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EXISTENCE, STABILITY AND WELL-POSEDNESS OF FIXED POINT

PROBLEM WITH APPLICATION TO INTEGRAL EQUATION

R. K. Sharma1, S. Chandok2

In this paper, we consider a fixed point problem related to the notion of Wb-
contraction mappings and obtained some sufficient conditions for the existence of so-

lution for such class of mappings in a framework of orthogonal F-metric space. As

applications of the obtained results, we investigate the Ulam-Hyers stability of a fixed
point problem and of a Volterra integral equation. Some illustrative examples are also

provided to support the new findings.
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1. Introduction

In the theory of Ulam’s stability, one can find the efficient tools to evaluate the errors,
that is to study the existence of an exact solution of the perturbed functional equation which
is not far from given function (see [7, 10, 16] and references cited therein). The study of the
stability of functional equations has an important role in mathematics and allied sciences
because of its many applications, for instance, in economics and optimization theory (see
[3]).

In recent years, there are many interesting generalizations (or extensions) of the metric
space concept appeared in the literature such as Czerwik [4] introduced the notion of b-
metric with a coefficient 2 and this notion was further generalized by the author in [5] with
a coefficient K ≥ 1. Matthews [15] gave the concept of partial metric space, Branciari [2]
introduced a notion of a v-generalized metric space, Khamsi et al. [13] reintroduced the
notion of b-metric as metric type, Fagin et al. [6] gave the notion of s − relaxedp metric
(see, also [14]) and thereafter many researchers gave different and wonderful concepts. Jleli
et al. [11] presented a very fascinating generalization called as F-metric space. Recently,
Gordji et al. [9] introduced the concept of an orthogonal set (briefly, O-set) and presented
some fixed point theorems in orthogonal metric spaces. Many researchers (see [8, 9, 12,
20]) proved the existence of fixed points using the concept of many interesting contraction
mappings in various abstract spaces. In this paper, we present some results for the existence
of solutions for the fixed point problem and as application to investigate the Ulam-Hyers
stability problem in the setting of orthogonal F-metric spaces. Also, some examples are
provided for the usability of the results.

2. Preliminaries

In this section, we give some notations and basic definitions to be used in the sequel.
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Definition 2.1. [9] Let X 6= ∅ and ⊥⊂ X ×X be a binary relation. If ⊥ satisfies the
following condition:

there exists $0 ∈X such that (for all κ ∈X , κ ⊥ $0) or (for all κ ∈X , $0 ⊥ κ),
then it is called an orthogonal set (briefly O-set). We denote this O-set by (X ,⊥).

Example 2.1. [9] Let X = Z. Define m ⊥ n if there exists k ∈ Z such that m = k n. It is
easy to see that 0 ⊥ n for all n ∈ Z. Hence (X ,⊥) is an O-set.

For more interesting examples see [9].

Definition 2.2. Let (X ,⊥) be an O-set. A sequence {$n}n∈N is called an orthogonal
sequence (briefly, O-sequence) if (for all n,$n ⊥ $n+1) or (for all n,$n+1 ⊥ $n).

Definition 2.3. Let (X ,⊥) be an O-set. A mapping T : X →X is said to be ⊥-preserving
if T ($) ⊥ T (κ), then $ ⊥ κ. Also, T : X → X is said to be weakly ⊥-preserving if
T ($) ⊥ T (κ) or T (κ) ⊥ T ($), then $ ⊥ κ.

It is easy to see that every ⊥-preserving mapping is weakly ⊥-preserving. But the
converse is not true (see [9]).

Let F be the set of function f : (0,+∞)→ R satisfying the following condition:

(Θ1) f is non-decreasing, that is 0 < λ < µ⇒ f(λ) ≤ f(µ)
(Θ2) for every sequence {µn} ⊂ (0,+∞), we have

lim
n→∞

µn = 0⇔ lim
n→∞

f(µn) = −∞.

Definition 2.4. [11] Let X 6= ∅, and D : X ×X → [0,∞) be a mapping. Suppose that
there exists (f, α) ∈ F × [0,∞) such that

(D1) ($,κ) ∈X ×X , D($,κ) = 0⇔ $ = κ
(D2) D($,κ) = D(κ, $), for all ($,κ) ∈X ×X .
(D3) For every ($,κ) ∈X ×X , for every n ∈ N, n > 1, and for every ($i)

n
i=1 ⊂X with

($i, $i+1) = ($,κ), we have

D($,κ) > 0⇒ f(D($,κ)) ≤ f

(
n−1∑
i=1

D($i, $i+1)

)
+ α

Then D is said to be F-metric on X, and the pair (X , D) is said to be a F-metric space.

Definition 2.5. [11] Let (X , D) be an F-metric space. A sequence {$n} is F-convergent
to $ ∈ X if {$n} is convergent to X with respect to topology TF.

Definition 2.6. [11] Let (X , D) be an F-metric space and {$n} be a sequence in X . A
sequence {$n} is said to be F-Cauchy if

lim
m,n→∞

D($n, $m) = 0.

Definition 2.7. (see [8, 17, 18]) Let (X , D) be a F-metric space and T : X →X be a self
mapping. A sequence {$n} defined by $n+1 = T ($n) = T n$0 is called a Picard sequence
based at point $0 ∈X . A self mapping T is said to be a Picard operator if it has a unique
fixed point κ ∈X and κ = lim

n→∞
T n$ for all $ ∈X .

Definition 2.8. [11] Let (X , D) be an F-metric space and {$n} be a sequence in X . A
sequence {$n} is said to be F-complete if every F-Cauchy sequence in X is F-convergent
to a certain point in X .

Definition 2.9. [11] Let (X , D) be an F-metric space and A be a non empty subset of X .
A is said to be F-compact if A is compact with respect to the topology TF on X .
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3. Orthogonal Fixed Point

To start with, we have the following notations and definitions:

Definition 3.1. Let (X ,⊥, D) be an orthogonal F-metric space ((X ,⊥) is an O-set and
(X , D) is a F-metric space).

Example 3.1. Let (X = [0, 1], D) be a F-metric space with F-metric defined as

D(p, q) =

{
e|p−q|, p 6= q

0, p = q,

for all p, q ∈ X , f(t) = −1
t , t > 0 and a = 1. Define p ⊥ q as pq ≤ p or pq ≤ q. Then for

all p ∈X , 0 ⊥ p, so (X ,⊥) is an O-set and (X ,⊥, D) is an orthogonal F-metric space.

Definition 3.2. Let (X ,⊥, D) be an orthogonal F-metric space. Then T : X → X is
said to be orthogonally F-continuous (or ⊥-F-continuous) at a ∈X if, for each O-sequence
{an} in X with an → a, we have T (an) → T (a). Also, T is said to be ⊥-F-continuous
on X if T is ⊥-F-continuous for each a ∈X .

Definition 3.3. Let (X ,⊥, D) be an orthogonal F-metric space. Then X is said to be
orthogonally F-complete (briefly, O-F-complete) if every Cauchy O-sequence is F-convergent.

Definition 3.4. Suppose that Φ denotes the family of functions ϕ : [0,∞) → [0,∞) satis-
fying following conditions:

(i) ϕ is nondecreasing
(ii) ϕn(t)→ 0 as n→∞, for t ∈ [0,∞).

Now, we give Wb−contraction which will be used in our results.

Definition 3.5. Let (X ,⊥, D) be an orthogonal F-metric space and T : X →X be a self
mapping. A mapping T is called an orthogonal Wb−contraction if there exists a ϕ ∈ Φ such
that for all $,κ ∈X , with $ ⊥ κ, D(T $,T κ) > 0 we have

D(T $,T κ) ≤ ϕ(D($,κ)). (1)

Theorem 3.1. Let (X ,⊥, D) be an O-complete orthogonal F-metric space and T : X →
X be an orthogonal Wb-contraction. Suppose that T is ⊥-preserving and ⊥-continuous. If
there exists $0 ∈ X such that $0 ⊥ T $0 or T $0 ⊥ $0, then T has a unique fixed point
in X .

Proof. Let $0 ∈ X be such that $0 ⊥ T ($0) or T $0 ⊥ $0. Take $1 := T $0, $2 :=
T $1 = T 2$0. We define sequence {$n} X by $n+1 = T $n = T n+1$0 for all n ∈
N ∪ {0}. Since T is ⊥-preserving, we have $n ⊥ $n+1 or $n+1 ⊥ $n for all n ∈ N ∪ {0}.
This implies that {$n} is an orthogonal sequence.

If there exists n0 ∈ N such that $n0+1 = $n0
, then $n0

is a fixed point of T . There-
fore, we may suppose that D($n, $n+1) > 0. Since T is an orthogonal Wb-contraction, we
have

D($n, $n+1) = D(T $n−1,T $n)

≤ ϕ(D($n−1, $n)) = ϕ(D(T $n−2,T $n−1))

≤ ϕ2(D($n−2, $n−1))

≤ ...
≤ ϕn−1(D(T $0,T $1))

≤ ϕn(D($0, $1)).
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Therefore, we have D($n, $n+1) ≤ ϕn(D($0, $1)), for all n ∈ N. Taking limit n→∞ and
using Definition 3.4, we have

lim
n→∞

D($n, $n+1) ≤ lim
n→∞

ϕn(D($0, $1)→ 0.

Hence

lim
n→∞

D($n, $n+1) = 0. (2)

Let (f, α) ∈ F × [0,∞) be such that (D3) is satisfied. Suppose that ε > 0 is given.
By (Θ1), there exists a δ > 0 such that for 0 < t < δ, we have

f(t) < f(ε)− α. (3)

We may suppose that D($0, $1) > 0. Using (2), we have lim
n→∞

D($n, $n+1) = 0. Further,

we have
m−1∑
i=n

D($i, $i+1) = D($n, $n+1) +D($n+1, $n+2) + . . .+D($m−1, $m). (4)

It implies that

m−1∑
i=n

D($i, $i+1) ≤ ϕn(D($0, $1)) + ϕn+1(D($0, $1)) + . . .+ ϕm−1(D($0, $1)). (5)

Hence, we have

m−1∑
i=n

D($i, $i+1) ≤ ϕn(D($0, $1))

1− ϕ(D($0, $1))
.

Since lim
n→∞

ϕn(D($0, $1))

1− ϕ(D($0, $1))
= 0, for a given δ > 0 there exists N ∈ N such that 0 <

ϕn(D($0, $1))

1− ϕ(D($0, $1))
< δ, for n ≥ N . Hence by (3) and (Θ1), we obtain

f

(
m−1∑
i=n

D($i, $i+1)

)
≤ f

(
ϕn(D($0, $1))

1− ϕ(D($0, $1))

)
< f(ε)− α, m > n ≥ N. (6)

Using (D3) and (6), we obtain

f(D($n, $m)) ≤ f

(
m−1∑
i=n

D($i, $i+1)

)
+ α < f(ε).

Using Θ1, we have

D($n, $m) < ε,

for m,n ≥ N. Hence {$n} is an orthogonal F- Cauchy.
Since (X , D) is an orthogonal F-complete, there exists $∗ ∈ X such that {$n} is

orthogonal F- convergent to $∗, that is

lim
n→∞

D($n, $
∗) = 0. (7)

Using the ⊥-continuity of T , we have T $∗ = lim
n→+∞

T $n = lim
n→∞

$n+1 = $∗. Thus $∗

is a fixed point of T .
Now, to prove the uniqueness of the fixed point, let κ∗ be another fixed point of T .

Then we have T nκ∗ = κ∗ for all n ∈ N. By our choice of $0, we have $0 ⊥ κ∗ or κ∗ ⊥ $0.
Since T is ⊥-preserving, we have T n$0 ⊥ T nκ∗ or T nκ∗ ⊥ T n$0 for all n ∈ N.
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Suppose that D(T n$0, κ
∗) > 0. By (D3), we have

D(T n$0, κ
∗) ≤ ϕ(D(T n−1$0, κ

∗))

≤ · · ·
≤ ϕn(D($0, κ

∗)).

Taking n→∞, we have lim
n→∞

$n = κ∗. Further, uniqueness of limit implies that $∗ = κ∗.

Hence the result. �

Corollary 3.1. Let T : X → X be a self mapping on an orthogonal F−metric space
(X ,⊥, D). Suppose that the following conditions are satisfied:

(i) X is an orthogonal F−complete;
(ii) T is ⊥-preserving and ⊥-continuous;
(iii) there exists k ∈ (0, 1) such that for all ($,κ) ∈X ×X with $ ⊥ κ, D(T $,T κ) > 0,

we have

D(T $,T κ) ≤ kD($,κ).

If there exists $0 ∈ X such that $0 ⊥ T $0 or T $0 ⊥ $0, then Then T has a unique
fixed point.

Example 3.2. Let X = [0, 3] and D : X ×X →X be the mapping defined by

D($,κ) = ($ − κ)2

for all ($,κ) ∈X ×X . Define a relation ⊥ on X by $ ⊥ κ if and only if $κ ∈ {$,κ} ⊆
X . Then (X ,⊥, D) is an O-complete orthogonal F-metric space with f(t) = ln(t) and
α = 1.

Let T : X →X be a mapping defined by

T $ =
$

2
+ 1

for all x ∈ X . Define ϕ : [0,∞) → [0,∞) as ϕ(t) = t, t ≥ 0. So it satisfies the following
conditions:

(i) ϕ is non decreasing
(ii) ϕn(t)→ 0 as n→∞, for t ∈ [0,∞).

Then T is an orthogonal Wb−contraction and has a unique fixed point.

Proof. Let T $ =
$

2
+ 1, for each $ ∈X . Consider

D(T $,T κ) =
($

2
+ 1− κ

2
− 1
)2

=
($

2
− κ

2

)2

=
($ − κ)2

4

=
D($,κ)

4
.

Therefore, D(T $,T κ) ≤ ϕ(D($,κ)). Therefore T has a unique fixed point and fixed

point of $ =
$

2
+ 1 is 2 (see Figure 1). �

Example 3.3. Let X = {$n = ln
(
n(n+1)

2

)
} : n ∈ N endowed with F-metric given by

D($,κ) =

{
e|p−q|, p 6= q

0, p = q,
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Figure 1. Graph of $ =
$

2
+ 1, showing the intersecting point (fixed

point) of curve is 2.

with f(µ) = −1
µ and α = 1. For all $n, $w ∈ X , define $n ⊥ $w if and only if (w ≥

2 ∧ n = 1). Then (X ,⊥, D) is an orthogonal F-metric space.
Define T : X →X as

T ($n) =

{
$1, n = 1

$n−1, n > 1.

Take φ(t) = t, t ≥ 0. Here D(T $n,T $w) > 0, so for every w ≥ 2, we have

D(T $1,T $w)

D($1, $w)
eD(T $1,T $w)−D($1,$w) =

e$w−1−$1

e$w−$1
e$w−1−$w

=
w − 1

w + 1
e−w < e−1.

Hence all the hypothesis of Theorem 3.1 are satisfied and T has a unique fixed point.

4. Ulam-Hyers stability

The Ulam-Hyers stability of various functional equations has been investigated by
many authors in various abstract spaces. In this section, we investigate the Ulam-Hyers
stability result using the fixed point techniques by generalizing the results of [1, 19] in the
setting of orthogonal F− metric space.

Definition 4.1. Let T : X → X be an operator on an orthogonal F− metric space
(X , D). The fixed point equation

$ = T ($), $ ∈X (8)

is Ulam-Hyers stable if there exists a strictly increasing and surjective function β : [0,∞)→
[0,∞) with β(r) = r − ϕ(r), r ∈ [0,∞), where ϕ is a non-decreasing function ϕ : [0,∞) →
[0,∞) and lim

n→∞
ϕn(t) = 0 and such that for each ε > 0 and each solution κ∗ of the inequality

D(κ,T (κ)) < ε, for each κ ∈X , there exists a solution $∗ of equation (8) such that

D(κ∗, $∗) < β−1(ε).

Definition 4.2. The fixed point problem (8) for T is said to be well-posed if it satisfies the
following conditions:
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(i) T has a unique fixed point $∗ ∈X
(ii) if for any O-sequence {$n} in X such that

lim
n→∞

D(T $n, $n) = 0,

then

lim
n→∞

D($n, $
∗) = 0.

Theorem 4.1. Suppose that all the hypotheses of Theorem 3.1 are satisfied. Then the
following conditions hold:

(a) The fixed point problem (8) is Ulam-Hyers stable, that is, if for each ε > 0 and each
solution κ∗ of the inequality D(κ, T (κ)) < ε, for each κ ∈X , there exists a solution
$∗ of equation (8) such that

D(κ∗, $∗) < β−1(ε).

(b) If {$n} is an O-sequence in X such that lim
n→∞

D(T $n, $n) = 0 and $∗ is a fixed

point of T then the fixed point problem (8) is well posed.

Proof. (a) Using Theorem 3.1, there is a unique $∗ ∈ X such that $∗ = T $∗ that is
$∗ ∈ X is solution of the fixed point equation ($ = T $). Assume that ε > 0 and
κ∗ ∈X . Using (D3), we have

f(D(κ∗, $∗)) ≤ f [D(κ∗,T κ∗) +D(T κ∗, $∗)] + α

≤ f [ε+D(T κ∗,T $∗)] + α

≤ f [ε+ ϕ(D(κ∗, $∗))] + α.

It implies that f(D(κ∗, $∗)) − α ≤ f [ε + ϕ(D(κ∗, $∗))] or f(D(κ∗, $∗)) − α ≤
f(D(κ∗, $∗)) ≤ f [ε+ϕ(D(κ∗, $∗))]. Therefore, f(D(κ∗, $∗)) ≤ f [ε+ϕ(D(κ∗, $∗))].
Hence using property of (θ1), we have D(κ∗, $∗) ≤ ε+ϕ(D(κ∗, $∗)), or D(κ∗, $∗)−
ϕD(κ∗, $∗) ≤ ε. Further, we have β(D(κ∗, $∗) ≤ ε. Hence

D(κ∗, $∗) ≤ β−1(ε),

which completes the proof.
(b) If {ξn} is an O-sequence in X such that lim

n→∞
D(T ξn, ξn) = 0 and $∗ is a unique

fixed point of T (using Theorem 3.1). From the contractive condition and triangle
inequality, we have

f(D(ξn, $
∗)) ≤ f [D(ξn,T ξn) +D(T ξn, $

∗)] + α

≤ f [D(ξn,T ξn) +D(T ξn,T $∗)] + α

≤ f [D(ξn,T ξn) + ϕ(D(ξn, $
∗))] + α,

or we have

f(D(ξn$
∗))− α ≤ f [D(ξn,T ξn) + ϕD(ξn, $

∗)].

On the same lines of above cases, we have β(D(ξn, $
∗)) ≤ D(ξn,T ξn). Taking limit

n→∞, we get

lim
n→∞

β(D(ξn, $
∗)) ≤ lim

n→∞
D(ξn,T ξn).

Therefore, lim
n→∞

β(D(ξn, $
∗)) = 0. Hence D(ξn, x

∗) = 0. This shows that the fixed

point problem (8) is well-posed.
�
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Theorem 4.2. Assume that all the hypotheses of Theorem (3.1) are satisfied. If G : X →
X be a mapping such that there exists η > 0 with

D(T ξ,G ξ) < η,

for all ξ ∈X , then for any fixed point κ∗ of G , we have

D($∗,κ∗) ≤ β−1(η).

Proof. Assume that G : X → X is a mapping such that there exists η > 0, with
D(T ξ,G ξ) < η, for all ξ ∈ X . Choose κ∗ be the fixed point of G then by triangle in-
equality, we have

f(D($∗,κ∗) ≤ f(D($∗,κ∗)) + α

≤ f(D(T $∗,Gκ∗)) + α

≤ f [D(T $∗,T κ∗) +D(T κ∗,Gκ∗)] + α

≤ f [ϕ(D($∗,κ∗)) +D(T κ∗,Gκ∗)] + α

≤ f [ϕ(D($∗,κ∗)) + η] + α.

Therefore, we have

f(D($∗,κ∗)− α ≤ f [ϕ(D($∗,κ∗)) + η],

or

f(D($∗,κ∗)− α ≤ f(D($∗,κ∗) ≤ f [ϕ(D($∗,κ∗)) + η].

Hence f(D($∗,κ∗) ≤ f [ϕ(D($∗,κ∗)) + η], D($∗,κ∗) ≤ ϕ(D($∗,κ∗)) + η, D($∗,κ∗) −
ϕ(D($∗,κ∗)) ≤ η. Therefore, we get β(D($∗,κ∗)) ≤ η, or D($∗,κ∗) ≤ β−1(η). Hence the
result. �

Remark 4.1. Let T : X → X be a self mapping on an orthogonal F− metric space
(X ,⊥, D). Suppose that the following condition are satisfied:

(i) X is an orthogonal F−complete;
(ii) T is ⊥-preserving and ⊥-continuous;
(iii) there exists k ∈ (0, 1) such that for all ($,κ) ∈X ×X with $ ⊥ κ, D(T $,T κ) > 0

we have

D(T $,T κ) ≤ kD($∗,κ∗), ($∗,κ∗) ∈X ×X .

Then the fixed point problem for T is well posed.
Indeed, T $∗ = $∗ and let $n ∈X , n ∈ N, be such that
D($n,T $n)→ 0 as n→∞. we have

f(D($n, $
∗)) ≤ f [D($n,T $n) +D(T $n, $

∗)] + α

≤ f [D($n,T $n) + kD($n, $
∗)] + α.

Since f is increasing and taking α is 0, we have

D($n, $
∗) ≤ D($n,T $n) + kD($n, $

∗).

So

D($n, $
∗) ≤ 1

1− k
D($n,T $n)→ 0 as n→∞.
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5. Stability of integral equation

Now using the theorems proved in previous section, we have the Ulam-Hyers stability
of a Volterra integral equation on [0,∞).

Consider the equation

$(t) =

∫ t

0

$(s)ds, t ∈ R+ (9)

in X = C(R+) endowed with the F−metric

D($,κ) = sup
t∈R+

| $(t)− κ(t) | .

Define the orthogonality relation⊥ on X by$ ⊥ κ ⇔ $(t)κ(t) ≥ $(t) or$(t)κ(t) ≥
κ(t) for all t ∈ R+. Then (X ,⊥, D) is an orthogonal F-metric space.

The equation (9) has in X = C(R+) a unique solution $∗ = 0. On the other hand,
we remark that κ∗(t) = εet is a solution of the inequation∣∣∣∣κ(t)−

∫ 1

0

κ(s)ds

∣∣∣∣ ≤ ε for all t ∈ R+.

Now using (D3), for every ($∗,κ∗) ∈ X × X , for every n ∈ N, n > 1, and for every
{$i}ni=1 ⊂ X with ($1, $n) = ($∗,κ∗), we have

D($∗,κ∗) > 0⇒ f(D($∗,κ∗)) ≤ f

(
n−1∑
i=1

D($i, $i+1)

)
+ α (10)

n−1∑
i=1

D($i, $i+1) =

n−1∑
i=1

sup | $i −$i+1 |

= sup | $1 −$2 | + sup | $2 −$3 | +.......+ sup | $n−1 −$n |
= sup (| $1 −$2 | + | $2 −$3 | +.......+ | $n−1 −$n |)
≥ sup (| $1 −$2 +$2 −$3 + .......+$n−1 −$n |)
= sup | $1 −$n |
= sup | $∗ −$∗ | .

Therefore, we have

n−1∑
i=1

sup | $i −$i+1 | ≥ sup | $∗ −$∗ |

= sup | 0− εet | .

Further, it implies that

1∑n−1
i=1 sup | $i −$i+1 |

≤ 1

sup | εet |
.

Taking limit t→∞, we get

1∑n−1
i=1 sup | $i −$i+1 |

≤ 0 (11)

Now from (10) and (11) with taking f(t) = −1

t
, t > 0 and α = 0, we get

f(D($∗,κ∗)) ≤ ε,
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Further, we get

D($∗,κ∗) ≤ f−1(ε).

Hence the result.

6. Conclusions

In this paper, we study some sufficient conditions for the existence of solution for
a fixed point problem in the setting of orthogonal F−metric space by generalizing many
known results of the literature. Also, we obtain some results on the Ulam-Hyers stability
problem and well-posedness of the fixed point problem.
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