes might be necessary such that the centroid value of the no change
class is smaller than the centroid value of the change class (i.e., the difference pixels
have smaller values if there is no change). Then, the initial values for the means and
squared standard deviations are computed over these two subsets, whilst the prior
probabilities are derived as 7y o = card(8x o) /(W -H). Compared to the initialization
proposed in [3], the K-means initialization might speed up the convergence of the
EM algorithm [8].

After determining the estimate values for the 6 parameters, the optimal
threshold 7, that separates the two classes (i.e., change and no change) can be easily
retrieved from the condition below:

T N(To | s 6;%) = TN (T | Ue, 63) ©)

that naturally follows from the maximum likelihood rule:
n
TN (x|, 0) 2 TN (x| e, 67). (10)
C

Using equation (4) and taking the logarithm of both sides of equation (9) yields a
quadratic equation in 7;, [3]:

2

o, T,
(0F AT +2 (4% — e T, + 1807 i — 20207 n | 27

] =0 (11

Cc n}’l
that has two possible solutions, from which only the one in the interval [, L]
correctly determines the optimal threshold value.

The algorithm presented above yields one change map CDM,, per band,
with each element given by:

CDM; jp = Ticv, ;\>1,,) (12)
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where T, ;, represents the optimal EM-derived threshold that corresponds to band b
and 14 is the indicator function that maps the elements to 1 if statement A is true
and 0, otherwise. The algorithm can be easily extended to multidimensional data
by computing each element of the final change map CDM using a majority voting
rule:

CDML] — ]l{ngICDMi,j,b>g} (13)

2.3. The Optimal Discriminant Thresholding (ODT) Approach

The optimal threshold that separates change from no change can be found
using discriminant analysis. From this viewpoint, Otsu’s thresholding method [9]
performs a pool-based search to find the optimal threshold. For each possible
threshold, the method evaluates a class separability measure (i.e., the between-class
variance). Thus, the optimal threshold with respect to the discriminant criterion is
the one that maximizes the class separability measure.

For the beginning, let us consider single-band change vectors (i.e., each
CV,, is composed of only one element) that can take only L evenly-spaced values,
vi < vy < ... <. For each level u, the probability p, can be computed as the
proportion of elements equal to v,. If the threshold is fixed at level [, the class
probabilities are:

! L
W, = Z Pu @, = Z Pu (14)
u=1 u=I[+1
whereas the class mean levels are:
! L
Uy = Zvu& He = Z Vu&- (15)
u=1  On u=tt+1 P

Denoting by ur = Zﬁzl v, Pu the total mean level, the between-class variance can

be written as [9]:

0 = On(thn — r)* + O (e — pir)’? (16)

The optimal threshold v, is the ['" Tevel value for which the maximum between-
class variance is achieved. Following the steps presented for the MLE-EM ap-
proach, the ODT algorithm can be easily extended for multispectral data.

2.4. Optimization of the Approaches for Large Data Sets.

From a complexity point of view, computing the MLE’s parameter estimates
over very large images might prove to be difficult and time-consuming. A sample-
based approach can represent the solution towards the estimation of the model pa-
rameters and, thus, towards a lower computational complexity. More precisely, the
parameters can be found using a smaller subset of randomly selected pixels and,
then, the parameters can be applied over the whole dataset to compute the optimal
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threshold and generate the change detection map. According to [10], the statisti-
cal guarantees of a sample-based EM algorithm can be achieved after a relatively
small number of EM steps. Moreover, even under noise conditions (i.e., Gaussian
mixtures with low Signal-to-Noise Ratios), Balakrishnan et al. [10] prove that the
convergence of the EM algorithm can still be attained. However, estimating the
model parameters from too few samples might drive the algorithm to a non-global
MLE [10]. In this regard, a compromise between speed and performance has to be
assessed beforehand. In the following, A represents the percentage of the change
vectors selected through random sampling and used to estimate the MLE model
parameters (i.e., A = 100% means that all pixels are used). The same reasoning of
sample-based threshold derivation can be applied for the ODT method.

2.5. Removing the Influence of Cloud-contaminated Data.

Cloud contamination represents a major issue for the exploitation of optical
remote sensing images and often conducts to misleading results in change detection
because the algorithms tend to include the appearance or disappearance of a cloud
in the change class. For these reasons, the cloudy pixels need to be found and re-
moved from the analyzed data before the change detection algorithm is applied. In
order to perform cloud detection, we adopt the Fmask algorithm which has been
recently proposed in [11] and is currently one of the most successful object-based
approaches in determining cloud masks and cloud-shadow masks for multispectral
images. The Fmask algorithm is based on the computation of similarity measures
between cloud and cloud-shadow at different cloud heights, whilst the final cloud
mask is derived using the spectral variability probability and the brightness prob-
ability. However, the method assumes that the view angle of the satellite sensor,
the solar zenith angle and the solar azimuth angle are known, but this information
can be easily extracted from the metadata accompanying the satellite images. For a
more detailed description of the Fmask algorithm, we refer the reader to [11].

3. Experiments

In order to measure the performance achieved by the proposed methods,
several experiments were carried on pairs of Landsat and IKONOS images. Landsat
images are captured over Bucharest, Romania, at a spatial resolution of 30 meters.
The first pair of Landsat images (342 x 432 pixels) is captured on 14.09.1984 and
24.07.1994, respectively (Fig. 1). The second pair of Landsat images, captured on
14.09.1984 and 03.10.1994, is cloud contaminated (Fig. 2). Two major changes
occurred in this period of time, namely the construction of the Morii Lake and
the Palace of Parliament. IKONOS images (759 x 734 pixels) are captured before
and after the 2004 Indian Ocean earthquake that affected part of Thailand. Some
additional tests were performed on other Landsat pairs of images and synthetic data
from [5].
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(c) Ground truth

(d) EM (e) EM-MRF (f) PCA K-means

(g) MLE-EM approach (h) ODT approach

Fig. 1. Change detection results for the Landsat image pair — no clouds.

The results of the proposed methods (MLE-EM and ODT) are compared
against state-of-the-art methods such as EM and EM-MRF [3], PCA K-means [6]
and BRIEF [5]. In Figs. 1 and 2, several results are shown, whilst numerical results
for Landsat image pairs are provided in Table 2.

3.1. Stability of Sample-based Versions of the Proposed Techniques

In order to check the stability of the optimal thresholds when the sampled-
based versions of the proposed algorithms, 10 tests were performed for A varying
between 10% and 100% (Table 1). As expected, the standard deviation around the
optimal threshold increases when the size of the subset decreases. Compared to
the MLE-EM approach, ODT achieves a significantly higher stability because of
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(d) Cloud mask

(b) 03.10.1994 (c) Ground truth
Q

O

(g) PCA K-means

(f) EM-MRF

(h) MLE-EM approach (1) ODT approach

Fig. 2. Change detection results for the Landsat image pair — with clouds.
Table 1

The Optimal Thresholds (average + standard deviation)
Percentage of data | T;, - MLE-EM approach | 7T, — ODT approach
A =100% 0.1410 0.1137
A=70% 0.14134+0.00035 0.1137+1.39-10""7
A =40% 0.1409 4+ 0.00065 0.11374+1.39-10""7
A=10% 0.1431 4+0.00253 0.11204+0.0045

the smaller number of parameters needed to be estimated. For most of the follow-
ing experiments, we consider A = 40% as a good compromise between speed and

stability of threshold computation.



54 Anamaria Rddoi

99.2 : 005
-0-3x3
S TRl FEE! NN REET b e
7777777777777777 B ST
98.8 o _ T*oTx7
77777777777777777777777777 -7 - 9x9
98.61 o---0---k 99 11 x 11
=2 984 ! g >y A
< 1 777\ 77777 e - A - D
8 g0 ; O SRR i S ST
: 0-3x3 A A 4
o8l s 5x5 985
o75l ) ~-Tx7 R P
' ’ ©-9x9
b ---0---0---0---6---©---9
976 > 11 x 11
10 20 30 40 50 60 70 80 90 100 %80 20 30 40 50 60 70 80 90 100
Al%] A%
(a) MLE-EM approach (b) ODT approach

Fig. 3. Average overall change detection accuracy of the proposed methods for
different window sizes and various sample rates A.

3.2. Performance Assessment

We denote by N the number of pixels that are marked as unchanged in the
ground truth map (i.e., negative samples), whilst the number of changed pixels is
given by P (i.e., positive samples). Correct classifications are given by TP (true
positives) and TN (true negatives), whilst type I and II errors are denoted as FP
(false positives or false alarms) and F'N (false negatives or missed detections). The
performance of the algorithm is assessed using a set of numerical measures that are
usually used in binary classification problems:

1) correct classification rate (overall accuracy): OA = (TP+TN)/(P+N) x 100;
2) true positive rate (hit rate): HR = TP /P x 100;

3) missed rate : MR = FN /P x 100;

4) probability of false alarm : PFA = FP/N x 100.

Following the reasoning from the previous paragraph, the settings that are
used for MLE-EM and ODT are A = 40% and a window size of 7 x 7 pixels. In
general, the compactness of changed area grows with the analysis window size.
However, if the size of the window is too large, the changed area starts to lose its
sharp edges and geometry details, and spatial information might be destroyed. A
detailed analysis with respect to the selection of the window size and of the percent-
age of data used is presented in Fig. 3. The overall accuracy remains, in almost all
cases, relatively stable for these settings, representing a good compromise in terms
of compactness of the changed areas and reported accuracy.

In almost all cases presented in Table 2, the proposed methodologies achieve
high hit rate and overall accuracies, whilst keeping the probability of false alarms at
a very low level. This is explained by the inclusion of neighboring change informa-
tion which leads to a better grouping of changes than the EM method. The results
over the Morii Lake and Palace of Parliament pairs from [5] show that MLE-EM
and ODT focus more on the extraction of significant (or, major) changes, whilst
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Table 2
Comparisons of binary change detection methods
Dataset Method Overall Accuracy | Hit Rate | Missed Rate | Prob. of False Alarms
EM 98.12 47.83 52.17 0.37
EM-MRF 97.11 0.97 99.03 0
Landsat pair PCA K-Means 98.90 69.57 30.43 0.22
no clouds BRIEF 75.22 91.37 8.63 25.57
MLE-EM approach 98.88 75.36 24.63 0.41
ODT approach 98.76 77.17 22.82 0.58
EM 96.31 12.27 87.72 1.15
EM-MRF 97.18 3.41 96.59 0
Landsat pair PCA K-Means 96.44 0 100 0.65
with clouds BRIEF 74.54 91.00 9.00 26.25
MLE-EM approach 95.52 68.93 31.07 3.68
ODT approach 98.45 59.66 40.33 0.38
EM 85.34 50.91 49.09 3.95
EM-MRF 83.26 31.84 69.16 0.75
Morii Lake PCA K-Means 82.97 29.38 70.62 0.36
pair from [5] BRIEF 86.80 87.38 12.62 13.39
MLE-EM approach 80.50 28.23 71.77 0.13
ODT approach 84.38 45.84 54.16 0.53
EM 67.73 20.28 79.72 6.08
EM-MRF 70.67 34.19 65.81 9.51
Palace of Parliament | PCA K-Means 84.76 64.97 35.03 19.31
pair from [5] BRIEF 85.03 79.73 20.27 33.10
MLE-EM approach 84.50 68.93 31.07 5.53
ODT approach 84.34 62.75 37.25 3.34
EM 87.09 52.48 47.52 3.86
EM-MRF 82.61 26.07 73.93 2.60
Synthetic changes PCA K-Means 86.11 35.43 64.57 0.62
from [5] BRIEF 94.60 90.37 9.63 4.29
MLE-EM approach 92.39 100 0 9.58
ODT approach 92.20 76.71 23.29 3.74

BRIEF with two levels of quantization (¢ = 2 in [5]) divides the changes into two
groups, namely medium-to-major and minor-to-medium changes (e.g., high PFA of
BRIEF in the first two cases). In addition, MLE-EM and ODT disregard seasonal
changes, which is desirable in a binary change detection application.

In general, ODT provides more restrictive thresholds (Table 1) because the
aim is to minimize the overlap of the two clusters by minimizing their combined
spread. For this reason, MLE-EM may register more false alarms than ODT.

The cloud detection pre-processing step was applied on all images for the
proposed approaches. In the cases with no clouds, the cloud detection did not sig-
nal any cloud to remove. In cloud contaminated images as in Fig. 2, if no cloud
detection is performed, EM and PCA K-means methods mark the appearance of the
cloud as change. Removing the cloud-contaminated pixels from the change anal-
ysis and extracting context-based change vectors leads to better qualitative results
(Fig. 1 and Table 2).

Another use case scenario is presented in Fig. 4, which represent images
captured before and after the earthquake that devastated part of Thailand in 2004.
In this case, MLE-EM and ODT methods are able to automatically assess the per-
centage of the shore that practically vanished and also to detect the portions of land
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(c) MLE-EM approach (OA = 86.53%) (d) ODT approach (OA = 82.34%)

Fig. 4. Change detection results for the Thailand earthquake image pair.

that were damaged by the floods. This is one of the application scenarios in which
these methods can be successfully applied.

3.3. Robustness to Noise

The robustness of the proposed algorithms with respect to noise is tested
under the assumption of additive zero-mean Gaussian noise at different Peak Signal-
to-Noise Ratios (PSNRs). The PSNR is defined as:

H-W
5 N2
Zﬁl Zﬁil (Xz}j _Xi,j)
where we considered that the maximum intensity value of the original image is 1
and that X is the noisy correspondent of the original image X. The PSNR was varied

between 20 dB and 50 dB and the hit rate was plotted in Fig. 5. Being block-based
data analysis methods, MLE-EM and ODT outperform other pixel-based methods

7)
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Fig. 5. Performance of the proposed methods versus other methods for different
Peak Signal-to-Noise Ratios (PSNRs)
Table 3

Average running time comparisons for large image files

Change detection method | Average running time [seconds]
EM 20.83

EM - MRF 8768.1

PCA K-Means 225.74

BRIEF 42.84

MLE-EM approach 15.84

ODT approach 1.49

(EM). In the case of PCA K-means, the noise affects the directions of change, and
thus the change detection.

3.4. Average Running Time

In order to speed up the computation of optimal thresholds, the estimates of
the MLE-EM and ODT parameters can be obtained by analyzing a smaller subset
of randomly chosen change vectors. Compared to the other methods, MLE-EM
and ODT achieve the lowest execution time. By contrary, the optimization per-
formed over undirected graphical models in the case of EM-MREF or the extraction
of eigenvectors for multivariate analysis in the case of PCA K-means are both time-
consuming tasks. Nevertheless, the ODT method does not lead to a significantly
decreased computational complexity — this is due to the fact that ODT is based on
a simple computation of zero-order and first-order moments, whereas the MLE-
EM requires several iterations to compute the estimates of the model parameters.
The average running times are shown in Table 3 for pairs of Landsat images of
1000 x 1000 pixels. All the experiments were carried on a Desktop PC Intel (R)
Core (TM) 17-4770 CPU @ 3.40 Ghz having a RAM memory of 16 GB, with no
parallel processing included.
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4. Conclusions

In this paper, we have proposed two unsupervised change detection algo-
rithms based on optimal thresholding techniques, regarded from two different per-
spectives, namely Maximum-Likelihood and discriminant analysis. Incorporat-
ing change information of the neighborhood of each pixel, the proposed methods
achieve a high degree of compactness of the changed areas and also robustness
against noise interference. Moreover, two optimizations are proposed, namely a
pre-processing phase to diminish the effect of clouds and a sample-based estimation
of parameters that decreases the computational time. With high change detection
accuracy and low execution time compared to other state-of-the art methods, MLE-
EM and ODT are powerful candidates for online change detection applications.
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